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Abstract 

This paper is concerned with neural networks which have the ability to solve linear and 
nonlinear constrained optimization tasks. After a short overview of such neural networks, 
we introduce useful extensions which make them capable of solving more general pro­
gramming tasks, namely handling equality constraints more efficiently than in the known 
obvious ways, and obtaining global optimum with probability close to 1. We also refer to 
stability analysis worked out from both the circuit theory and optimization theory point 
of view. The simple simulation examples, one of which is presented in the paper. show 
that the extended networks are stable and converge to right solutions. 
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1. Introduction 

As it is well known, artificial neural networks (ANN) contain many sim­
ple processing elements connected with each other in some "..-ay. Two main 
properties make them attractive in several applications: the capability of 
'learning' and the dramatically increased speed when used as parallel com­
putation structures. Neural approaches of optimization problems have also 
been extensively studied by many researchers. Between the two main types 
of ANN architectures, feedforward and recurrent, the latter one, which 
serves the basis of our work, is more suitable for solving optimization tasks. 

In recent years, with the rapid development of analogue VLSI tech­
nology, the interest in continuous systems and their analogue circuit real­
izations keeps growing. Simple 'analogue computers' have also been devel­
oped showing the remarkable results in this field. The analogue and mixed 
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(analogue-digital) circuits are important in the implementation of neural 
networks, especially of recurrent ones with continuous dynamics [1] [4] [5]. 

In the last decade there has been strong research activity in apply­
ing analogue circuits for solving mathematical programming tasks. The 
concept was originated by PY:\E [2J who proposed an analogue electronic 
computer for solving linear programs. More recently, CHCA and L1:\ [3] 
developed a circuit to solve nonlinear programming problems. The main 
drawback of this circuit is that multiport transformers are required for re­
alization and thus, cannot solve quadratic programs having negative semi­
definite matrices. This problem has been resolved by Wilson, using nega­
tive floating resistors. Hopfield and Tank presented a neural network for 
linear programming in which the decision variable amplifiers have invert­
ing outputs, as well, therefore, negative resistors are not needed [4]. Later 
it has turned out, on the basis of the work of KE:\:\EDY and CHGA [5], 
that the Hopfield network can be viewed as a special case of the canonical 
programming circuit proposed by CHL\ and LI:\. Moreover, modification 
is required in penalizing the constraints in order to guarantee convergence 
to a feasible solution. 

The significance of the works mentioned above lies in that the opti­
mization problems appear in a common framework of neural paradigm and 
analogue circuit implementations (hence is the name neural circuits). 

In this paper we introduce new results related to nonlinear program­
ming neural networks. The attractive features of our proposed extensions 
are that they allow us handling equality constraints more efficiently than 
previous solutions and, at the same time, they increase the probability to 
reach global optimum 

The paper is organized as follows: The second part gives information 
on constrained optimization tasks and KE:\:\EDY and CHL\'S canonical 
programming circuit [7] which serves as the basis of our work. The third 
section contains the essence of the article, the description of our extended 
neural networks, and arguments for the usefulness and feasibility of the new 
constructions based on analytical and simulation investigations. Finally, 
the paper is concluded and summarizes the possible prospective research 
directions. 

2. Constrained Optimization by Neural Networks 

2.1 Constrained Optimization: Notation and Formulation 

A constrained optimization problem can be formulated in the form: 

MinimizeJ(x)subject togj(x) 2:: 0, j = Lp, (2.1) 
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where x ERn, f : Rn -;. RP and 9 : Rn -;. RP is a p dimensional vec­
tor valued function of n variables_ We also assume that f and 9 are con­
tinuously differentiable functions_ Using the penalty function method, the 
above task can be transformed into an unconstrained optimization: 

Minimize {f(x) + cP(x)}, (2.1a) 

where c is a sufficiently large constant and P is the so-called penalty func­
tion. P is always a non-negative function and takes zero if and only if all 
constraints are satisfied. Frequently used penalty functions are 

Pq(x) = ~ 2:::~=l[g;(x)Fg;(x) = -min(O,gj(x))and q > 0, integer 

(2.1b) 
which satisfy the requirement that if violation occurs it should be positive, 
otherwise zero. 

A more general optimization task involves equality constraints, in 
addition to the inequality ones. Let h : Rn -;. R" denote the function 
in the set of equality constraints (h(x) = 0). Then the problem can be 
formulated as: 

Minimize f (x) 

subjecttog(x) ~O and h(x)=O. (2.2) 

In this case, the unconstrained cost function to be minimized is 

<p(x) = f(x) + cP(x) + dQ(x), (2.2a) 

where Q is the function penalizing the violation of equality constraints. Q 
is usually quadratic but obtaining a more general set of allowed penalty 
functions, let Q be defined as: 

Qq(x) = ~ \: ___ r [hJ-(x)F(2c(h
J
-(x)) - l)q, q > 0, integer, 

q L...-]=l 
(2.2b) 

where c is the Heaviside step function. The difference between the min­
imizers of the constrained and unconstrained problem can be made arbi­
trarily small (or zero at certain tasks with q = 1 parameters) by using suf­
ficiently large c and d. 

2.2 The Canonical Nonlinear Programming Neural Circuit 

KENNEDY and CHUA have proposed a circuit called dynamical canonical 
nonlinear programming circuit which is intended to solve problems formu­
lated in (2.1) [7J. The architecture can be seen in Fig. 1 which shows'the 
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circuit containing controlled voltage and current sources, nonlinear resis­
tors and capacitances. The latter ones allow dynamical behaviour and their 
volt ages represents the decision variables. The left-hand side generates the 
penalty functions for the corresponding constraints, while on the right-hand 
side the required derivatives appear. It is easy to show that the circuit can 
be regarded as a gradient system and it simulates an unconstrained opti­
mization problem like (2.1a) having P2(X) penalty function [8], [9]. 

Fig. 1. The canonical nonlinear programming neural circuit 

The stability analysis found in [7] shows that the network can converge to 
correct solutions under well-defined circumstances. However, there have 
been two problems remained to be solved. One of them is related to the 
efficient treatment of the tasks described in (3.2), the other one is the 
obvious drawback of gradient systems: the lack of global optimization. 
Both of them are attacked in the next section. 

3. Extensions of the Canonical Programming Neural Circuit 

3.1 Handling Equality Constraints 

The first modification is developed for handling equality constraints in 
order to make the canonical neural circuit capable of solving more general 
optimization task formulated in the form of: 

Minimize f(x)subject to gj(x) ~ 0 j = Lp and hi(x) = O,i = LT. 
(3.1 ) 

Naturally, there are some obvious ways of taking into account the con­
straints hi(X) = O. For example, one of them is considering all equalities as 
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two inequalities, that is h;(x) = 0 is equivalent to hi(X) 2: 0, h;(x) ::; O. An­
other possibility is to use simple quadratic penalty terms for equalities and 
embedding them into f(x) as can be seen in [12]. Hence, in this manner 
the problem can be transformed to that like in (2.1). Although these ap­
proaches are quite simple and applicable, they have some drawbacks, par­
ticularly in connection with the possible circuit realization. In the case of 
the first method the canonical circuit requires 2r additional elements, cor­
responding pairs of which are responsible for equality constraint fulfilment. 
It is a prodigal solution, because at most one of the two nonlinearities is ac­
tive in each pair at any time. In addition, it involves another requirement, 
the two nonlinearities of each pair should work completely synchronously, 
otherwise it can occur that both of the inequalities hi(x) 2: 0, h;(x) ::; 0 
are considered being violated leading to unnecessary oscillation and patho­
logical behaviour in the circuit. The second approach should not even be 
preferred, because the neural circuit modified in this manner would lose an 
attractive feature, i.e. the topologically well-separated treatment of con­
straints, which exists in the original canonical neural circuit. Preserving 
this property is very important in obtaining an easily reconfigurable circuit. 

In view of these facts, we suggest using special nonlinearities which 
help overcome the difficulties listed above. They are characterized by: 

n () q-l( ( ))q-2. 1 0 . ~£jq W = CjW -c: -w J = .. p, q > , mteger, (3.2) 

(3.3) 

where Cj, d j E Rand c: is the Heaviside step function. The qth order Qjq 

and A;q belong to the jth inequality and ith equality constraint, respec­
tively. (Omega and A are conductance characteristics as it can be seen in 
Fig. 2). Therefore, in accordance with circuit dynamics, the time evolution 
of state variables Xk is determined by the following differential equation: 

For establishing connection to the optimization task found in (2".4), let us 
define the unconstrained objective function 'Pmod (x) as: 

'Pmod(X) = f(x) + Pq(x) + Qq(x), (3.5) 

where Pq(x) and Qq(x) are the modified qth order penalty functions: 
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Qq(x) = L dj[hj(xW (2c;(hj(x)) - l)q. 
q j=l 

(3.7) 

The following theorem makes the relation between the modified canonical 
circuit and the task in (2.4) more clear. 

Theorem 1: The modified canonical neural circuit with qth order Aq 
and Qq nonlinearities solves the unconstrained mathematical programming 
task having modified qth order penalty terms Pq and Qq. 

Proof: 
The energy function of the modified canonical neural circuit is: 

P rgj(x) r rhj(x) 

L(x) = f(x) + L lo Djq(w)dw + L In Ajq(w)dw. 
j=l 0 j=l 0 

(3.8) 

Introducing the variables 

(3.9) 

referring to the conductance characteristics of the applied nonlinearities, 
the time derivative of L( x) can be expressed as: 

8L(x) = t 8f(x) 8Xk + t t CjWj 8gj(x) 8Xk + t t djAj 8hj (x) 8Xk. 

8t k=l 8Xk 8t j=l k=l 8Xk 8t )=1 k=l 8Xk 8t 

(3.10) 
Substituting governing Eg. (3.4) into (3.10), we obtain the following more 
concise form: t 8Xk [-C. 8Xk 

k=l 8t k 8t 
(3.11) 

which is evidently less than or equal to zero. Consequently, the system 
is stable in Lyapunov sense meaning that the dynamical equation (2.7) 
continuously decreases the energy function L( x) until it reaches its stable 
equilibrium point. 

As the second step, we show that L( x) as a Lyapunov function is 
equivalent to the objective function c,omod(X). Considering the following 
identities: 

J w q
- 1 (2c;(w) - 1)q-2 dw = ~wq (2c;(w) - l)Q, (3.12) 

(3.13) 

and substituting them into (3.8) we get the required formula of c,o(x). 
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3.2 A Stochastic Version of the Modified Canonical Circuit 

It is well known that finding the global optimum cannot be guaranteed us­
ing a pure gradient system. Regarding neural networks, numerous meth­
ods have been developed for finding global optimum mainly based on sim­
ulated annealing (SA), mean field annealing [9], [lOJ and the continuous 
versions of mean field techniques [14], [15], [16J. 

In [9J \VO:\G has developed a neural circuit which is based on a dif­
fusion machine using a deterministic approach of SA. KESIDIS has showed 
that this network, in principle, can be used for analogue optimization [18J. 
It is also known that SA can be extended to continuous variable cases 
based on the Langevin algorithm. That allows us to apply the concept in 
the modified canonical circuit meaning that additional current generators 
are inserted in parallel with the previous ones on the right-hand side (see 
Fig. 2) which generate uncorrelated gaussian noises whose amplitudes are 
gradually being reduced as the time evolves. 

Fig. 2. The modified nonlinear programming circuit 

In this case the network dynamics can be derived on the basis of Ito-type 
stochastic differential equations appeared in [9J: 

OXk(t) _ _ C-1 oL(x) r;:;;:;;2T () k 1 
.Q - k .Q + y L.1 TJk t, = .. n, 
ut UXk 

(3.14) 

where T is the artificial temperature decreasing by logarithmic rule. 
The above-mentioned approach is also feasible to circuit implementa­

tions because there exist efficient methods for providing independent gaus­
si an noise sources developed for analogue VLSI neural circuits [14]. 
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Fig. 3. The output of the stochastic neural circuit 

3.3 On Stability and Simulation Results 

Regarding the modified canonical circuit (without noise sources) we can 
also use the co-content function known from circuit theory as a Lyapunov 
function in the form of: 

gj(X) hj(x) 
p r 

L(x) = f(x) + L J flq(w)dw + L J Aq(w)dw. 
)=1 0 )=1 0 

(3.15) 

The obvious implication of Theorem 1 is that this function is strictly de­
creasing during the relaxation of the circuit, so according to the Lyapunov 
stability theorem the network converges to an equilibrium point at 'which 
L(x) takes zero value. It is also right that L(x) is equivalent to the objec­
tive function found in (3.5). Therefore, the state variable x at equilibrium 
state is a local minimizer of IPmod (x). 

In the case of the stochastic version the Lyapunov technique is no 
longer applicable for stability. Instead, we have to use properties of the 
corresponding Ito type stochastic differential equation from which the net­
work dynamics is derived. The 1Jk noises must be generated by indepen­
dent Gaussian sources in order to make Xk stationary at a given tempera­
ture. If the T schedule is slow sufficiently the system goes through quasi­
stationary states ensuring the stability and reaching global optimum with 
high probability. 

The computer simulations based on the approximation of the differ­
ential equations demonstrated that the modified canonical circuit, accord­
ing to the analytical results, does not produce large oscillations or chaotic 
behaviour, but converges to points close enough to the right solution. The 
stochastic version also works satisfactorily. In this case there are some pa­
rameters which have to be tuned mainly based on experience. In Fig. 3 we 
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can see an example showing the behaviour of one output of the stochastic 
modified canonical circuit. During the operation x spends more and more 
time in the neighbourhood of 0 and 15, respectively, then finally it 'gets 
stuck' at 15, the global optimum. 

4. Conclusion 

In this paper we have introduced a modified canonical circuit and its 
stochastic version for handling equality constraints efficiently and obtain­
ing global optimization. The analytical investigations and computer simu­
lations show the usefulness of these networks. In the framework the pos­
sibility of using some kind of hardware annealing and the more rigorous 
analysis of the stochastic modified canonical circuit are not elaborated in 
detail, and thus, they form good starting points for future research. 
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