
PERJODICA POLYTECHNICA SER. EL. ENG. VOL. 41, NO. 2, PP. 85-100 (1997)

AN EXECUTABLE SPECIFICATION FORMALISM
REPRESENTING ABSTRACT DATA TYPES

J6zsef BOROVEN

Department of Telecommunication
Technical University of Budapest

H-1521 Budapest, Hungary
Phone: +36 1 463-1613

Received: January 9, 1995

Abstract

It has been proved to be very useful and necessary to give formal specifications of software
systems to be developed. The specifications should help to avoid the necessity of creating
prototypes by offering direct executability. A useful specification language aiming the
description of abstract data types - while maintaining abstractness should also support
the representation of states of objects, as well as support the transformation of declarative
specifications into efficiently executable code.

The present paper is intended to give an informal description of a specification lan
guage aimed to offer the features discussed above. Although the development of the lan
guage has mainly been motivated by the object-oriented language (OMOHUNDRO, 1993),
it is intended to function as a specification formalism at a much broader field.

Introduction

Specification is a crucial phase in the software life-cycle. One of the reasons
for that is the error-proneness of this part, according to (BOEHM, 1979)
over 60 percent of the errors uncovered in software systems were due to
shortcomings in the specifications themselves.

Probably the best solution for the above mentioned problem is to
make specifications executable, thus allowing the end users and developers
to uncover the errors in an earlier phase of software development.

Data abstraction is a very important concept and method in formal
specification techniques as well as in up-to-date software methodologies,
especially in object-oriented programming. Nowadays there are basically
two approaches for the specification of abstract data types:

Algebraic specification method: (see e.g. SPIVEY, 1989) In this ap
proach data objects are characterized by the operations of the data
type, an9. the semantics of operations are defined by algebraic equa
tions. No representation of the data type is given.
Constructive specification method: (see e.g. BJORNERD and JO:--1£5,
1980) This technique uses already existing building blocks (called

86 J. BOROFEN

meta types) for building a model of the abstract data type to be spec
ified. The operations of the data type are expressed in terms of the
operations of the meta types.
Both methods have their advantages and disadvantages. Algebraic

methods are more abstract, more general, free of unnecessary implemen
tational details. On the other hand, they are sometimes more difficult to
construct than constructive specifications, sometimes it is even impossible
to specify in the algebraic approach (BoEH?v1, 1979). But the most serious
problem with this method is its inability to incorporate the notion of state 1

The constructive specification method is easier to learn (especially for
practical programmers). It can represent states in a natural way. The main
problems with constructive specifications are: overspecijication and lack of
abstraction.

In this paper a specification language is described which incorporates
both methods mentioned above.

Overview of Existing Specification Methods

As it was mentioned before the existing formalisms can be partitioned into
two main groups: algebraic and constructive specifications.

One of the most well-known representatives of the algebraic approach
is the CIP-L language introduced by the Munich Project CIP (SPIVEY,
1989). The language is a wide-spectrum language, with applicative as
well as imperative features, supported by a program transformation system.
Drawback of the language is, beside the general problems with the inability
with incorporating states, and difficulty with creating such specifications,
that it is not executable.

OB] is an executable algebraic specification language, it can also be
regarded as a functional programming language augmented with abstract
data types (ADTs) (GOGUEN and MESEGUER, 1984). The general problems
of algebraic specifications hold.

EQLOG (GOGUEN and MESEGUER, 1984) incorporates logic and
functional programming with the notion of ADTs into one semantically
coherent framework. Unfortunately - because of the algebraic approach
- the general problems of that method is applied. On the other hand -
because of the purely declarative syntax given - no implementation has
been developed for the language yet.

Efforts have been made to incorporate the notion of state into alge
braic methods. In COLD (BRIL, 1991) state transitions are represented as

IThe only exception is the COLD specification language (BRIL, 1991), but it can
represent state transitions only via the changing of the underlying algebra, which doesn't
seem to be the most appropriate method imaginable.

SPECIFICATION FORMALISM REPRESENTING ABSTRACT DATA TYPES 87

changes in the algebraic structure representing the ADT to be specified.
It seems that this approach doesn't lead closer to specifications leading to
efficient implementations.

As the most prominent formalism using the constructive approach we
take VDM (JONES, 1982, 1986). Because of the method used there is no
problem with states, it supports the concept of stepwise refinement. The
drawbacks of the formalism are: it is basically a paper and pencil method,
has no direct support for mechanical transformation. It has no parameter
izable classes it is not executable. Similar remarks apply also to Z.

There have been some efforts towards combining the algebraic and
constructive specification methods. The advantages of a language having the
features of both formalisms are obvious. The most remarkable proposals
are the following:

LaTch (HORNING, 1985) includes a common shared language and a
number of interface languages. There seem to exist two basic problems
with the formalism:

- Traits (modules in Larch) are not ADTs. The semantics of them are
context-dependent.
The interface languages are programming language-dependent. It
makes the specifications to be language-dependent, more difficult to
follow.

NUSL (JIANG Xv, 1988) is also a language which combines the two main
approaches. Unfortunately it does not support the incorporation of state
into constructive specifications.

RAISE contains all the components of the two methods augmented
with the possibility of describing processes, and writing specification lay
ers at an imperative level. Unfortunately it has two deficiencies: it is
not executable and does not really support the introduction of states into
specifications.

Motivation and Objectives

The main ideas of the specification language to be introduced are the fol
lowing:

Since objects have states, the specification of ADTs must incorporate
the notion of states. It leads to constructive specification methods.

- The incorporation of the algebraic specification method, for the follow
ing reasons: it provides a more abstract level of specification, can serve
as requirement theories (type bounds), and for an object-oriented lan
guage which has the concept of abstract classes (e.g. Sather) there
seem to be no other way to model them.

88 1. BOROVEN

As it directly follows from the two points above, the language should
have as a feature the combination of algebraic and constructive spec
ification methods. Since both methods have their advantages, and in
certain situations the use of one of them is much more suitable and
natural than the other, it should be allowed to have the opportunity
to construct mixed-method specifications.

The language must support the stepwise refinement process for con
structing specifications. It means that especially the part of speci
fication made in the constructive way should be allowed (and sup
ported) to be combined from parts created using different approaches
(namely predicative and functional), supporting consistency checking
with the algebraic (abstract) and constructively defined ADT phases.
The process of stepwise refinement should be supported by a (partly)
intuition-driven transformation system.

The introduction of states into the specification should be supported
by the language. It is possible (of course) only with the constructive
specification phase.

The language must be executable in order to support the remedy of
deficiencies of specifications at an early phase of software develop
ment.

Stepwise Refinement

The specification of an abstract data type using the language to be pre
sented can be approached in the following ways:

- Algebraic specification

- Model-oriented (constructive specification)

The constructive part can be broken down according to the following
approaches:

The method used for specification. It can be:
implicit (or in other terms: predicative): The well-known pre
and postcondition technique (see e.g. (JONKERs, 1991)

explicit (or in other words: functional): Pure functional specifi
cation (see e.g. (HENDERSON, 1986).

The explicit way is more algorithmic, more specific than the other method.

The layer of the ADT to be specified

- applicative layer: The specification of the functions of the ADT
without side-effects (no state (transition) involved)
imperative layer: The definition of state transitions by functions
of the ADTs as their side effects.

SPECIFICATION FORMALISM REPRESENTING ABSTRACT DATA TYPES 89

In the majority of cases the process of ADT development can be
outlined in the following way:

1. An algebraic specification of the ADT is defined.
2. The applicative layer of the ADT is defined. First an appropriate

abstract representation of the ADT has to be specified. In order to
avoid the overspecification, the implicit specification should be defined
first. The explicit specification can be skipped.

3. The imperative layer of the ADT is specified. The sequence for defin
ing in the implicit and explicit way should be the same.
It should be mentioned that the construction of the algebraic specifi

cation is not always feasible and sometimes can be omitted.

Overview of the Language

In the forthcoming" the fundamental concepts of the language will be pre
sented. The (informal) syntax and semantics will be shown via examples.

Type Signature

The signature of an ADT is the most standing part of the development
process. It contains the enlisting of sorts (presently the number of sorts
introduced by and ADT is limited to one), and functions with their func
tionalists. The type signature serves purely syntactical purposes, namely
the intended use of it is textual inclusion into the parts representing the
further phases of development. It could be augmented by comments to
describe the intended meaning of the operators.

The type signature is the only representation of the ADT which is
not executable.

Here and in the forthcoming discussion the features of the language
are demonstrated via the well-known stack ADT.

(The per cent symbol denotes comments.)

TYPESIG stack_sig
SORT Stack(Elem)
FUNCT
create:
is_empty:
push:
pop:
top:
END stack_sig

%%% TYPE SIGNATURE
% Parameterizable Classes

-l-Stack
Stack -l- BOOL
Stack,Elem -l- Stack
St ack -l- St ack
Stack -l- Elem

90 J. BOROllEN

Algebraic Specification

This part gives semantics to type signatures by defining a (many-sorted)
algebra via axioms. The language of the axioms is Horn clause logic with
equality. This part is executable using the procedural semantics of equality
based logic programming (narrowing).

This method is unable to incorporate states. On the other hand an
algebraic specification has an important role in the development process,
for the following applications:

- Ultimate reference point. The other (constructive) parts of the spec
ification can be tested against it, checking whether they satisfy the
axioms of the algebraic description.

- It can function as a requirement theory for implementing type bounds.
- It is fully equivalent with the concept of an abstract class in object-

oriented languages (e.g. Sather).
It should be mentioned that in several cases it is difficult, unnatural

or even impossible to construct an algebraic specification for an ADT (see
the example of the finite state machine later).

•

%"pure" ALGEBRAIC spec. with NO STATE

USETYPESIG stack_sig

AXIOM
is_empty(create)=TRUE;
is_empty(push(s,e»=FALSE;
pop(empty)=ERROR;
pop(push(s,e»=s;
top (empty) =ERROR;
top(push(s,e»=e;

END alg_stack

Building Blocks of the Constructive Method

The predefined meta types (building blocks) of the constructive method
have been borrowed from VDM. They can be regarded as abstract data
types with firm mathematical properties. They are the following:

SET:
Set type with the usual operators: union, intersection etc.

- SEQ:
List type with concatenation etc.

SPECIFICATION FORMALISM REPRESENTING ABSTRACT DATA TYPES

MAP:
Finite function with function composition etc.
For details refer to (JONES, 1986).

91

Since our language supports mixed language specifications, it is al
lowed to use already existing AD T specifications in model construction.
These abstract data types can even be specified algebraically. But it should
be mentioned that such mixed method specifications can only be used for
the construction of the applicative layer of a specification, since the pres
ence of algebraic modules makes the interpretation of states difficult. So
the primary application area of mixed method specifications is the field of
fast prototyping.

Implicit Constructive Specification without State

The least specific constructive specification. It contains the abstract rep
resentation of the AD T and the predicative definitions of functions in the
form of pre- and postconditions.

This kind of specification can only be used for specifying 'pure' func
tions (functions without side effects). No state modification can be speci
fied, although the abstract representation itself should be regarded as the
data type of an object the valuation function of which represents the state.

The language of logic formulas representing the pre- and postcon
ditions should be Horn clause logic. As the procedural semantics of the
language it seems to be reasonable to choose SLDNF resolution, assum
ing Prolog's computation rule and SLDNF tree traversal strategy in order
to get a reasonably efficient implementation (although it should be men
tioned that on the other hand it means a serious compromise, because of
the incompleteness of this procedural semantics).

Interpretation of the pre- and postcondition notation:
Function signature:
func: <arguments> -+ <result>
Signature of predicative specification:
PRE-func«arguments».
POST-func«arguments>,<result» .
Semantics of pre-postcondition specification:
op-func«arguments>,<result» ~

pre-op«arguments», Y.type-constraint for arguments

post-op«arguments>,<result» .

CON pred_stack;

USETYPESIG stack_sig

92

ABSREP
Stack=SEQ(Elem);

PREPOST

1. BOROVEN

%one possible functional spec. appears as comment
Y.createO=<> ;
PRE-create.
POST-create«».

Y.is_empty(s)=(s=<»;
PRE-is_empty(s).
POST-is_empty(s,s=<».

Y.push(s,e)=<e>I Is;
PRE-push(s,e).
POST-push (s, e, <e> I Is) .

Y.pop(s)= IF is_empty(s) THEN ERROR ELSE TL s FI;
PRE-pop(s):- not is_empty(s).
POST-pop(s,TL s).

y'top(s)= IF is_empty(s) THEN ERROR ELSE HD s FI;
PRE-top(s):- not is_empty(s).
POST-top(s,HD s).

END pred_stack

Explicit Constructive Specification without State

This part is also aimed at only building the applicative layer of the software
description, using a pure functional language without side effects and state.

The main difference between this and the previous method is that
this kind of specification is more specific than the previous one, as it is
well-known there are a number of functional definitions corresponding to a
logic definition (according to the relationship between functions and rela
tions). A functional description is always closer to imperative, algorithmic
programming.

On the other hand it is generally reasonable to postpone decisions
which make the specification more specific as far as possible in the software
development process in order to avoid overspecification.

The procedural semantics of functional specifications is functional
rewriting.

CON fun_st ack ;

USETYPESIG stack_sig

SPECIFICATION FORMALISM REPRESENTING ABSTRACT DATA TYPES

ABSREP
Stack=SEQ(Elem);

FUNCTION
create()=< >;
is_empty(s)=(s=< »;
push(s,e)=<e>1 Is;
pop(s)= IF is_empty(s) THEN ERROR ELSE TL s FI;
top(s)= IF is_empty(s) THEN ERROR ELSE HD s FI;

Implicit Constructive Specification with State

93

This part introduces the notion of state via the creation of an object of the
type according to the abstract representation. The state is interpreted as
the valuation function of this object. The specification appearing in this
part is responsible for the description of state transitions initiated by the
functions of the ADT (in other terms: side effects), thus extending the
applicative specification into an imperative one.

Interpretation of the notation used:
Function signature:
func: <arguments> ~ <result>
Signature of predicative specification:
PRE-func«old-state>,<arguments»
POST-func«old-state>,<arguments>,<new-state»
Semantics of pre-postcondition specification:
state-op-func«old-state>,<arguments>,<new-state» ~

pre-op«old-state>,<arguments»,
%type plus state constraint
post-op«old-state>,<arguments>,<new-state».
%state transformation

Comments related to the language of logic used for stateless predica
tive specifications also apply here.

CONSTATE predst_stack %IMPLICIT CONSTRUCTIVE spec.:
%the STATE spec. part
% "abstract" IMPLEMENTATION CLASS

USECON fun_stack %it could have been "pred_stack" ,as well

STREP %state representation

94 J. BOROVEN

v: Stack XStack=SEQ(Elem), defined in the "CON" class
X "v" is a variable belonging to type Stack

PREPOSTS
Xcreate: ~Stack;

PRE-create(s). Xany state is acceptable
POST-create(s,< ».

Xis_empty: Stack ~ BOOL
PRE-is_empty(s,s).
POST-is_empty(s,s,s) .

Xpush: Stack,Elem ~ Stack
PRE-push(s,s,e).
POST-push(s,s,e,<e>I Is).

Xpop: Stack ~ Stack
PRE-pop(s,s):- not is_empty(s).
POST-pop(s,s,TL s).

Xtop: Stack ~ Elem
PRE-top(s,s):- not is_empty(s).
POST-top(s,s,s).

END predst_stack

Explicit Constructive Specification with State

U sed for the same function as the previous part, the difference is in the
more explicit method used for specification.

The comments made in connection with explicit stateless specifica
tions also apply here.

The present combination of specifications of the applicative and im
perative layer represents the most concrete kind of an abstract implemen
tation class, which is closest to an implementation using an imperative
language.

Interpretation of the functional notation:
Function signature:
func: <arguments> ~ <result>
Signature of function representing state transition:
ST-func«old-state>,<arguments»= <new-state>
CONSTATE funst_stack %EXPLICIT CONSTRUCTIVE spec.:

%the STATE trans. spec. part
% "abstract" IMPLEMENTATION CLASS

SPECIFICATION FORMALISM REPRESENTING ABSTRACT DATA TYPES 95

USECON fun_stack %i t could have been "pred_stack" as well

STREP
v:Stack

FUNCTION

%create:
ST-create(s)=< >;

%is_empty:
ST-is_empty(s,s)=s;

%push:
ST-push(s,s,e)=<e>1 Is;

--Stack;
%new state <>

Stack -- BOOL
%no state change

Stack,Elem -- Stack

%pop: Stack -- Stack
ST-pop(s,s)= IF is_empty(s) THEN ERROR ELSE TL s FI;
%partial function !

%top: Stack -- Elem
ST-topCs,s)= IF is_empty(s) THEN ERROR ELSE s FI;
%partial function

Introducing 'Object-Oriented Notation'

In object-oriented languages the notation used for function applications is
different from the one that was used before. For example:

s. push(e)
is used instead of:

push(s,e) .

It represents the notion that the operators belong to and operate
on the object and take the object as their implicit first parameter. This
notation - while should be allowed - should be regarded as a syntactic
'sugar for the latter.

The semantics of operations appearing in the 'object-oriented' form
are expressed in terms of operations appearing in the original form using
transformational semantics. The transformation can be described by a
translation schema. SELF refers to the implicit first parameter of the
function:

TYPESIG stacLself %type signature for "object-oriented" notation

96 J. BOROVEN

SORT Stack(Elem)

FUNCT

create:
is_empty:

push:

pop:

top:

----+Stack

Stack ----+ BOOL

Stack,Elem ----+ Stack

Stack ----+ Stack

Stack ----+ Elem

----+Stack

SELF ----+ BOOL

SELF,Elem ----+ Stack

SELF ----+ Stack

SELF ----+ Elem

Specification of a Finite State Automaton: An Example

The above presented specification sequence from algebraic to explicit im
perative constructive specifications is not always so easy to construct. As
a counter-example, let us take the specification of a finite automaton.

At first sight the task seems to be unfeasible using the algebraic way.
On the other hand the constructive method offers an easy way to success:

The first step is to create the type signature:

TYPESIG finaut_sig

SORT FinAut
FUNCT
create:
is_in...final:

trans:

END finaut_sig

FinAut ----+FinAut
FinAut ----+ BOOL

FinAut,CHAR ----+FinAut

The next one is to find an appropriate abstract representation:
ABSREP

FinAut .. { %composite type

AllStates : SET (State) ;

InitState :State;
FinalStates : SET (State) ;

Alphabet :SET(CHAR);

Delta :MAP((State,CHAR) ----+ State) ;

ActState :State %actual state

}

State :: INT %simplest choice

A functional specification of the applicative layer:

CON fun...finaut;

SPECIFfcATION FORMALISM REPRESENTING ABSTRACT DATA TYPES

USETYPESIG finaut_sig

ABSREP

FinAut ::

State ::

FUNCTION

create(F) {

{
AllStates

InitState

FinalStates

Alphabet

Delta

ActState

}

INT

AllStates

InitState

FinalStates

Alphabet

Delta

ActState

:SET(State);

: Sta'te;

: SET (State) ;

:SET(CHAR);

:MAP((State,CHAR) -4 State);

:State

F . AllStates;

F . Ini tState;

F .FinalStates;

F.Alphabet;

F.Delta;

F.InitState } % !

is_in..:final (F) = (F. ActState member_of F. FinalStates)

trans(F,C) = { AllStates

InitState

FinalStates

Alphabet

Delta

ActState

END fun..:finaut

F . AllStates;

F . Ini tState;

F .FinalStates;

F.Alphabet;

F.Delta;

F.Delta(F.ActState,C) }

97

As for state representation it is reasonable to choose the ActState part
of the abstract representation (the other parts are obviously constants):

STREP

a:FinAut.ActSta'te

Using the state representation chosen a possible functional specifica
tion of the imperative layer can be the following:

CONSTATE funst_finaut

USECON fun..:finaut

STREP

a:FinAut.ActState

FUNCTION

98 1. BOROVEN

ST-create(F.ActState,F) = F.lnitState

ST-is_in~inal(F.ActState,F) = F.ActState

ST-trans(F.ActState,F,C) = F.Delta(F.ActState,C)

END funst~inaut
(The predicative specification part - since they should not cause any

trouble - is intentionally left out.)
In fact, the algebraic specification of the ADT is not impossible (see

e.g. (SPIVEY, 1989), although very complicated and very unnatural com
pared to the above shown constructive method. The reason for that is
obvious: the constraints represented by the model can only be expressed
via the extensive use of inheritance, which (in this case) makes the solution
rather intractable.

Inheritance

Two kinds of inheritance mechanisms are provided (adopted) from
(SPIVEY, 1989):

- BASED_ON : The constituents of the inherited type are available
after the BASED_ON clause. Multiple inheritance is possible. The
semantics are not based on textual substitution 2 . Identifiers having
the same names belonging to different base classes can be reachep via
quantification.
INCLUDE: Specifies a renaming of a class followed by inclusion.
Referential transparency is still maintained. Typical exam pIe: (con
structive) specification of a stack based on lists (for details, refer to
(SPIVEY, 1989).

Problems, Possible Further Improvements

Precise syntax must be given for the language. It is obviously a minor
problem.

- A general semantics framework for the mixed-method specification
language should be given. One way seems to be feasible at first sight:
a transformational plus denotational semantics. On the other hand
a declarative semantics should be defined for the applicative layer of

20ne of the most serious drawbacks of the Sather language is that inheritance is
completely based on textual substitution, in such a way which seriously endangers refer
ential transparency.

SPECIFICATION FORMALISM REPRESENTING ABSTRACT DATA TYPES 99

the language (related problem: the integration of functional and logic
programming) .

The system should support the checking of the orthogonality of spec
ifications, although in some practical applications it is not one of the
topmost requirements against specifications.

As an extension of the application of algebraic specification modules (beside
the use of them as abstract classes, they can be considered as requirement
theories, which can be used for the implementation of type bounds. The
type bounds can be checked by an automated theorem prover.

Conclusion

A framework of an executable specification language for developing and
testing abstract data types has been presented. Although the language is
not in the phase of implementation, and still has some basic problems to
be solved at the field of theoretical background, it hopefully will be able to
be used at the following main fields:

to function as a (more or less) wide-spectrum specification language
for (general) object-oriented languages
because of its executable nature, to serve as an object-oriented func
tional-logic programming language (considering the applicative layer)

References

ANDREWS, D.: Data Reification and Program Decomposition. In D. Bjorner, C. B. Jones,
M. ivlac an Airchinnigh, and E. J. :\euhold, editors, VDM'S7: VDM - A Formal
Method at Work, number 252 in Lecture ::\otes in Computer Science, pp. 389-422.
Springer-Verlag, 1987.

BJORNER, D. JONES, C. B.: Formal Specification and Software Development. Prentice
Hall International Series in Computer Science. Prentice-Hall International, first
edition, 1982.

BOEHM, B. K. Software Engineering: Rand D trends and Defense Needs. MIT Press,
1979.

BRIL, R. J. : A Model-oriented Method for Algebraic Specifications Usi.ng Cold-1 as
Notation. In S. Prehn and vv'. J. Toetenel, editors, VDM'9J : VDM - Formal
Software Development Methods, :\0. 551 in Lecture Notes in Computer Science,
pp. 106-124. Springer-Verlag, 1991.

CARDELLI, L. - WEGNER, P.: On Understanding Types, Data Abstraction, and Poly
morphism. ACM Computing Surveys, Vol. 17 (4), pp. 471-522, December 1985.

DOY!A, V. - NICHOLL Ez, R.: A System for Automatic Prototyping of z Specifications.
In S. Prehn and W. J. Toetenel, editors, VDM'9J : VDM Formal Software Devel
opment Methods, number 551 in Lecture ::\otes in Computer Science, pp. 189-203.
Springer-Verlag, 1991.

100 J. BOROVEN

GOGUEN, J. A. MESEGUER, J.: Equality, Types, Modules, and (why not) Generics for
Logic Programming. Journal of Logic Programming, Vol. 12, pp. 179-210, 1984.

GOGUEN, J. A. MESEGUER, J.: Programming with Equalities, Subsorts, Overloading,
and Parameterization in obj. Journal of Logic Programming, Vol. 12, pp. 257-279,
1992.

HEN DERSON, P.: Functional Programming, Formal Specification, and Rapid Prototyping.
IEEE Transactions on Software Engineering, Vol. 12(2) pp. 241-250, February 1986.

HORNING, J. J.: Combining Algebraic and Predicative Specifications in Larch. In H. Ehrig,
C. Floyd, M. Nivat, and J. Thatcher, editors, Formal Methods and Software Devel
opment: TAPSOFT, number 186 in Lecture Notes in Computer Science, pp. 12-26.
Springer-Verlag, 1985.

JAG ER, M. - GLOGER, M. KAES, S.: Sample - a Functional Language. In R. Bloomfield,
1. Marshall, and R. Jones, editors, VDM'88: VDM - The Way Ahead, number
328 in Lecture Notes in Computer Science, pp. 202-217. Springer-Verlag, 1988.

JONES, C. B.: Software Development: A Rigorous Approach. Prentice-Hall International
Series in Computer Science. Prentice-Hall International, first edition, 1980.

JONES, C. B.: Systematic Software Development Using VDM. Prentice-Hall Interna-
tional Series in Computer Science. Prentice-Hall International, first edition, 1986.

JONKERS, H. B. M.: Upgrading the Pre- and Postcondition Technique. In S. Prehn and
W. J. Toetenel, editors, VDM'91 : VDM Formal Software Development Methods,
number 551 in Lecture Kotes in Computer Science, pp. 428-456. Springer-Verlag,
1991.

JIANG, X. Xu, Y.: Kusl: An Executable Specification Language Based on Data Ab-
straction. In R. Bloomfield, L. Marshall, and R. Jones, editors, VDM'88: VDM
The Way Ahead, number 328 in Lecture Kotes in Computer Science, pp. 124-138.
Springer-Verlag, 1988.

MAC AN AIRCHINNIGH, M.: Introduction to the vdm Tutorial. In D. Bjorner, C. B. Jones,
?vI. Mac an Airchinnigh, and E. J. :\euhold, editors, VDM'8'l: VDM - A Formal
Method at Work, number 252 in Lecture :\'otes in Computer Science, pp. 356-361.
Springer-Verlag, 1987.

MAC AN AIRCHIN(;IGH, ,,1.: Specification by Data Types. In D. Bjorner, C. B. Jones,
M. Mac an Airchinnigh, and E. J. Keuhold, editors, VDM'8'l: VDM A Formal
Method at Work, number 2·52 in Lecture Kotes in Computer Science, pp. 362-388.
Springer-Verlag, 1987.

NIELSEN, M. -HAVELU(;D, K.- Y\'AG:\ER, K. R.-GEORGE, C.: The Raise Language,
Method and Tools. In R. Bloomfield, 1. ?vIarshall, and R. Jones, editors, VDM'88
: VDM The Way Ahead, number 328 in Lecture Kotes in Computer Science,
pp. 376-405. Springer-Verlag, 1988.

OMOHUNDRO, S.: The sather 1.0 specification. Technical Report, The International Com
puter Science Institute, 1947 Center St, Suite 600, Berkeley, CA 94704,
February 1993.

PARTSCH, H. A.: Specification and Transformation of Programs: A Formal Approach
to Software Development. Texts and Monographs in Computer Science. Springer
Verlag, first edition. 1990.

POTTER, B. SINCLAIR, J. TILL, D.: An Introduction to Formal Specification and Z.
Prentice-Hall International Series in Computer Science. Prentice-Hall International,
first edition, 1991.

SPIVEY, J.::VI.: C nderstanding Z : A Specification Language and its Formal Semantics.
Cambridge Tracts in Theoretical Computer Science. Cambridge Cniversity Press,
first edition. 1989.

