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Abstract 

In this paper a new analysis method for nonstationary signals, the wavelet-transform is 
discussed. After a short introduction to continuous wavelet transform and to multiresolu­
tion analysis the concept of perceptual wavelets is introduced. Finally. possible application 
areas in digital speech processing are mentioned. followed by the experimental results of 
the perceptual wavelet-based speech F;nhancement. 
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1. Introduction 

\Nith the emphasis on the method, this paper discusses the continuous 
wavelet transform (GouPILLAUD et. al., 1984) through a special problem of 
digital speech processing (GORDos - TAKf\cs, 1983). 

Recently the wavelet transform is a wel! proven analysis method for 
nonstationary signals, and the algorithms derived from the wavelet theory 
became standards in digital signal processing (IvlEYER, 1993). 

The universality of the method can be illustrated with successful appli­
cations from many kinds of scientific areas. Without the demand on com­
pleteness, the analysis of seismic signals (GOUPILLAUD et. al.,1984)' the 
image processing (MALLAT, 1989, KISS et. al.,1994), the biomedical signal 
analysis for ECG (TuTEuR, 1990) and EEG (UNSER et. al.,1994), the anal­
ysis of 1/ f noises (WORNELL, 1993), the vibration analysis in mechanical 
engineering (TANSEL et. al.,1993) and the speech analysis (KRONLAND­
MARTINET et. al.,1987) can be enumerated as examples. 

From the point of view of signal analysis methods the signals can 
be classified as stationary or nonstationary signals. When analysing for­
mer ones the Fourier-transform is a suitable method (namely decomposing 
the signals with complex exponential functions), and in the latter case the 
wavelet transform can be used (that is, deriving the signals f.e. as linear 
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combinations of wavelets) (MEYER, 1993). The stationarity in the determin­
istic case can be defined ·with the time-independent instantenous amplitude 
and frequency (the instantenous amplitude is the amplitude of the so called 
complex analytical signal, and the instantenous frequency is the derivative 
of the phase of the latter), while the weakly stationary stochastic signals can 
be represented with time independent power density spectrum (MAMMONE, 
1992). These properties are not valid for the non-stationary signals, thus a 
time-dependent description can only be given. Abrupt changes, signal tran­
sients can occur in this case, moreover their place (or time instant) cannot 
be predicted (FLANDRI:-i, 1990). 

Recently there is a suitable method for non-stationary signals, the 
wavelet analysis. As important precedent on the one hand the Gabor's 
'time-frequency atoms' (GA-BOR, 1946), on the other the orthonormal Haar­
function system can be mentioned (HA.AR, 1910). In the former case the 
speech can be decomposed into a sum of appropriate elementary signals, 
and in the \vavelet-Iiterature the Haar-system is the classical example of the 
so called dyadic wavelet base (DAUBECHIES, 1990). 

Though as a consequence of intensive research in this area many 
wavelet functions have been found, nevertheless there is a question of how to 
choose the suitable wavelet for a specific signal processing problem. To solve 
this problem it is plauzible to begin with a wavelet, has been successfully 
applied to an analogous task, but the appropriate analysis wavelet function 
can be constructed starting from an adeq uate model of the physical system 
under investigation. 

What follows in the rest of this article is a short introduction to con­
tinuous wavelet transform and multiresolution analysis in Section 2. After 
a revie\v of application examples of wavelets in spee~h processing, Section 3 
introd uces the concept of perceptucl wavelets, while Section 4 discusses the 
possible applications, among them the speech enhancement is details. Fi­
nally the summary and the acknowledgement can be found. 

2. The \..UHLlliU.V wavelet transform and the multiresolution 
analysis 

When the problem is to analyse finer and finer details of the signals, the 
wavelet transform is an appropriate method. The analysis functions We,b(t) 
can be derived by translation (shift) b E R and dilation a > 0 (the so 
called scale parameter) from the w(t) wavelet with an energy-preserving 
transformation (COMBES, 1990): 

( , 1 (t b) 
We,D t) = .jaW \-a- a>O, bER. (1 ) 
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The w(t) wavelet is well localised in time and in frequency, and the Fourier­
transform W(w) of w(t) accomplishes the so called 'admissibility condition': 

/

0 [W(wW 'I' co [W(u.,'W 
'---'--'-'- dw = dw = c < 00 

L:J 0.) 

-co 0 

therefore +r o. 

The special case of a = 2-m
: b = n . a: n.m E Z corresponds to the 

discrete dyadic v;avelets , 1989): 

(i) = t - n) 

In the muitiresolution analysis the functions (t) form an orthonormal 
basis. 

Let's consider first the continuous wavelet transform which corresponds 
to wavelets in and then the multiresolut,ion analysis. 

2.1. The continuous wavelet transform 

The continuous \'iavelet transform can be defined by the integral below: 

+0:; +oc 

5( a, b) / s(t) . w~.b(t)dt = / s(t)· w~ C ~ dt , (4) 
-x -co 

where ~ denotes the complex conjugate. 
The equation (4) can be interpreted in three ways. First, it cen be 

considered as a scalar product of the signal s(t) and the time-shifted version 
of the time-localised w~ b(t) analysing function, describing the signal details 
corresponding to scale ~. in t = b. 

According to the second interpretation the signal s(t) is analysed by 
a series of linear systems with impulse responses of the form Jaw (~t), so 

a wide variety of the descriptions of signal changes in s(t) can be obtained 
from the slow (a > 1) to the rapid (a < 1) ones (the convolution integral 
interpretation of (4)). 

As one can easily check, the wavelet transform 5(a, b) can be computed 
in the frequency domain with the inverse Fourier transform, too: 

+00 

5(a, b) = va / 5(wrW~(aw)ejbC<Jdw . (5) 
-00 
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It leads to a third interpretation because the argument of WX (aw) is in 
direct proportion to frequency at a given scale a. Thus taking the ratio of 
the bandwidth and the centre frequency, the ratio 6.w/w remains constant, 
so (4) essentially is a constant relative bandwidth (constant-Q) analysis. 

In the case of sampled signals the computations can be accomplished 
with inverse DFT at different scales or with direct evaluation of a suitable 
approximation of (4): 

1 k - n 
5(n, a) = - L s(k) . w=--

ftk a 
k, nE Z , (6) 

thus essentially by a linear convolution of s(k) and w=(-l) (GORDos -
TAK..\cs, 1983; SIMONYI, 1984). 

Having no other constraints for w(k) the direct evaluation of (6) is 
very time-consuming because the length of the w=( -l) discrete filters is in 
direct proportion to the scale a. The calculations can be performed more 
quickly when the scale factor is the power of 2 (RroUL DUHAMEL, 1992), 
or in the case of the special B-spline wavelet with integer scales (UNSER et. 
aL 1994). 

When processing bandlimited signals by choosing a = a6, k 0, 1, 
... , I( - 1: 0 < ao < 2, Iwl E [Wl,W2], the signal s(t) can be analysed with 
I{ wavelets: 

5 '-j? J (' \ . , b) = a~ - vV= aow). 5(w)· eJwodi.c.' . (7) 

In this case for the perfect reconstruction the condition 

(a k ,.,) - 1 
0""" --

k=O 

must be fullfilled: 

1\-1 1\-1 

s(b) = 5(k, b) =, a~/2 J W= (aciw) S'\w)ejwbdw = 
k=O r.=0 

= ! [: a;!2W- (aico) 1 S(w)e'";dw . (9) 

The condition (8) plays important role when deriving perceptual wavelets. 
Finally, several frequently used wavelet examples are given for practical 

applications. 
The so called 'Grossmann-Morlet'-wavelet can be found in many pub­

lications covering different scientific problems (GOUPILLAUD et. al., 1984; 
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TDTEDR, 1990: KRONLA:\D-:-'L\RTINET et. al., 1987: AMBIKAlRAJAH et. 
al., 1993): 

( _;2 _ j:.;ot) 
w(t)=e - ; W(w) = Wo > 5.5 . (10) 

This wavelet is interesting, because the Gabor's uncertainty-relation Cl,.(.;) -

!'::"t 2 0 . .5 reaches c<1uality in the case of functions in (10). The uncertainty 
Cl,.X for the function f(x) can be defined as (G_~BoR, 1946: REID - PASSIN, 
1992): 

(x . ') . C( '?d -x)- IJ-r) ,- 'c 
J I ," I 'C 

2J: = -_OC_, ---,-_____ _ 

x'lf(x)ldx 
-00 

T-------

-:::c 

The uncertainty t.::,.(.;) can be computed from the Fourier-transform of 
similarly_ 

(11 ) 

Another possible example is the nth order B-spline wavelet (CNSER 
et. al., 1994). In this case, the Foufier transform of the dilated version at 
scale m can be given by: 

(12) 

As it has been proven, an efficient. fast algorithm (O(1V) operations) can 
be given for this wavelet. Additional example is the so-called ''0;lexican hat' 
function (DADBECHIES, 1990): 

W(u.:) = ~.-.. ,.'-,exp (_;2) 
which has application Le. Il1 edge detection, but application 
the 

-It I 
w(t) = eT'" ; 

wavelet and of the classical Haar-wavelet 

w(t) = { ~1 
O::;t<O . .5 
0 . .5 ::; t < 1 
else 

can be found in the related literature, too (MEYER, 1993). 

(13) 
examples of 

(14) 

(1.5 ) 

In the latter case a 'multiscale analysis' has been elaborated as a dual 
pair of the multiresolution analysis (STARK, 1988). Because of its local and 
global resolution properties the Haar-system has been successfully applied 
in a ID signal recognition problem earlier (HERENDI, 1986; PINTER, 1986). 
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2.2. The multiresolution analysis 

By means of multiresolution analysis (?v1EYER, 1993; WORNELL, 1993) the 
signal s(t) E V can be decomposed according to its changes by projections 
onto successive nested su bspaces of the signal space V: ... Vm C Vm +1 C 
... CV. A particular su bspace contains the signal details according to 
decomposition 2m. The signal s(t) is transformed from V onto Vm by the 
projection operator Pm, therefore the resulted signal is the 'best' approxi­
mation of s(t). Because of the nested subspaces above the coarser details 
can be derived from finer ones. 

The multi resolution analysis can be accomplished with a suitable u(t) 
scale function; in this case for a given m E Z the functions 

(t) = nEZ ( 16) 

constitutes an orthonormal basis, so the approximation of s(t) in this space 
is: 

(t) , (17) 

~\\. here 

(18) 

The 'information ioss' can be defined with the difference signal bet\veen two 
consequtive approximations: 

and EO",. the orthogonal complement of ID 

is spanned the 

onhonormal wavelet therefore: 

(t) , 1 \ 
-) 

+x 

/ s(t) (t) dt . (22) 

\,·,7hen decomposing a particular signal to the scale 2M. then by (17) and 
(19) : 

D [(~)' ~ ,H S (. J = D [-(t)] - V ~ b17lW ffi (t) rn::>' -L...&~n n (23) 
m<AI m<JYI n 
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Equation (23) can be interpreted as an approximation does not contain the 
signal details finer, than 2''vf. Thus in the case of ,VI -+ YJ the signal s(t) 
can be expressed as: 

I. ) 
SlZ: = ~. bmw::' (t)' , L n " 

in n 

(24) 

"\' hich is a decom position of 
basis. 

according to a dyadic orthonorma! wavelet 

The practical importance of the muitiresolution analysis comes from 
the fact, that the coefficients can be computed recursively, As a first 
step \,';e need the value of , v;hich can be acquired applying (1 
After this dO\,'nwards to other values m: 

h 

The corresponding reconstruction formula: 

ar;;' = [h(n - + g(n 2l)' 

,,;hich gives a~I too, and thus s(t) can be computed with a~'-s by applying 
(17) , 

The connection between the h(n) and g(n) sequences and the v(t) scale 
function and v:avelet can be given by: 

+00 

g(n) = J v;' wg(t)dt (28) 
-02, 

and 

v(t) = hI: h(l) , v(2t - l) w(t) = h)": g(l) . v(2t - l) 
"--' 

I I 

g(l) = (-l)!h(l-l) (29) 

In the case of the aforementioned, classical Haar-wavelet the values of h(n) 
and g(n) are: h(O) = 1, h(l) = 1; g(O) = 1, g(l) = -1. For practical applica­
tions there are many h(n) - g(n) pairs (MALLAT, 1989; DAUBECHIES, 1990; 
CODY, 1992), moreover the multiresolution analysis can be accomplished 
with a VLSI chip (CODY, 1992), 
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3. Application of the wavelet transform to speech processing 

'When solving practical speech processing problems a widely-used speech 
model is the so-called quasi-stationary model (GoRDos - TAK.4.cs, 1983). 
Accordingly, the speech is considered as a sequence of overlapping, quasi­
stationary frames and the sampled speech is characterized by short-time 
parameters on the frame-by-frame basis. The short-time signal segment is 
nxed by a window-function in the time domain and because of the nxed 
\vindow-Iength, the accessible frequency-resolution is limited, too (GOR­
DOS - TAKi\cs, 1983; TARNOCZY, 1984). Therefore, the localisation of 
speech transients can be achieved with limited accuracy only, as it has been 
demonstrated by several speech rese2.rchers (AMBIKAIRAJ AH et. al. ,1993). 
The localisation of signal transients, or abrupt changes is an important task 
in speech processing, because the (nearly) periodic opening/closing of the 
vocal chords during formation of a vowel is a similar event, so by the ac­
curate event-localisation in time, the value of the fundamental frequency 
can be estimated or ;;racked more precisely. On the other hand the more 
adequate description of the nonstationary speech sounds is Yery important 
when desribing the fricatives, affricates, stops and when analysing the coar­
ticnlatioi1 process. 

Comprehensibly, the interest of speech researchers has been aroused 
by the properties of wavelets, which has been strenghtened by the fact that 
the sound analysis mechanism of the inner ear can be modelled \vel! with 
the constant-Q analysis - a particular property of the wavelet transform. 

3.1. Wavelets and speech an application overvie1D 

The selected speech processing applications are grouped below according to 
the applied wavelet-analysis technique. 

The multi resolution 2.na!ysis has been CLi-iy!ieU 

fundarnental ~Il the presence of 
wavelet and the lVIallat-algorithm Ilas been used (KADA;,1B£ BOt'DREAUX-
BARTELS, 1992). . 

A general purpose speech analysis method has been elaborated on the 
theoretical basis of multiresolution analysis; the speech analysis is performed 
in the sequency-domain instead of frequency-domain (DRYJALGO, 1993). 
The method has been developed primarily for the analysis of speech tran­
sients; some of the published algorithms have been uSl:d earlier (HEREI'iDL 
1986; PI?\TER, 1986). 

In spite of the above mentioned success of the multiresolution analysis 
in speech processing, the so called speech-tailored wavelet analysis remains 
the subject of the further research. The fundamental reason can be found 
in the value of scale factor, which is in the case of multiresolution analysis 
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exactly 2. Nevertheless, from the hearing theory the value of ~0.8 would 
be expected (HERMES, 1993: SCHROEDER, 1993), so the continuous wavelet 
transform has become the subject of the research of speech-tailored wavelets. 

Accordingly, the wavelet in (10) has been used for different purposes 
in speech research. The article with a ne\\' type of visual sound represen­
tation has become a classical one (KRO,,:LAND-MARTINET et. al., 1987), 
and recently it has been reported, that in the transient-localisation problem 
this w;welet transform corresponds well to the analysis properties of the 
biophysical models of the inner ear (lnlBIKAlRAJAH et. aL 1993). 

For modelling the signal analysis properties of the human auditory 
system (TARNOCZY, 1984) several different directions exist - ,vith the cor­
responding wavelet constructions, of course. The continuous wavelet based 
functional model of the speech analvsis of the basilar membrane in 
the inner ear has . (IR1NO - , 1993): the 
viavelet \,vas derived from the measured Transfer characteristic of the basilar 
membrane at a given location the wavelet model corresponds well to the 
biophysical model of the basilar membrane. ~vroreover, there is a detailed, 
continuous wavelet-based model covering not onlv the basilar membrane­
transformation, but the mechanical-ner~ous tra~sduction process of (in­
ner) hair cells and the cochlear nucleus signal processing as well (YANG 
et aL1992): the wavelet function was derived from a transfer characteristic 
of the basilar membrane - inner hair cell system. 

But there is another way to solve the speech-tailored wavelet analy­
sis problem: namely the construction of special functions on the basis of 
the psychoacoustical properties of the hearing process. As an example, 
the FAM-functions can be mentioned, which are hearing-specific because 
of the applied frequency-warping function g( x), characterizing the pitch­
perception of a human listener (LAINE, 1992): 

FAM(n, g(x)) 
-, . -

exp l~ In (g/(x)) + j . n· g(x) J (30) 

where g/(x) is derivative of the g(x). 

3.2. The perceptual wavelets and their properties 

The critical bands (ZWICKER, 1961; GREENWOOD,1961; TARNOCZY,1984) 
play important role when constructing the perceptual wavelets. Tv;o main 
interpretations of these bands exist. On the one hand, the ear sums up the 
energy in these frequency bands, other hand these are bands of Aquallength 
can be measured on the basilar membrane when investigating the tonotopic 
mapping of the latter. The place of these bands corresponds to the pure tone 
frequency nonlinearly, so this leads to the concept of non linear frequency­
mapping or warping. It can be mentioned that - corresponding to the three 
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different measurement method - there are three frequency warping functions: 
the Hz - Bark, Hz - ERB, Hz - mel; naming them with measurement units 
of the objective (physical) and subjective (perceptual) quantities. 

Two of the available warping functions have been the most adequate 
for our purposes (Pli'iTER, 1994a); the Traunmiiller-formulae for Bark-scale 
(TRAUi'i1vl1JLLER, 1990) and the Greenwood's ones for the ERB-scale (GREE:\­
WOOD, 1961): 

• 1.' _. (jlHZ] - 20) j[Bar~J = 6.1 aSlIlh 
600 

(jiBarkJ ) 
j[Hz] = 20 + 600 sinh \ -i.7- . (31) 

j[EHB~ = 16.71g (1 + \ 
165.4 J 

\Vith these in mind the basic idea in the construction of the perceptual 
\yavelets is as follows: let's decompose the speech in the warped frequency 
scaie with the help offunctions of minimal uncertainty and unity-bandwidth, 
moreoyer the condition (9) must be met, too, (Or, from another point of 
view: let the signal analysis be optimal in Gabor-sense in the perceptual 
(subjective) scale, instead of the 'physical' (objective) frequency scale.) 

Starting from the function exp (-c· b2 ) and defining the unity band­
width between the 6 dB (50%) points, as one can easily check, the value 
of the parameter c = 41n (2). Thus the analysing function at point 00 -
denoting the variable of the perceptual frequency scale \vith 0 -: 

(0 -

where bo = 01 k6b: k = 0, 1. . , .. J( - 1: 60 is the distance between the 
consequtive maxima of the analysing functions v,hen the condition 
met, and [b 1 , hJ is the COl responding interval of the frequency band 
of the bandlimited signal in the perceptual scale. 

nc.LU"""S to the Hz-scale l\YO 'I};avelets call found. 
carding the t\VO warping functions: 

C 
,,-.Jf6.7asinhf( i-"\JJ/'~UU'-\:J,+k.6.b)1,2 

1 L' '" (34) 

where b1 = 6.7 asinh [(h 20)/600], and 

W!~RB(J) = c1T4[7.2531n(l+16~A)-(bl+kM)t (35) 

where 01 7.2531n (1 + lL~A)' 

The values of Cl and 6b have been found with the condition (9) nu­
merically: Cl ~ 0.68008, 60 ~ 0.7526 in both cases. 
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The analysing wavelets in the time domain can be computed with in­
verse Fourier-transform. The condition Wd- f) leads to complex analysing 
wavelet functions: when analysing the real speech signal \vith these wavelets 
two real output signal can be derived in each 'Bark-channer. In order to 
derive rea! wavelets, the conditions lm [HlL;(f)] = 0: Wdf) = 1i'Vk( - f) or 
Re (f) 0: Wk(f) = V'Vl: f) must be met in the case of even or odd 
\vavelet functions. \Vhen using real wavelets the speech signal 

can be reconstructed from the the Sk(t) decompositions with summa-
tion: 

1\' -1 f( -1 

= 
(K-l 

< IVk 
l k=O 

)S }= 
p-l { 

As it can be checked numerically. the scale property in ) is approximated 
well in the case of Bark-\vavelets and wiTh high precision the case of ERB-
\qvelets; the spectral condition of equation (2) is fulfilled construction. 

It is worth to note that when the construction is based OIl the nearly op­
timal function (REID - PASSE" 1992), the cos2 (.), instead of the exp (-c· 62), 

the changes of the parameters Cl and 6.b are not important this obser­
vation is useful when implementing the real-time version of the perceptual 
\vavelet transform. 

Referring to the above mentioned 'speech-tailored wavelet analysis' re­
quirement, the construction above corresponds wet! to Scroeder's expecta­
tions (SCROEDER, 19(3) concerning either the scale parameter or the value 
of the relatiye band\';idth. This latter can be defined as: 

f (b J • ..L 1 I - r (b' - ()' 
h I 2/ J K 2 

where f (b) denotes the inverse of the above mentioned frequency \varping 
function, Table 1 summarizes the expected and executed values, 

Table 1, Expected values vs, those come from perceptual wavelets 
I Schroeder Bark-wavelet I ERB-wavelet I 
I re!. bandwidth 0.15 0.15 ... 0,33 I 0,15.,.0,22 
I scale factor (l/a) 1.1,5 111 ... 1.12 1.22 

Some further interesting properties of the perceptual wavelets, the de­
composition and time-localisation properties have been published elsewhere 
(PINTER, 1994b: 1996). 
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4. Application of perceptual wavelets to feature extraction and 
speech enhancement 

4.1. Feature extraction and the visual representation of speech 

As it has been shown in Section 3, the speech spectrum can be decomposed 
into a sum of J{ sub-spectrum - and the corresponding time-domain decom­
positions; the analysing wavelet can be characterized with critical bandwid th 
of unity and with a special shape in the frequency domain. 

Because of the energy-summing properties of the critical bands it is 
plausible to describe the speech with the energy-levels in each perceptual­
wavelet sub-band, respectively. These computations effectively result a fea­
ture vector, but better results have been achieved with the rms-values belmv: 

k = 0, 1. ... , ]{ 1 : m = 0, 1, . . ., ji;[ 1, 

(38) 
where er is the kth component of the feature vector in the mtll N sample 
long speech frame. Because of the \vavelet origin the computations can be 
accomplished on non-overlapping frames. 

-VVhen describing the speech with these feature vectors in time, a lleiV 
type of visual speech representation can be achieved, similar to the conven­
tional spectrogram (but describing the nonstationary speech-details more 
accurately) and comparable to those published in the literature (DER?',lODY 

et. al, 1993; PI:-.lTER, 1996). 
As it has been demonstrated with numerical experiments, these percep­

tual sound images are similar to t:lOse computed from the positive maxima 
of corresponding time-domain decompositions: 

= max (n)J : k = O. 1, .... -1: m = 0, 1 ... " JV! - 1 . 

( 39) 
This latter feature vector sequence corresponds to Mallat's v;aveiet-transform­
maxima representation, therefore it can be considered as the basis of the 
further investigations concerning the speech compression problem. 

Two examples of these feature vectors are in Fig. 1 and Fig. 2 
as illustrations. 

.{2. A. new speech enhancement method 

It was shown in the previous section that the speech can be characterized 
well with the rms vectors in the perceptual sub-bands. In order to obtain a 
suitable noise model to the speech enhancement procedure it was interesting 
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Fig. 1. \yavelet sub band flTIs-\'alue rel)reSC]1ti:lt]()n of the 
v;ord 'sisak' 

iO analyse the noise signal \vith the same method. The numerical results of 
the an~lysis of six diff~rent noises show. that this description gives a good 
noise-discrimination 1 too, as it can be seen in Fig. 3. 

Fig. 3 presents the average value ek of the rms values according TO 

(38), but in the enhancement process the variance (Yk is too. The 
results of Fig. :] a.re ba.sed on six types of bandlimited (300 ... 3400 Hz) 
noises. The appropriate noise and speech databases were built during the 
research and the latter are based on the written materia! of other speech 
processing problems (OLASZY, 1985; TAK.A.cs, 1990). 

The speech enhancement is based on the assumption that the noise 
can be characterized well with the estimated expected rms-value and its 
variance in each perceptual sub-band. During the noise suppression process 
only those sub-bands are involved into the reconstruction which exceeds 
the noise average. Further on, instead of this (implicit) step function the 
sigmoid-type sharpening function has been applied as nonlinearity: 

Ti: (ek' , ek, (rr:) = ----;:------------;;-
1 + exp { - ~ [er - (ek + on J) ( 40) 

where er denotes the rms-value of the noisy signal in the kth sub-band of 
the mth speech frame. Thus the spectrum of the enhanced speech in the 
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I 

r 

Fig~'[ 2, Perceptual wavelet transform maxima representation of the Hungarian 
word 'sisak' 

7T~th frame can be given by: 

1\-1 

The enhanced speech signal in the time domain can be computed with in­
verse Fourier transform in each non-overlapping speech frame, re:3peCLi\Tely 

In order to evaluate the performance of the speech enhancement me"Ll1Gd 
an objective measure of speech inteiligibility would be necessary (GoRDOS 

LE!JOi\. 1991: The 
af-

Ier a proper modification according to perceptual \va\'elet this 
\,\:onld be the subject of another investigation. 

the performance of the speech enhancement method has 
oeen evaluated subjectively: the noise under question was added to the 
enhanced speech until it \yas perceived equally' noisy as the original noisy 
speech. The improvement \vas then characterized with the segmental energy 

of the subjectively added noise: 

1 ,\1-1 .v 1 

- "')' 1 0 t" ~2 (nl 1'1,1 L..t - b '~m, 
m=O n=O 

i 

The experiments were carried on with six different noises and eight different 
noise amplitude in each case. The word 'bibe' has been selected from the 
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word database because its rms-distribmion is similar to the most noise-rms 
distributions, therefore the performance limits of the enhanceme:1t proce­
d ure can be investigated. 

\Vhich is common in all cases is a saturation effect: above a noisc­
type-dependent noise level further improvements cannot be achieved: melo­
dious artefacts are generated by the enhancement procedure. Describing 
the achievable improvement with this saturation limit value, the method re­
sulted 26 dB improvement in the case of bandlimited Gaussian noise, IS dB 
in the case of speech-like noise and 20 22 dB in all other cases. There­
fore the improvement can be expected more than 18 dB, which means that 
these results correspond well to the published international results (PI~TER, 
199.5). 

5. Conclusions 

In this paper the continuous wavelet transform, a new analysis method, 
suitable for nonstationary signals has been discussed. The possible inter­
pretations and computation methods in time- and frequency domain has 
been presented too. For practical applications several wavelet functions 
were given, and the concept of perceptual wavelets has been introduced. 
A pplication exam pIes for feature extraction, visual speech representation 
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and noisy speech enhancement 'vere given, too. In the latter case at least 
18 dB improvement can be achieved in the case of six different noises. 

It is planned to investigate the reconstruction of the speech from the 
above mentioned feature vectors, to realize the algorithms on a T.MS320C30 
DSP and to investigate an isolated speech recognizer in the case of noisy 
speech input. For designing the classifier part of the system several new re­
sults are available (FARAGO et. al., 1993; F.-\RAGO - LUGOSL 1993: DELYOi\ 

et. al.. 199.5). 
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