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Abstract 

A new method based on linearization of the system equations has been proposed to recog­
nize malfunctions, which can be associated with system parameters in dynamical systems. 
The main features of this method are the short computation time, and the ability to filter 
out those events caused by disturbances. In addition, the employed linear state and pa­
rameter model makes possible to compute the solution with a recursive algorithm, which 
is fast enough for on-line application, consequently, one can avoid false malfunction recog­
nition due to operational dynamic transients. 

To illustrate the method, recognition of malfunctions in the operation of a gravita­
tional water tower is presented. 

Notation 

Ap = cross-sectional area of the transport pipe 
AT = cross-sectional area of the vertical cylindrical tank 
Fo = volumetric inflow rate 
F = volumetric outflow rate 
9 = the acceleration due to gravity 
h = height of water in the vertical cylindrical tank 
K f = flow resistance coefficient 
Kp = proportional gain of the controller 
L = length of the transport pipe 
Pa = ambient pressure 
pc = consumption pressure 
t = independent time variable 
v = velocity of mass of water in the transport pipe 
p water density 
0: = leakage coefficient 
). = relaxation coefficient 
dO / dt= derivative 
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The process state variables at the steady state operating condition 
and the process coefficients had the following values for the simulations: 

State variables and their values at normal operating conditions: 
Vs velocity of mass of water in the transport pipe, 4.975 m/s 
hs= height of water in the vertical cylindrical tank, 1.6 m 

Process coefficients: 
L = length of the transport pipe, 900 m 
9 = the acceleration due to gravity, 9.81 m/s2 

K j = flow resistance coefficient, 1.61 kg/m2 

p = water density, 1000 kg/m3 

Ap = cross-sectional area of the transport pipe, 0.785 m 2 

AT= cross-sectional area of the vertical cylindrical tank, 12.56 m2 

ex = leakage coefficient 0 (no leakage) 
Fos= volumetric inflow rate, 3.905 m3 /s 
Kp = proportional gain of the controller, 0.6 m 2/s 
Pa = ambient pressure, 105 N /m2 

Pc = consumption pressure, 7 x 104 N/m2 

LPME1 
NNE1 
LSAPMEl 
E1L4 
E2Ll 

Abbreviations 

Linear Plant Model Event 1 
Neural Network Event 1 
Linear State And Parameter Model Event 1 
Event 1/ Level 4 
Event 2/ Level 1 

Introduction 

Physical systems are often subjected to unexpected changes due to varia­
tions in operating conditions or component failures, that tend to degrade 
overall system performance. It is important that changes be promptly de­
tected and identified so that appropriate remedies can be applied. Over the 
past decades numerous approaches to the problem of failure detection and 
identification (FDI) in dynamical systems have been developed [lJ; detec­
tion filters [2], [3J; the generalized likelihood ratio (GLR) method [4]; and 
the multiple model method [5], [6J are some examples. All these analytical 
methods require that a dynamical process model of some sorts be given. 
The main objective of FDI is to detect faults, disturbing patterns or other 
changes in order to prevent catastrophic failures in the system. This is ex­
tremely necessary in advanced technologies, where failures can endanger 
human beings or the natural environment. In case of fault situations fail-
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ure detection systems may either command control systems to switch off 
the abnormal process, accommodate the fault in any way, e.g. using fault 
tolerant control. For the sake of clarity and further understanding, expres­
sions and definitions commonly used in the theory of FDI are defined next. 

Change: A change is understood as any variation of process variables 
from a constant value. Change is a natural property of dynamical systems 
(e.g. dynamical change of inputs, outputs, state variables or certain process 
coefficients) . 

Fault: A fault is understood as any kind of unallowed deviation of at 
least one process variable from its nominal value. It is an abnormal change 
that leads to an unacceptable anomaly in the overall system performance. 
Such faults may occur in sensors, actuators, or in components of a process. 

1'v1 alfunction: A malfunction is the abnormal operation of at least one 
part of a system caused by one or more faults. It is a state and can be 
handled through fault accommodation so that it will be temporary. 

Failure: A failure is understood as the disability of at least one func­
tional unit of the system to be operated. It is an event that can be handled 
only through switching off the failed units. Fig. 1 illustrates the above def­
initions. 

Operation 

Normal 

CHANGE Abnonnal 

FAULT 

Operation 

Failure 
Nonnalh 

Abnonnal '-__ -=--=--=--=--=--=--=-=-=_ - ) t 

Fig. 1. Definitions of FDI 

It is clear from the above illustration that though a detected change does 
not necessarily correspond to a fault, the faulty operation of the system is 
always preceded by changes in the dynamics. Therefore, the major task is 
the early detection of all significant changes in the dynamics of the plant 
behavior: change detection. 

Once a change is detected, one has to decide if it is significant from 
fault detection point of view or not. In other words, changes have to be 
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validated: change validation. In order to achieve efficient diagnosis, the 
isolation of the origin, functional or spatial locations of changes have to be 
determined. This problem is referred to as change isolation. It is notewor­
thy that the last two stages of the detection process are sometimes cited 
as change identification [7] as illustrated in Fig. 2. In practical situations, 
the levels of normal and abnormal operations are decided on the basis of 
the actual process technology. 

measurements ;----.., 

: ..................................................... "': 
Change identification 

,..------, : change 
1----+1 

'----..... ~ hypotheses 
......................................................... ; 

Fig. 2. Computational stages of the change detection process 

Linear Plant Model 

This method is based on identification of the trajectories of system vari­
ables [8]. A nonlinear process is approximated by a linear multivariable 
model where the control variables u( t) represent the so-called event indi­
cators: 

x(t) = Ax(t) + Bu(t). \1) 

The event indicators can be computed as the inverse solution of the linear 
model. Using a time discretized form, the solution (when the number of 
events to be recognized is equal to the number of measured state variables) 
is given by 

n+1 _ 1 B-1 n+1 2 B-1;r.. n B-1;r..B n u - -- x - -- '±'x - '±' u 
~T ~T ' 

(2) 

where <I> = exp(A~T), and xn = x(n~T) Eg. (2) can be utilized for 
detecting events (faults) resulting in measurable malfunction trajectories 
x(t). The main feature of this method is that the event to be detected is 
directly related to the trajectories of the state variables. In this way its 
robustness is considerably increased. In addition, the employed linear plant 
model makes it possible to compute the inverse solution with a recursive 
algorithm, which is fast enough for on-line application. The method works 
well even in the presence of system and measurement noises, as long as 
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the number of measured state variables is greater than or equal to the 
number of events to be recognized. One has to keep in mind that for a 
highly-nonlinear process the validity of the linear approximation is limited, 
although the global linearization employed for identifying this model is 
somewhat more robust than a linearization around an equilibrium point, 
and in the case of a new operational point, generally a new identification 
is needed or else one has to be satisfied with only qualitative results. 

In the presence of disturbances, however, this method gives false event 
indication. 

Neural Network 

Artificial neural networks can identify and learn correlative patterns be­
tween sets of input data and corresponding target values. Once trained, 
such networks can be used predictively to forecast outcomes from new in­
put data. The roots of these ideas lie in the simplified explanations of the 
functioning of human and animal brains. 

Artificial Neuron 

An artificial neuron is a simple processing element that serves as a trans­
fer function mapping a multidimensional input received from other artifi­
cial neurons or external stimuli to a one-dimensional output which is dis­
tributed to other artificial neurons through weighted connections. The 
transfer function of the j-th artificial neuron in the 1-th layer in Fig. 3 is 
specified by a sigmoidal function 

x(l) = __ 1_--,-,-,-
J 1 _ e-Uj(l) , 

(3) 

with u)ll being usually (but not always) a linear sum of the weighted con­
nection strengths being fed to the node plus a threshold: 

u(l) = {;~l w(l)x(l-l) + e(l)} 
J L... J1 1 J' 

;=1 

(4) 

where variable x;lJ is the output or the activity level of j-th node in the 

l-th layer and variable x~l-l) is the output of i-th node in the (l - l)th 

layer, when the input pattern p is fed to the network; ey) is the threshold 
of the j-th node in l-th layer. 
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2 L=3 

OUTPUT 

Fig. 3. Schema of a multilayer neural network 

Network Topology 

Fig. 3 shows a standard multilayer feedforward artificial neural network 
with one or more so-called hidden layers ('hidden' because such layers do 
not communicate directly with the external environment.) The arcs that 
connect the artificial neurons are unidirectional feedforward connections. 
Let the number of neurons in layer j.be NI. The arc from i-th node in the 

(l-I)th layer to j-th node in j-th layer has an associative weight wJ~) which 
multiplies the signal from i-th node in (l-I )th layer. Knowledge in artificial 

nt!ural networks is distributed among the connections and the weights wJ? 
and not stored at a single computer address. For fault detection each node 
in the output layer would represent a particular fault. 

Processing in a Multilayer Artificial Neural Network 

Each node in the input layer receives input from an external stimulus that 
is either scaled prior to introduction into the respective input node or scaled 
by the node. The output of each node in the input layer is passed on to all 
the nodes in the next layer. 

Each artificial neuron in the next layer computes an output (activity 
level) that is a function of its inputs. The computations within a layer 
are asynchronous and thus may be performed in parallel. The output of 
one node is distributed to all the other artificial neurons in the subsequent 
layer through the weighted connections. This arrangement is repeated in a 
feedforward manner until the output layer is reached. Thus, computations 
between layers are synchronous. 
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Learning (Training) 

Learning is nothing more than adjusting the weights associated with con­
nections between the nodes of the network. An input vector of process 
measurements associated with a fault pattern is introduced into the input 
layer of the network. A corresponding output pattern composed of output 
layer node activities is calculated. An error is generated for each output 
node based on the difference from a target value for the node or a goal. For 
fault detection, an output node target would be either 0 (no fault) or 1 (a 
particular fault). The neural network learns a target output pattern by ad­
justment of the weights in the network; therefore, after a sequence of pre­
sentations of input vectors, the network generates the desired output pat­
tern for its associated input measurement vector. To adjust the weights, 
the backpropagation procedure [9] is used in which the objective function: 

E =! ~{t(L) _ x(~)}2 
P 2 ~ PJ PJ 

j=l 

(5) 

is minimized for a given input pattern p, where t~;) is the target output 
(activity) of the j-th node in the output layer for pattern p. The same 
input vector may be used periodically during the learning process. 

Learning via backpropagation involves two phases. In the first phase, 
the inputs are propagated in a feedforward manner through the network 
to produce output values that are compared to the target values, resulting 
in the error signal for each of the output nodes. In the second phase, the 
errors are propagated backward through the network and used to adjust 
the weights. The error signals for the output layer are calculated first, and 
these error signals are used recursively to calculate the needed adjustments 
layer by layer until the weights for all of the connections are recalculated. 

Pattern Recognition (Fault Detection) 

Once the weights on the connections are finally adjusted in the training 
phase, news of sensor measurements can be sent to the input nodes of 
the network and classified. Very little computation time is needed for 
this step. The degree of misclassification that occurs is a function of how 
well the knowledge stored in the connections and weights can represent 
perturbations from its training set of data. 

The neural network method is relatively fast and requires less compu­
tational power as compared with state estimation and identification proce-
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dures. Another advantage of this method is that it can be utilized in situ­
ations where the number of events to be recognized exceeds the number of 
measured state variables. This method also works well in the presence of 
system and measurement noises as well as different deterioration levels for 
each fault [10]. However, in the presence of disturbances this method also 
gives misleading or false event indication. 

Linear State and Parameter Model 

To avoid the misleading results and false event indication, in the presence 
of disturbances, we suggest the following new model: 

x(t) = Ax(t) + Bp(t) + Cd(t), (6) 

where x(t) is an N -dimensional vector, 
p(t) is an M-dimensional parameter vector, 
d(t) is an L-dimensional disturbance vector. 

Based on the fact that changes of faults of a dynamical system may be re­
flected in the physical parameters, the choice of components of the param­
eter vector p are directly related to the M events to be recognized. The 
components of d correspond to possible disturbances. 

Let Ui represent the i-th event, then 

A'1 

Ui = L Ci.ijPj + Ci.io 
j=l 

(7) 

so that abnormalities in the system can be detected if a certain parameter 
does not remain within the bounds of normal operation as shown in Fig. 4. 

Para{Ueter 

Abnonnal 

Normal 

Normal· 

Abnonnal 

Fig. 4. Admissible bounds of the i-th parameter 
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Building Up the Model 

(a) No model case: 

When there are only measurements, it would be very difficult to identify 
the A, B, and C matrices. 

(b) Model-based approach: 

When a mathematical model of the nonlinear process is available, then a 
linearized version can be obtained by expanding the model equations into 
a Taylor series around some normal operating points (x, p, cl) as follows: 

Let the nonlinear process be represented by 

x = f( x, p, d) , (8) 

then the i-th equation of the linearized process is given by 

L 
'" af; -+ ~ ad (dq - dq ) , 
q=l q 

(9) 

where the high-order terms were neglected, since we are considering only a 
small perturbation near the normal operating point (equilibrium point). 

Algorithm for Parameter Identification 

The solution of Eq. (6) for discrete time steps tlT can be written in the 
form: 

where use of the trapezoidal rule for integration over the interval tlT has 
been made, and 

<I> = exp(AtlT), xn = x( ntlT) . 
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When the B matrix has an inverse, and N = M (that is, the number of 
measured state variables is equal to the number of events to be recognized), 
expressing pn+l from Eq. (1) we get: 

(11) 
Eq. (11) is a recursive formula for determining p, and consequently the 
event indicators. To enhance the accuracy of the resulting p further a 
moving average (MA) may be used: 

(12) 

Illustration 

To illustrate the use of the above suggested model, the well known linear 
plant model, and the neural network approach, we considered an applica­
tion example of a gravitational water tower process. 

Process Model 

The schematic diagram of the process is shown in Fig. 5. 

T 
p. : ---------0-

h 

1 '--_____ ~~.~ ...................... =:=J pe 

1« L -----1 
Fig. 5. Water tower system to be diagnosed 
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It is a proporlional-feedback-controlled process of a gravitational water 
tower, into which water is pumped at a variable volumetric rate Fo. The 
controlled variable is the water level of the tower h, and the controller 
regulates this level to the specified value regardless of the change in the 
consumption pressure pc. 

The part of this process that is described by a force balance or more 
eloquently the conservation of momentum is the water flowing through 
the transport pipe [1l]. The mathematical model of the water tower, and 
controller that were used to simulate various events are: 

Momentum equation: 

dv(t) KfL 2 
LApPdi = (Pa + h(t)pg - ~v (t) - Pc)Ap , (13) 

which can be written as 

(14) 

Continuity equation: 

dh(t) 
ATdi = Fa - A pv(t)(1 + a) . (15) 

Proportional controller: 

Fa = Fas - Kp(h(t) - hs) . (16) 

Combining Eqs. (15), and (16) we obtain: 

dh(t) [Fas - Kp(h(t) - hs) - Apv(t)(1 + a)] 
dt AT 

(17) 

Initial conditions are: 

v(O) = Va = Vs and h(O) = ha hs . (18) 

Event Recognition 

To compare the three different methods in diagnosing events, we catego­
rized two possible causes of faults as follows: 
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Event 1 

Leakage in the transport pipe, due to hole corrosion (slow), cracking of 
welding seam (abrupt), or pipe burst, leads to an increase in the leakage 
factor u. 

Event 2 

Partial plugging of the pipe line leads to an increase in the frictional force 
opposing the flow (due to water viscosity), and hence an increase in the 
friction coefficient K f (frictional force = K f Lv2

). 

We discriminated among and / or diagnosed the existence of the above 
two events from measurements of velocity v of mass of water in the trans­
port pipe, and the water level of the cylindrical tower h. The fault data 
were generated by increasing the parameters u, and K f. We picked ex­
amples of the two different events cited above and four different levels of 
deterioration for each of the two events. The number of the events desig­
nates the label assigned to each of the two different events, and the level 
of the events corresponds to the degree of deterioration. Events in level 1 
are slight and thus incipient, events in level 2 and 3 are medium, and an 
event in level 4 is the most severe (see Table 1). 

The neural network employed in this comparative task comprises three 
layers. It has two input nodes corresponding to the two measured state 
variables, a middle layer with five nodes, and two output nodes correspond­
ing to the two events. 

The dynamical trajectories shown in Fig. 6 were used (after norriral­
ization) for teaching the network. The training pattern consists of the de­
viations from steady state of the two process state variables resulting from 
simulation of the tower over a period of 800 seconds, so that 400 samples 
corresponding to each of the two variables (for every event at level 1) are 
used as the input teaching data, together with the normal case (no faults). 

The network was trained via the backpropagation procedure with the 
input data normalized between 0.1 and 0.9. The number of iterations of a 
pattern set to learn the knowledge of the level 1 events was 10,000. 

Analysis 

In the following Figures, indices i and j refer to various sampling instants 
of time. Fig. 6 displays the deviations of the state variables with respect 
to the two events at the lowest level (level 1). 

Now the recognition of the events at level 1 is performed via the three 
different methods { the linear plant model (LPM), the neural network 
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Fig. 6b. Deviations with respect to event 2 / level 1 

Table 1 
Causes of events 

Event 

Ko./Level 

1/1 
2 
3 
4 

2 / 1 
2 
3 
4 

Cause 

et = 0.05 
et = 0.1 
et = 0.1.5 
et = 0.2 

K j = 2 
]{j = 2.3 
K j = 2.6 
K j = 3 

-

600 

113 
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(NN), and the suggested linear state and parameter model (LSAPM) } as 
shown in Fig. 7. It is evident that all methods gave satisfactory results 
even though the suggested LSAPM is a little bit better. We also see that 
in Fig. 7a the indicator vector corresponding to event 2 (in the case of 
the neural network, and the suggested models coincide with each other) 
remains approximately zero, which means that event 2 did not occur. 

I I I I I 

LPMEl. 11"-, r 

LPME2. , i It-

c 
0 

NNEL 1i I :;; -i-
oS 

I 
I + 

I 

o.S 'r-/ I -
<! NNE2. 
" , ,.. 

"*" "-l 
I I 

I f 
LSAPMEl. , I , 

LSAPME2. -+ , 
~ 

0 
--------------~-------------------------, , , I I 

10 IS 20 2S 30 

t. 
I 

Time (sec) 

Fig. 7a. Recognition of event 1 /level 1 
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Fig. 7b. Recognition of event 2 /level 1 
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The deviations of velocity with respect to both events at lowest and highest 
levels of deterioration are shown in Fig. 8. (Here, EIL1 means event 1 / 
level 1, and E2L4 means event 2 / level 4). 
Next, the recognition of events at level 4 is executed, and the results are 
displayed in Fig. 9. We see that both the neural network and the suggested 
model gave satisfactory quantitative event indication, while the linear plant 
model gave only a qualitative result. This is due to the limited validity of 
the linear approximation, and in the case of a new operational point (level 
4), a new identification of the linear plant model parameters is necessary. 

Next, we added 10% internal noise in the consumption pressure Pc 
together with 10% measurement noise in order to compare the versatility 
of the three methods. The deviations of the state variables with respect to 
events at level 1 in the presence of such noise are shown in Fig. 10. 

To enhance the accuracy of the event recognition in the presence of 
noise, utilization of the moving average Eq. (2) has been made, and the 
effect of its use on recognizing event 1 / level 1 in the case of the linear 
plant model is illustrated in Fig. llb. In contrast, Fig. lla displays the 
same event recognition but without using the moving average. 

Besides the moving avera.ge, we also made use of the relaxation method 
in the case of the suggested model. 

The relaxation method was used in the following way: 

(19) 

with the relaxation coefficient A = 0.5. 
The combined effect of their use on recognizing event 1 / level 1 is illustrated 
in Fig. 11 d, while Fig. 11 c shows the same event recognition only with the 
moving average being utilized. 
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The recognition of events at level 1 in the presence of the above men­
tioned noise is shown in Fig. 12. It is clear from the figure that all three 
methods provided reasonable results. 

Next, under normal operating conditions we applied an abrupt (step) 
disturbance in the consumption pressure Pc of 30% magnitude. The corre­
sponding deviations of the state variables are displayed in Fig. 13. 
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The response of the three methods to such a disturbance is shown in Fig. 14. 
It is crystal clear from this figure that both the linear plant model, and 
the neural network gave false (misleading) event indication. In contrast, 
only the suggested model was able to produce the correct (no malfunction) 
result. 

Finally, to test the suggested model further, we examined the situation 
when the two events at level 1 are delayed in time. The results of the 
recognition in this case are shown in Fig. 15. It is obvious that both the 
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linear plant model and the suggested model gave satisfactory results, while 
the neural network indicated the events correctly one at a time, but not 
jointly together. This is due to the fact that such a situation of delayed 
events was not included in the teaching pattern for the neural network. 
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Conclusions 

In this paper, a modified linear state and parameter model was suggested 
for recognition in dynamical systems. Based on the results of our investi­
gation, the method can be used on-line as well as to distinguish malfunc­
tions from operational dynamic transients. 
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The method is robust with respect to noise and level change of events, 
also it is applicable to simultaneous events delayed in time. 

Further improvement of this method can be achieved by considering 
matrices with time-varying entries (elements), instead of time-invariant 
ones, and hence the resulting model will be suitable for even a broader 
class of highly nonlinear systems. 
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