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Abstract

In this paper 2 new analysis method for nonstationary signals, the wavelet-transform is
discussed. After a short iniroduction to continuous wavelet transform and to multiresolu-
tion analvsis the concept of perceptual wavelets is introduced. Finally, possible application
areas in digital speech processing are mentioned, followed by the experimental results of
the perceptual wavelet-based speech s#nhancement.

Keywords: wavelet transform, speech representation, feature extraction, noise modelling,
speech enhancement.

i. Introduction

With the emphasis on the method, this paper discusses the continuous
wavelet transform (GOUPILLAUD et. al., 1984) through a special problem of
digital speech processing (GORDOS — TakAcs, 1983).

Recently the wavelet transform is a well proven analysis method for
nonstationary signals, and the algorithms derived from the wavelet theory
became standards in digital signal processing (MeEYER, 1993).

The universality of the method can be illustrated with successful appli-
cations from many kinds of scientific areas. Without the demand on com-
pleteness, the analysis of seismic signals (GOUPILLAUD et. al.,1984), the
image processing (MALLAT, 1989, Kiss et. al.,1994), the biomedical signal
analysis for ECG (TUTEUR, 1990) and EEG (UNSER et. al.,1994), the anal-
ysis of 1/f noises (WORNELL, 1993), the vibration analysis in mechanical
engineering (TANSEL et. al,1993) and the speech analysis (KRONLAND-
MARTINET et. al.,1987) can be enumerated as examples.

From the point of view of signal analysis methods the signals can
be classified as stationary or nonstationary signals. When analysing for-
mer ones the Fourier-transform is a suitable method (namely decomposing
the signals with complex exponential functions), and in the latter case the
wavelet transform can be used (that is, deriving the signals f.e. as linear
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combinations of wavelets) (MEYER, 1993). The stationarity in the determin-
istic case can be defined with the time-independent instantenous amplitude
and frequency (the instantenous amplitude is the amplitude of the so called
complex analytical signal, and the instantenous frequency is the derivative
of the phase of the latter), while the weakly stationary stochastic signals can
be represented with time independent power density spectrum {(MAMMONE,
1992). These properties are not valid for the non-stationary signals, thus a
time-dependent description can only be given. Abrupt changes, signal tran-
slents can occur in this case, moreover their place (or time instant) cannot
be predicted (FLANDRIN, 1990).

Recently there is a suitable method for non-stationary signals, the
wavelet analysis. As important precedent on the one hand Lhe Géabor’s
‘time-frequency atoms’ (GABOR, 1946), on the other the orthonormal Haar-
function system can be mentioned (HaaARr, 1910). In the former case the
speech can be decomposed into a sum of appropriate elementary signals,
and in the wavelet-literature the Haar-system is the classical example of the
so called dyadic wavelet base (DAUBECHIES, 1990).

Though — as a consequence of intensive research in this area -~ many
wavelet functions have been found, nevertheless there is a question of how to
choose the suitable wavelet for a specific signal processing problem. To solve
this problem it is plauzible to begin with a wavelet, has been successfully
applied to an analogous task, but the appropriate analysis wavelet function
can be constructed starting from an adequate model of the physical system
under investigation.

What follows in the rest of this article is a short introduction to con-
tinuous wavelet transform and multiresolution analysis in Section 2. After

y review of application examples of wavelets in Qpeech processing, Section 3
eroches the concept of perceptual wavelets, while Section 4 discusses the
possible applications, among them the SDeech erhancement is details. I’
nally the summary and the acl\nov«leddemem can be found.
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ontinucus wavelet transform and the muliiresociution

When the problem is to analyse finer and finer details of the signals, the
wavelet transform is an appropriate method. The analysis functions wq 5()
can be derived by translation (shift) b € R and dilation ¢ > 0 (the so
called scale parameter) from the w(t) wavelet with an energy-preserving
transformation (ComBEs, 1990):

. 1 — b
,wa!b(t):—\/——aw<ta>’ a>0, beR. (1)
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The w(t) wavelet is well localised in time and in frequency, and the Fourier-
transform W (w) of w(t) accomplishes the so called 'admissibility condition’:

/ .l.L @)l dw = / de =c< 20, (2)
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Let’s consider first the continuous wavelet transform which corresponds
to wavelets in (1) and then the multiresolution analysis.

[\

.1. The continuous wavelet transform

The continuous wavelet transform can be defined by the integral below:

+00 +oc

S(a,b) = / S(t) - ws, ()dt = /s(t)-ur*(t;b> dt (4)

N

— —00

where * denotes the complex conjugate.

The equation (4) can be interpreted in three ways. First, it can be
considered as a scalar product of the signal s(¢) and the time-shifted version
of the time-localised w} ,(¢) analysing function, describing the signal details
corresponding to scale ¢ in t = b.

According to the second interpretation the signal s(t) is analysed by

J

L

a series of linear systems with impulse responses of the form -\}-Zw (=4), so
a wide variety of the descriptions of signal changes in s(t) can be obtained

from the slow (a > 1) to the rapid (a < 1) ones (the convolution integral
interpretation of (4)).

As one can easily check, the wavelet transform S(a, b) can be computed
in the frequency domain with the inverse Fourier transform. too:

S(a,b) = / (W)W (aw)e’®dw . (5)
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It leads to a third interpretation because the argument of W=(aw) is in
direct proportion to frequency at a given scale a. Thus taking the ratio of
the bandwidth and the centre frequency, the ratio Aw/w remains constant,
so (4) essentially is a constant relative bandwidth (constant-Q) analysis.

In the case of sampled signals the computations can be accomplished
with inverse DFT at different scales or with direct evaluation of a suitable
approximation of (4):

k—n
a

S(n,a):—\j—az:s(k)~w= kneZ, (6)
k

thus essentially by a linear convolution of s(k) and w™(—[) (GORDOS -
TakAcs, 1983; SiMoNYI, 1984).

Having no other constraints for w(k) the direct evaluation of (6) is
very time-consuming because the length of the w™(—[) discrete filters is in
direct proportion to the scale a. The calculations can be performed more
quickly when the scale factor is the power of 2 (RiouL ~ DUHAMEL, 1992),
or in the case of the special B-spline wavelet with integer scales (UNSER et.
al., 1994).

When processing bandlimited signals by choosing @ = af, k = 0, 1,
o K =10 < ap <2, lw] € [wy,wsy], the signal s(¢) can be analysed with
K wavelets:

in this case for the perfect reconstruction the condition

AK—1
> ao/z’;fV" (a6w> =1 (®)
must be fullfilled:
K1 K1
s)=3 S(kb)= 3 agﬂ/w (ahe) Sw)edw =
=0 =0 .

The condition (8) plays important role when deriving perceptual wavelets.
Finally, several frequently used wavelet examples are given for practical
applications.
The so called *Grossmann-Morlet’-wavelet can be found in many pub-
lications covering different scientific problems (GOUPILLAUD et. al., 1984;
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TUTEUR, 1990; KRONLAND-MARTINET et. al., 1987; AMBIKAIRAJAH et.
al., 1993):

.2 . 2
; = —mt) oy mlemeg)? \
w(i) = e< : : Wilw)y=¢e— = wp > 5.5 . (10}
This wavelet is interesting, because the Gdbor’s uncertainty-relation Aw -
At > 0.5 reaches equality in the case of functions in (10). The uncertainty

Az for the function f(z) can be defined as (GABOR, 1946; REID ~ PassiN,
1992):

The uncertainty Aw can be computed from the Fourler-transform of f(z)
similarly.

Another possible example is the nth order B-spline wavelet (UNSER
et. al., 1994). In this case, the Fourier transform of the dilated version at
s

cale m can be given by:

Waolf)=m-sinc™ (m-

L

iy

). 12)
As it has been proven, an efficient, fast algorithm (O(:V) operaticns) can

be given for this wavelet. Additional example is the so-called ‘Mexican hat’
function (DAUBECHIES, 1990):

0 2 1 (1 ,,> —¢? W (w) 2 1 (—w
wit) = —=- ~t7}ex : W)= ~—=r—=wexp | ——
\,/TST LI p 9 ' : \/g \,: P P \ )

(13)
which has application f.e. in edge detection, but application examples of
the

=1t . 27
w(t) =e T | W (u) - m (14)
wavelet and of the classical Haar-wavelet
1 0<t<0.5
w(t) = -1 05<t<1 (15)

0 else

can be found in the related literature, too (MEYER, 1993).

In the latter case a 'multiscale analysis’ has been elaborated as a dual
pair of the multiresolution analysis (STARK, 1988). Because of its local and
global resolution properties the Haar-system has been successfully applied
in a 1D signal recognition problem earlier (HERENDI, 1986; PINTER, 1986).
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The multiresolution analysis

By means of multiresolution analysis (MEYER, 1993; WORNELL, 1993) the
signal s{t) € V' can be decomposad according to its changes by projections
onto successive nested subspaces of the signal space V: ...V, C Vo C
C V. A particular subspace contains the signal details according to
decomposition 2™. The signal s(t) is transformed from V onto V,; by the
projection operator P, therefore the resulted signal is the 'best’ approxi-
mation of s(t). Because of the nested subspaces above the coarser details
can be derived from finer ones.
The multiresolution analysis can be accomplished with a suitable v(¢)
scale function; in this case for a given m € Z the functions

o (t) = 27 (zmz -n): nez (16)
constitutes an orthonormal basis, so the approximation of s(¢} in this space
is:

1 P.ls(t) = Za: v (t) (17)
where -~
o = / s(EpU™ ()i (18)

-l

The ‘information loss’ can be defined with the difference signal between two
consequtive approximations:
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When decomposing a particular signal to the scale 2, then by (17) and
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Equation (23\, an be interpreted as an approximation does not contain the
signal details finer, than 2. Thus in the case of M — oo the signal s(¢)
can be expressed as:

s(t) = S eTul(i) . (24)

s{t} according to a dyadic orthonormal wavelet

basm

of the multiresolution analysis
. b7 can be computed recursiv elj\
. which can be acquired by applving {17).

si

ep we nee s of a2 g {
After this downwards to other values m:
a, = (T (25)
b7 =5 gll—2n)y et (26,
The corresponding reconstruction formula
— — . - —
ay =) [hln—20)-al +g(n - 20} - 077 (27)
!
which gives a7 too, and thus s(t) can be computed with a*-s by applyin
(17

The connection between the h{n) and g{n) sequences and the v(7) scale
function and w(f) wavelet can be given by:

hiny= [ va(2)-vo(t)dt g(n) = [ vl -wf(t)ds (28)
e J

and

gy = (=1)'R(1~1) . (29)

In the case of the aforementioned, classical Haar-wavelet the values of h(n)
and g(n) are: R(0) = 1,h(1) =1; ¢g(0) = 1, g(1) = —1. For practical applica-
tions there are many h(n) — g(n) pairs (MALLAT, 1989; DAUBECHIES, 1990;
Copy, 1992), moreover the multiresolution analysis can be accomplished
with a VLSI chip (Cobv, 1992).
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3. Application of the wavelet transform to speech processing

When solving practical speech processing problems a widely-used speech
model is the so-called quasi-stationary model (Gorpos ~ TaKAcs, 1983).
Accordingly, the speech is considered as a sequence of overlapping, quasi-
stationary frames and the sampled speech is characterized by short-time
parameters on the frame-by-frame basis. The short-time signal segment is
fixed by a window-function in the time domain and because of the fixed
window-length, the accessible frequency-resolution is limited, too (GOR-
Dos — TaKAcs, 1983; TarnNOCzy, 1984). Therefore, the localisation of
speech transients can be achieved with limited accuracy only, as it has been
demonstrated by several speech researchers (AMBIKAIRAJAH et. al.,1993).
The localisation of signal transients, or abrupt changes is an important task
in speech processing, because the (nearly) periodic opening/closing of the
vocal chords during formation of a vowel is a similar event. so by the ac-
curate event-localisation in time, the value of the fundamental frequency
can be estimated or tracked more precisely. On the other hand the more
adequate description of the nonstationary speech sounds is very important
when desribing the fricatives. affricates, stops and when analysing the coar-
ticulation process.

Comprehensibly, the interest of speech researchers has been aroused
by the properties of wavelets, which has been strenghtened by the fact that
the sound analysis mechanism of the inner ear can be modelled well with
the constant-Q analysis — a particular propertyv of the wavelet transform.

3.1. Waveleis and speech - an application overview

UU.

The sel Led speech proce;:mo appl cations ar

rouped below according to

A general purpose spe ech analysis method has been elab ora ated on the
theoretical basis of multiresolution analysis; the speech ans peummed
in the sequency-domain m\tgad of frequency-domain (DR\«JALGO, 1983
The method has been developed primarily for the analysis of speech tran-
sients; some of the published algorithms have been used earlier (HERENDI,
1986; PINTER, 1986).

In spite of the above mentioned success of the multiresolution analysis
in speech processing, the so called speech-tailored wavelet analysis remains
the subject of the further research. The fundamental reason can be found
in the value of scale factor, which is in the case of multiresolution analysis
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exactly 2. Nevertheless, from the hearing theory the value of 0.8 would
be expected (HERMES, 1993; SCHROEDER, 1993), so the continuous wavelet
transform has become the subject of the research of speech-tailored wavelets.

Accordingly, the wavelet in (10) has been used for different purposes
in speech research. The article with a new type of visual scund represen-
tation has become a classical one (KRONLAND-MARTINET et. al., 1987),
and recently it has been reported, that in the transient-localisation problem
this wavelet transform corresponds well to the analysis properties of the
biophysical models of the inner ear (AMBIKAIRAJAH et. al., 1993).

For modelling the signal analysis p?operues of Lha human audito ory
system (lA.IL\OCZ\;, 199-‘») several different directions exist — with the cor
responai g wavelet constructions, of course. The continuous wavelet baqed
uonal 3d l of the speech analysis properties of the basilar membrane in
: Tu‘,JO\“C {T’M\O K 9&3\} the ana \,"q
| from the measured transfer characteristic of the basilar
n location - the wavelet model corresponds well to the

f the basilar membrane. Moreover, .hele is a detailed,
continuous va\ele -based model covering not only the basilar membrane-
transformation, but the mechanical-nervous transduction process of (in-
ner) hair cells and the cochlear nucleus signal processing as well {Yang
et al.,1992); the wavelet function was derived from a transfer characteristic
of the basilar membrane — inner hair cell system. .

But there is ancther way to solve the speech-tailored wavelet analy-
sis problem: namely the construction of special functions on the basis of
the psychoacoustical properties of the hearing process. As an example,
the FAM-functions can be mentioned, which are hearing-specific because
of the applied frequency-warping function g(z), charactemzmg the pitch-
perception of a human listener (LAINE, 1992):

t:v"“

) N 1 .
FAM(n,g(z)) = exp aln (g'(zN+7-n-glx)| . (30)

where ¢'(z) is derivative of the g(z).

3.2. The perceptual wavelets and their properties

The critical bands (ZWICKER, 1961; GREENWOOD,1961; TARNOCZY,1984)
play important role when constructing the perceptual wavelets. Two main
interpretations of these bands exist. On the one hand, the ear sums up the
energy in these frequency bands, other hand these are bands of equal length
can be measured on the basilar membrane when investigating the tonotopic
mapping of the latter. The place of these bands corresponds to the pure tone
frequency nonlinearly, so this leads to the concept of nonlinear frequency-
mapping or warping. It can be mentioned that — corresponding to the three
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different measurement method - there are three frequency warping functions:
the Hz — Bark, Hz - ERB, Hz - mel; naming them with measurement units
of the objective (physical) and subjective (perceptual) quantities.

Two of the available warping functions have been the most adequate
for our purposes (PINTER, 1994a); the Traunmiiller-formulae for Bark-scale
(TRAUNMULLER, 1990) and the Greenwood’s ones for the ERB-scale (GREEN-
wooD, 1961):

{Hz} _ 70\ /f[Bar‘\j
‘[Bar'xj = 6.7 h (f =~ . :[HZ] — 90 L & s 21)
7 7 asin \— 555 ) L 20 4- 600 sinh K - (31)
. i cHz) \ )
AERB] _ 1o~ T A T £ P2 B 0.06 ¢ ERB] 3
. = 16.71 L y S - ' 32
f 6.71g {1+ 165.4) . f 165.4 (10 1) . (32)

With these in mind the basic idea in the construction of the perceptual
wavelets is as follows: let’s decompo<c the speech in the warped frequencv
scale with the help of functions of minimal uncertainty and unity-bandwidth,
moreover the condition (9) must be met, too. (Cr, from another point of
view: let the signal analysis be optimal in Gabor-sense in the perceptual
(subjective) sc ale instead of the ’Dh\fsical’ (objectiw} frequency <cale.}
Starting from the ancuon exp (—c - b%) and defining the unity band-

width between the 6 d (30%) points, as one can easily check, the value
of the parameter ¢ = 41n(2). Thus the analysing function at point bg -
denoting the variable of The perceptual frequency scale with o —
W) ol a0y (b — p2] = 9—a(b—t0)? Loy 29)
Wib) = exp |—41ni2) (b — bo)"| = 2 P 0<h<b<hy, (33

where bg = by + kAb £ =0, 1. ..., K —1; Abis the distance between the
consequtive maxima of the analysing functions when the condition {
met, and [by, by] is the corre\pondmo interve! of the frequency band [f1, /2]
of the bandlimited signal s(t] in the perceptual scale.

Returning to the Hz-scale two analysing wav ac-
cording the two warping functions:
Bark/ - —4iBT - 1 L EABY i
7" B(, 1\(] 2 416.7 asinhl{ f ~20)/600] - {4, +£A5)] ‘ (3%)
where b, = 6.7 asinh [(f; — 20)/600], and
S —4[7.253 In{ 14 =i - }~‘ -
VV}E:RB(f) =2 4[(.2:)31.1(1. G ) by+kab)| (33\

where 6, = 7.2531In (1 —+ jl‘ )

been found with the condition (9) nu-

The values of ¢; and Ab hav
0.7526 in both cases.

merically: ¢; = 0.68008, Ab =

I\.J (D
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The analysing wavelets in the time domain can be computed with in-
verse Fourler-transform. The condition Wi (—f) leads to complex analysing
wavelet functions; when analysing the real speech signal with these wavelets
two real output signal can be derived in each 'Bark-channel’. In order to
derive real wavelets, the COHdlLlOﬂb Im Wil =0 Wilf) = Wil-f)

met 1

Re [Wy (f) :}0 Wi(f) = We(=F) must be in the case of even or odd
wavelet functions, respectively. When using reai wavelets the speech signal
s{t) can be reconstructe o‘ from the the s.(t) decompositions with summa-
tion

As it can be checked nume
well in the case of Bark-w

job

b

he case of ERB-

s approximated

a8 1 t
wavelets; the <pectr‘al con d of equation (2) is fulfilled by construction
It is worth to note that 'h.en the construction is based on the nearly op-
timal function (REID - DAn:m, 1992), the cos®(.}, instead of the exp (—c - 87},
A 1t — thm oboer

the cos™(
the changes of the parameters ¢; and Ab are not importa
vation is useful when implementing the real-ti ion
wavelet transform.

Referring to the above mentioned ‘speech-tailored wavelet analysis’ r
quirement, the construction above corresponds well to Scroeder’s xpecta—
tions (SCROEDER, 1993) concerning either the scale parameter or the value

of the relative bandwidth. This latter can be defined eas:

s {1 1 r iz 1)
AF (0k+ 5> — (bk" 5)

,:Y‘
o
@
("1
4]
o
-t
o
2

!

|
.
[US]

where f(b) denotes the inverse of the above mentioned frequency warping
function. Table I summarizes the expacted and executed values.

Table 1. Expected values vs. those come from perceptual wavelets

1 Schroeder | Bark-wavelet | ERB-wavelet l
- rel. bandwidth 0.15 0.15...033 | 0.15...0.22 !
| scale factor (1/a) 1.15 111 ... 112 1.22 |

Some further interesting properties of the perceptual wavelets, the de-
composition and time-localisation properties have been published elsewhere

(PINTER, 1994b; 1996).
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4. Application of perceptual wavelets to feature extraction and
speech enhancement

4.1. Feature eztraction and the visual representation of speech

As it has been shown in Section 3, the speech spectrum can be decomposed
into a sum of K sub-spectrum - and the corresponding time-domain decom-
positions; the analysing wavelet can be characterized with critical bandwidth
of unity and with a special shape in the frequency domain.

Because of the energy-summing properties of the critical bands it is
plausible to describe the speech with the energy-levels in each perceptual-
wavelet sub-band, respectively. These computations effectively result a fea-
ture vector, but better results have been achieved with the rms-values below:

=N\ k=0,1,...,K-1: m=0,1.., M-1,
(38)

where e is the kth component of the feature vector in the mth N sample
long speech frame. Because of the wavelet origin the computations can be
accomphshed on non-overlapping frames.

When describing the speech with these feature vectors in time, a new
type of visual speech representation can be achieved, similar to the conven-
tional spectrogram (but describing the nonstationary speech-details more
accurately) and comparable to those published in the literature (DERMODY

al., 1993; PINTER, 1996).

Asit has been demonstrated with numerical e:
tual sound images are similar to those computed f
of colrc:pondmg time-domain decompositions:

xperiments, these percep-
from the positive maxima

k=01, ..., K -1: m=20,1, ..., M—1.
(39)

This latter feature vector sequence correspond< to Mallat’s swavelet-transform-
maxima representation, therefore it can be considered as t e basis of the

further investigations concerning the speech compression problem.
Two examples of these feature vectors are given in Fig. I and Fig. 2
as illustrations.

4.2. A new speech enhancement method
It was shown in the previous section that the speech can be characterized

well with the rms vectors in the perceptual sub-bands. In order to obtain a
suitable noise model to the speech enhancement procedure it was interesting
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Fig. 3 presents the average value €. of the rms values according to
383, but in the enhancement process the variance ¢ is required, too. The
esults of Fig. 3 are based on six types of bandlimited (aOO .. 3400 Hz)
noises. The appropriate ﬂois and speech databases were built during the
research and the latfer are base d on the writien material of other speech
processing problems (OLASZY 1985; TakAcs, 1990).

The speech enhancemem is based on the assumption that the noise
can be characterized well with the estimated expected rms-value and its
variance in each perceptual sub-band. During the noise suppression process
only those sub-bands are involved into the reconstruction which exceeds
the noise average. Further on, instead of this (implicit) step function the
sigmoid-type sharpening function has been applied as nonlinearity:

]

T (e €r,01) = - . (40)
1+exp{—% [eT — (ex + %

%) !f}
RN
et
__v.__/

where e]* denotes the rms-value of the noisy signal in the kth sub-band of
the mth speech frame. Thus the spectrum of Lhe enhanced speech in the
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mth frame can be given by:

rndezy’
© to percepiua

8

Iy [ j

formance of the speech enhancement meathod has
ly: the noise under guestion was added to the

Deen ev Ct
enhanced speech until it was perceived ¢ ‘uaHy noisy as the original noisy
speech. The improvement was then characterized with the segmental energy
level of the subjectively added noise:
1 AM-—-1 N1
- N i)
- 5 g2 (49
[ = v > 101ig 7 so{n) \~:._)
T om=0 n=0

The experiments were carried on with six different noises and eight different
noise amplitude in each case. The word ‘bibe’ has been selected from the
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e
F
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word database because its rms-distribution is simil
distributions, therefore the performance limits of
dure can be investigated.

Which is common in all cases is a saturation effect: above a noise-
type-dependent noise level further improvements cannot be achieved: melo-
dious artefacts are generated by the enhancement procedurs. Describing
the achievable improvement with this saturation limit value, the method re-
sulted 26 dB improvement in the case of bandlimited Gaussian noise, 18 dB
in the case of speech-like noise and 20 - 22 dB in all other cases. There-
fore the improvement can be expected more than 18 dB, which means that
these results correspond well to the published international results (PINTER,

1995).

5. Coneclusions

In this paper the continuous wavelet transform, a new analysis method,
suitable for nonstationary signals has been discussed. The possible inter-
pretations and computation methods in time- and frequency domain has
been presented too. For practical applications several wavelet functions
were given, and the concept of perceptual wavelets has been introduced.
Application examples for feature extraction, visual speech representation
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and noisy speech enhancement were given, too. In the latter case at least
18 dB improvement can be achieved in the case of six different noises.

It is planned to investigate the reconstruction of the speech from the
above mentioned feature vectors, to realize the algerithms on a TMS320C30
DSP and to investigate an isolated speech recognizer in the case of noisy
speech input. For designing the classifier part of the system several new re-
sults are available (FARAGO et. al., 1993; FARAGO - Lucosi, 1993; DELYON
et. al., 1995).
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