
PERIODICA POLYTECHSICA 5ER. ELECTR. E]v"G. \/OL. .. p, 1'.i0. 3, PP. 201-2:]0 (1997)

THE RAFAEL MULTI-TARGET HETEROGENEOUS
SIGNAL-FLOW GRAPH COMPILER

Gabor PALLER and Klara CSEFALVA Y

Department of Electromagnetic Theory
Technical "C niversity of Budapest

H-1.521 Budapest, Hungary,
e-mail: palled~fe\·t.bme.hu

csefal vay.Q;evt. bme.hu

Recei\·ed: June 23,199.5

Abstract

This paper describes a signal-flow graph compiler which produces distributed code for
heterogeneous target systems. The compiler is devoted for mainly Digital Signal Process
ing problems. The code generator features reprogrammable operation library, the static
scheduler supports fully heterogeneous systems and the input graph may contain run-time
decisions in a limited way. The system has been implemented on IB.\I PC compatibles
under MS-VVindows so it does not require expansive host computer.

Keywords: compile-time scheduling. parallel processing, heterogeneous architectures.

1. Introduction

Writing programs for the modern Digital Signal Processors (DSPs) intro
duce difficult tasks for the software engineers because a painful trade-off
exists between the computing power and the productivity/task complexity.
Unfortunately the existing and well-known higher level programming envi
ronments (for example the 'C' language) perform very poorly on the DSP
platforms because being general languages they cannot exploit the special
capabilities of the DSPs (circular buffers, parallel instructions and so on) or
avoiding pipeline effects. This can cause extremely high performance loss
(can be as much as 1000% compared to the assembly realization). Several
developments were made to improve C compilers on DSP platforms (LEARY
and \YADDI?\GTO\", 1990) but generally they use system or DSP dependent
language extensions and their performance is still not really convincing.
So the d~yelopers have to choose - writing the DSP code in assembly for
achieving higher performance thus lower hardware cost or using a high
level environment which will speed up the development but decrease the
efficiency of the DSP so that more expensive DSPs must be chosen. It can
even happen that the problem cannot be solved on high level.

The other problem is the embarrassing abundance of DSP architec
tures and languages. One often faces the problem of porting existing results

202

onto other DSP platforms. If the code is written in assembly, this will be a
long and tiresome process. Some 'common languages' are needed but not
having efficiently realizable high level platform this solution does not seem
to be promising. Nowadays the solution is sought toward optimized soft
ware libraries (like the SPOX) which try to combine the power of assembly
routines with the efficiency of C. The SPOX does accelerate the developing
process but it is a fixed set of routines and if we extend it (for example ,ve
need an arithmetic routine or new algorithm that the SPOX cannot offer)
we still have to write it in assembly losing the portability.

Nowadays the parallel DSP is in the focus of attention, first of all be
cause real-world DSP problems often require immense computing power.
A number of existing DSPs can be used for parallel realizations, some of
them has been designed especially for parallel computing for example Texas
Instrument's TMS320C40, TMS320C80 and Analog Devices ADSP21060.
The task scheduling is an important part of the multiprocessor implementa
tion of DSP algorithms. This equally means partitioning the tasks among
multiple DSPs and scheduling the tasks on each DSP. Generally paral
lel programs are scheduled 'by hand' in the existing parallel development
systems which is a difficult task and in the case of more complex tasks
it cannot be done effectively. The other approach used frequently in the
existing DSP operating systems uses the well proven real-time operating
systems scheme (sometimes time-sliced scheduling is added). This scheme
is based on separate tasks and a task scheduler program which changes the
tasks ""hen it is necessary. This task scheduler requires processing time.

Speciality of the DSP algorithm is that it does not require much run
time decisions. Very handy description form of these algorithms is the
signal-_Row graph (SFG). Signal-flow' graph is a graphical description of
an algorithm in which computations are represented by graph nodes and
dependencies arr.(Lg the computations by graph branches. If we can cluster
enough nodes together that their dependency graph and execution time do
not depend on the input values, we can schedule in compile time thus
eliminating the processor load of the dynamic scheduler.

Thus the DSP code generation problem is the following: we need
a system which is flexible enough to be adapted to several existing DSP
platforms, avoids the po\ver loss of the high-level languages, solves the par
titioning and scheduling problems and in addition it is easy-to-use for the
DSP algorithm developer who is generally not a programmer. A proposi
tion for this problem will be presented in this document describing Rafael,
an intelligent code generator based on signal-flow graphs.

Rafael was designed as a small, flexible system which can run even on
very small computers (it is implemented under Microsoft Windows on IBM
PC compatible computers). It is a SFG compiler integrated into a simple

THE RAFAEL .l1ULTI-TARGET 203

framework which allows DSP algorithms to be described in SFG form and
the compiler translates this description into program for a heterogeneous
multiprocessor hardware. The compiler distributes the SFG on the multi
processor system, schedules the operations on each processor, creates the
communication scheme among the processors and generates executable as
sembly source program for each processor. Rafael features a programmable
DSP database and code generator library so it can be adapted easily to any
processor. Small resources of the host computer do not allow us to com
pete with the comprehensive features of existing SFG compilers hosted on
workstations but we hope to prove that Rafael can compete successfully on
several domains with those systems.

2. Existing Data-Flow Compilers

A number of block-diagram based design systems have been introduced in
the literature. We mention here the commercially available DSPlay (Burr
Brown) and SPW (Signal Processing Workstation) (Comdisco) systems.
DSPlay is PC-based, it can simulate the input block-diagram and can gen
erate code for AT&T DSP32. The Comdisco system started as a simple
simulator but actually it is able to produce highly optimized code for almost
all the DSP types and can even generate circuit description. Since June
1994 the partitioning on multiprocessor DSP system must have been done
by hand. The Cathedral system (DE \IA:\" et al., 1986; LA:\"::\EER, 1993)
devoted to circuit synthesis features SFG partitioning-scheduling but it
uses the Silage functional language (GE:\r:\ et al., 1990) as its input. The
Ptolemy system (Bl:o: et al., 1991; Bl:CK, 1993; Bt.·Cl(et al., 1994) is the
most comprehensive existing simulation/code generation system. Ptolemy
supports the coexistence of different computation models (called domains
by their terminology) and offers clearly defined object-oriented interface
for defining a new domain. Existing domains include static datafiow (LEE
- MESSERSCH~IITT, 1987), dynamic datafimv (Bl:CK, 1993), discrete event,
message queue and communicating process (BUCK et al., 1994) models.
Ptolemy makes almost no assumption about the internal structure of the
computation models it supports, it is the biggest strongness and weakness
of this system. It is a strongness as it allows modelling the whole system in
cluding its software, hardware and communication parts in one framework.
It is weakness as Ptolemy allows mixing computation models that do not
coexist well, it does not force a good design style. Nevertheless, Ptolemy
has huge impact on the field and its importance grows continuously as
existing computation models and tools are integrated with it.

204 G. PALLER ana j.;, CSEFAL\AY

Many ideas of the structure of Rafael were borrowed from the now
historical Gabriel system. Gabriel was phased out in favor of the much
bigger Ptolemy system but we found that some solutions introduced in
Gabriel fit well to our much less powerful target platform. Gabriel (LEE

et al,. 1989) was the first system capable of generating executable code at
Berkeley in which the synchronous dataflmv paradigm was implemented.
Its predecessor, BLOSIM (:\IESSERSCH:-IITT, 1984) was only a simulator.

The operations (or actors by the terminology of the Berkeley team)
are called stars. A cluster of stars forming an interconnected SFG is called
galaxy. The final SFG can be hierarchical composed of a number of galax
ies, a set of interconnected galaxies is called universe. Gabriel has t\yO
levels of user interface. The graphical dataflow organization is used where
appropriate: when describing the algorithm in dataflow format. The stars
have textual definition. This mixed description form helps to avoid the
common problem of the graphical description systems which use graphical
terms where they are not handy.

One of the most striking features of Gabriel is its programmable star
library which influenced a lot the database of our Rafael system. A Gabriel
star is described by a Lisp structure. The star library entry has a header
and a function body. The header structure stores information about the
inputs and outputs of the operation, a short textual description for hu
man readers and the parameters and their default values. An entry in
the header points to the star function which gets executed whenever the
star is invoked. This star function can actually execute the operation as
signed with the star in simulation mode or can generate a code for the
actual target processor in code generation mode. It is important to note
that the code generator star library is written in Lisp so a code generator
function can be 'l'1ite intelligent when it decides on the text to be gener
ated depending on the parameters. size of the inputs, etc. Beside the star
function, a Gabriel star can have initialization/termination functions that
are called once before the first invocation and after the last invocation of
a star. Processors are described in a similar way creating Lisp lists that
contain the target system characteristics: number of processors, processor
memory, special hardware units connected to processors, communication
channel characteristics between the processors and communication code
generator routines. The Gabriel system is strictly homogeneous: there can
be only one star library in the memory.

The Gabriel system has the following interesting features:

It handles multiple sample rates which result naturally from its input
format, the synchronous dataflow graph.

205

It has a second user level, the star library programming level in Lisp
yvhich allows the user to create new stars easily and to add intelligent
optimization/ code generation features to the existing star library.

The main weaknesses:

- It does not address the question of data dependent constructs, if-then
else, case, etc.
It does not support heterogeneous systems.

- Its scheduler cannot be considered efficient.

Another system that influenced greatly our work is SynDEx (SOREL,
1994). SynDEx is a code generator environment designed, to be interfaced
with the synchronous language compilers, SIGNAL (LE GLTR:\IC et al.,
1991), LUSTRE (H.-\LB\\"'-\CHS et al., 1991), ESTEREL (BOL"SSI:\OT SI
\1O:\E, 1991). It has a graphical and textual user interface that allows
users to construct the algorithm block diagram entirely in SynDEx. It
is designed, ho'sever, rather to receive the algorithm graph from a syn
chronous language compiler. Actually SynDEx is interfaced in such a way
with SIGNAL (BOL"H:\A.L 1994) and work is under way to create a common
format for the SIGNAL, LUSTRE, ESTEREL languages so that they can
send the result of compilation to SynDEx or other code generators. The
algorithm model of SynDEx is the conditioned signal-flow graph. It means
that each node has a clock it is associated to which results in a condition
input for each node (Fig. 1).

I Clock inpl It-----;;..""I Boolean

I Operators I Clock inp2 It-----;;..l>'l
'------'

Condition input

Data operation

Data output

Fig. 1. Conditioned signal-flow graph

A node is fired if all its input variables (including the control variable) have
been produced by predecessor nodes and its control variable is true. The
scheduler considers the condition input dependency as any other depen
dency: it is equivalent with supposing that each condition is true and each
node can be executed. This way the original conditioned signal-flow graph
is transformed to a synchronous signal-flow graph and static scheduling can

20G

be used. The original conditioned signal-flow graph is thus partitioned into
a condition calculating part (which is unconditioned) and a data processing
part (which can be conditioned). Is is the responsibility of the SIGI\AL
compiler (or the input graph designer) that a proper condition signal be
assigned to each node.

The biggest problem about the SynDEx system is caused by the way
it handles the conditions. The actual implementation does not use the
condition tree (A:'I1.\(; BEG:\O:\ et aL 1994), constructed laboriously by the
SIGKAL compiler, the hierarchy of clocks disappears, all the clocks become
'level l' clocks (inserted just under the root clock). The code generator
does not group operations scheduled one after the other \\-ith the same
conditions into one if ... endif. Other drawbacks are that SynDEx does
not support heterogeneous architectures and it can generate only C code.

3. Major Design Considerations of the Rafael System

The Rafael structure was designed according to the four main goals intro
duced at the beginning of this chapter. The support of heterogeneous sys
tems needed a flexible operation library or even better programmable
code generator module. Considering the code generator programmer's con
venience, compiled languages can be quickly eliminated because it would
need the recompiling and relinking of the code generator modules each time
the database is modified. A system constructed in this way ,,;ould be much
more prone to system crashes as compiled languages all 0\\- great liberty in
manipulating the system resources. \Ye decided that reprogrammable parts
of the code generator be implemented in an interactive, interpreted lan
guage. As we intended to provide the possibility of important intelligence
in these modules (as they determine the quality of the code generated)
we ·wanted to choose a more powerful language. Considering the possible
candidates we chose Lisp because of the following advantages:

- It is a very powerful language that allows run-time program creation
and it is equipped with efficient database handling capabilities.

- Lisp interpreters are available in relatively smail memory requirement
versions which fit well to the small computer (PC) we planned the
system to run on.
Excellent quality public domain versions have been written and dis
tributed for several platforms in source code.

- It is a common language in CAD systems.

'vVe must consider, however, the slow execution speed of Lisp whichis
an even more serious obstacle on a small PC system. , lthough in the sense

::'.iF.:'.: :20,

of ease of programming it would have been more advantageous to realize the
system entirely in Lisp, this solution would have resulted in unacceptable
run time on the target system.

4. The Structure of the Rafael System

For the reasons mentioned in the previous section reason we choose a hybrid
structure depicted in Fig. 2.

Output
code

Each part of the software v:here user modifications are not supposed was
implemented in This gives us a relatively powerful language with
acceptable execution speed. Programmability is provided at Lisp level
where an interface has been defined for the d;'Ltabase and code generator
programmer. By means of this interface the user can extend the database
and the code generator library. The compiler core calls these routines from
C---,- level and uses their return value appropriately.

This solution needed separate tasks and interprocess communication
bet\\'een the tasks. The minimal 'operating systell1' that is sufficiently
popular and needs small resources was the :VIicrosoft \Yindows. .-\1 that
time Linux (a small r nix ,'ersion for pes) -\vas not in the state that ,ye could
have considered it as an alternative against \Yindows. By my personal
opinion vYindO\\-s is a poorly designed, inefficient 'operating system'. today
we would choose some other platform.

Thus, Rafael \\-as implemented under ;\IS- \Vindows, parts of this
softvvare (Fig. 2) run as separate vVindows tasks and they are connected
through the interprocess communication channels of vVindows. The pop
ular Xlisp was chosen as Lisp interpreter for Rafael because it is close to
Common Lisp and it is available in C source. Xlisp \\-as ported to vYindO\\-s
platform and the necessary interprocess routines \vere inserted that allows
this Lisp interpreter to run as a server task.

208

The three Rafael software components have the following tasks.
Graph editor The name is a bit exaggerating as the Rafael frame

work is far from a comfortable working environment. It features a multi
screen text editor for creating/modifying graphs in textual format, initial
izes the Xlisp server and launches the Rafael compiler on the actually edited
graph.

Graph compiler It is the SFG compiler. The program analyses
graph description, makes the scheduling and generates the output text. It
can run standalone as weiL not only from the framework.

Lisp interpreter The operation database and its associated code
generator routines are realized in Lisp. The client programs launch the
server and send requests to it through interprocess links. Requests are
actually Lisp commands which are executed by the server and the result
of the Lisp command evaluation is returned to the caller C++ program.

As we can see the Rafael software architecture is very similar to that of
Gabriel hence the similarity of the names. Rafael is different from Gabriel
at the following points:

Rafael's whole structure is adapted to the small host systems it runs
on. Not the whole compiler was implemented in Lisp, only a part of
it.
As \\le will see, Rafael's \vhole design including the database, the
scheduler it uses is adapted to heterogeneous systems. Gabriel was
multi-target as it supported multiple start libraries. Rafael is truly
heterogeneous as muitiple target processors can coexist in the same
operation librar~·.

- Rafael supports a limited form of run-time decisions as its importance
has been underlined many times both in the literature and in the
practical engineering work. It will be detailed in section 6.

- Rafael features more advanced and efficient scheduler algorithms.

5. Rafael Nodes and Connections

The Rafael software model defines nodes that represent certain operations
and connections between them. Nodes can be of the following types.

Operations Operations cover functions attached to a certain node.
An operation is a parametrizable function. The number of inputs, outputs,
the execution time and the operation of the function itself can depend on
constant parameters.

Probes Probes cover functions whose task is to acquire input data
from the environment of the datafimv system and send output data to
the environment of the datafiow system. Probes are treated as simple

THE FiAFAEL .'.feLT!· i-'"~3GET 209

operations (with non-zero execution time, if necessary), the only difference
is that they are explicitly forced to certain processors by the user. It
derives from the fact that in a given hardware system the input and output
hardware are assigned to prescribed processors.

Delays Delays are special operators in the sense that they consist
of two parts: a delay input (where new data is put into the delay) and
delay output (where new data is retrieved from the delay). Rafael always
treats delay parts as two distinct operations. It is guaranteed, however,
that output of a delay be scheduled always before the input of the same
delay.

Each node input/output can have a type. Type is a character string
which is checked for matching when node inputs/outputs are connected.
Rafael allows dynamic type names resolved in compile-time that match to
every static type name and solves the type name ambiguities. In Rafael
dynamic type names start with the 'TYPE' string, for example 'TYPE23'
is a dynamic type string. An adder that can add any type of data can
have 'TYPE23' type of each input/output node. When any of the in
puts/outputs is connected to an output/input with static type, the dy
namic type is replaced by the static type by the checker. For example if
the output of the hypothetical adder above is connected to an input node
with 'TIME' type, 'TYPE23' is replaced by 'TIME' for all the adder in
puts/uotputs and type checking continues on the inputs. Fig. 1 illustrates
the process.

l------;Z3I""'G
TIME

f-------'~G
TIME TIME

TIME
FRE~

Type error I

Fig . . :7. Propagating type names in Rafael

Depending on the operation library, 'tokens' can have arbitrary size. The
actual Rafael operation library supports one-dimensional vector tokens.

2]0

6. Rafael Software Model

Rafael accepts a restricted version of synchronous dataflow graphs (LEE

- ~IESSERSCH:'lITT, 1987) for scheduling. This restriction means that if a
node output prod uces or input consumes more than one token, it can be
connected only to an input or output that consumes or produces one token.
See Fig. 4 for example. This simplified scheme allows Rafael to support
practically relevant upsampling/ downsampling operations without getting
to a problematic loop scheduling problem (BIIXrT.\ClI.\HYY .. \ LEE, 1994).

~

AllOWed connections in Ra f ae I

~_.:J::\
)

I~_~~
~

Not allowed cQ[lllections ill Rafael

Fi.<J. ·f· ftaf"a.,j·s rest riCled

Rafael has two software models. The first one is a classical synchronous
dataflow model which does not allow run-time decisions. This model has
been proved to be too restrictive but this is the most effective one. It alio\',-s
all kinds of supported operations in the dataftow graph but no conditional
structures are p·ccmitted, we will call it static model in the future. The
static scheduler will be invoked for this graph and a single-block schedule
will be generated. This model is the restricted version of the second one
that allows run-time decisions.

Based on the conditioned dataftow model of synchronous languages a
conditioned block dataflow model was implemented in RafaeL we will call it
dynamic model. Inserting if ... endif constructs around each operation
and considering all conditions true it is an evident but not too efficient
solution for the run-time decision problem. Instead Rafael forces the SFG
designer to group parts of the graph to a block. A block contains a graph
portion for which the following holds true:

1. Inside a block the graph portion is a synchronous dataflow graph
without run-time decisions.

2. All the operations in this block depend on the same condition.

Ti1E [1.:'. F . ..!. EL .'.!r:LTJ-T.j.RGET

Outside the blocks only probes and blocks are allowed. This is called
Toot level. Operations are embedded into blocks, this is the block level.

This simple scheduling scheme used in Rafael solves the scheduling
problem in two passes.

1. First it prepares static schedule for each block independently. Vari
ables are propagated through the root level block connections and
static scheduler is invoked for the block.

2. Dynamic root-level scheduling. Blocks are considered as operations
which run on all the processors at the same time. A list scheduler
traverses the block connections and builds the order of the block con
sidering only dependency relations. During the execution a block may
or may not be executed depending on its condition input variable (if
any).

INP]

INP2

r-----"'> UUTJ

1";.1. s. ExampiP "(,,tic mociei

Fig. 7 demonstrates this method on the example dynamic model graph in
Fig. 6.

Advantages of the conditioned block schedule a[f~ the following:

\Ve can provide conditional structures while preserving static schedul-
mg.
The user of the system is forced to group nodes with the same condi
tion together, the performance loss resulting from the repeated con
ditional statements is thus avoided.

- The static scheduling algorithm estimates the reality much better
than in the SynDEx case. As a block contains only synchronous
dataflow, the static scheduling is always exact, not only in the worst
case as in SynDEx.
SIG N AL compiler makes readily the operation grouping itself.

VYe have to mention the following disadvantages:

212 G. PALLER and j,:. C5EFAL \ ",4)-

r---------------------- I INPS--.",.; Block C ,..".: _______ -,

I Cl
IN"P4 :

~n~: I

----------------------~
_ _________ y_c:.0~dition ofBlockB

:BlockB
I

1NP2--------------j_..;>+.»l

I
I
I
I
I
I
I

Condition of Block A
-------------I

,
I

1 ______ ---------- ______ 1

oun

INPI~ ~:r-------------..;~our-
I

I I 1 ______________________ 1

Fig. 6. Example of dynamic model graph

PI PI

P2 P2

Schedule for Block C Schedule for Block A Schedule for Block B

PI
Block C Block A Block B

P2

Dynamic schedule (block executions are conditioned)

Fig. 7. Example of dynamic model scheduling

If the blocks contain insufficient operations, static schedules of blocks
can be too sparse. In this case even true dynamic scheduling could
provide a better solution.
It is very easy to construct an incorrect graph. Consider the graph
in Fig. 8. In this example Block B depends on Block A and in the
root-level dynamic scheduling it is scheduled after Block A. It cannot
be guaranteed, however, that Block A \vas really executed because it
depends on a run-time decision. If the condition of Block A is not
true, Block B will get its input from obsolete temporary variables
producing a bad result. As Rafael makes no effort to check the cal-

THE RAFAEL .\fCLT!~ TARGET 213

culation of condition variables, these situations cannot be signaled by
the compiler.
Other effect of the fact that Rafael does not analyse the condition
calculation is that all the condition variables must be recalculated in
each iteration. We can recall that SIGNAL compiler laboriously opti
mizes the condition tree so that its output program can be the 'laziest'
which means that if ... endif structures belonging to a clock expres
sion on the lower level of the clock tree will be appropriately nested
into if ... endifs of upper level clocks. The scheme presented above
will flatten the clock tree putting all clock expressions to level l.

In spite of the disadvantages we consider that the Rafael conditioned
block model avoids successfully the dynamic scheduling and in the case
of large static blocks and few decisions (which is often true at a DSP
algorithm) it is sufficiently efficient.

INP4 __ ~,-~'B~'iOCk:C'''''''''''''''''''''''1

INPl--~;-;-...t

L ;

r'jil;;CkA .. 'l' .. ~~~~l:~~.~.~:.~.I.~~ A , ... iiiockii...... ~O.~~~~~.~~.~.l.~~~ ~
NPZ---;..o-;;,.(Al ! !

~~ou-n
INP3--~,-"' ... "\ J i .. .!

Fig. 8. Example of possibly erroneou;; graph

'7. Rafael Hardware Model

Rafael supposes an arbitrary number of interconnected, heterogeneous pro
cessors as target system. The communication hardware connecting these
processors can be heterogeneous as welL The static scheduling algorithm
prescribes, however, that execution times of operations on all the processors
of the target system and communication times on all the channels in the tar
get system should be known in advance. These calculation/communication
times can depend on certain parameters, in the case of calculations these

21-1

parameters are defined by the operation type, in the case of communication
it depends on the amount of data units passed between the processors.

Rafael uses a simplified communication model, critiques say it is over
simplified. Rafael considers the communication structure totally intercon
nected but allows different communication costs for both directions of each
channel. The actual Rafael implementation does not have router algorithm
so if the target architecture is not totally interconnected, virtual commu
nication layer must be provided by operation library programmer.

The basic Rafael communication notion is the channel. Channels are
resources that are shared by processor pairs w-illing to communicate. A
channel is assigned to each processor pair and that channel is occupied for
the length of the communication between that processor pair. Other pro
cessor pairs having the same channel number have to wait with their request
until the channel is free. Channels represent hard'ware resources used for
communication (bus, network, communication links, etc.). The processor
pair-channel number assignment is fixed in the hardware database.

Each communication activity can have three properties which are re
turned by the hardware database functions to the compiler core.

Activity time It is the time during which the communication activity
occupies the processor it is scheduled on. If the communication hardware
needs constant interaction with the processor (buffered serial line harciware,
for example) the activity time is the same as the time required for the
communication activity. In the case of DMA it is the Di:vIA initialization
time.

Survive time This is the time which is needed to finish the commu
nication after the activity itself finishes. For example a DMA is initialized
during the activity time then it accomplishes the task. During the survive
time the variable which is sent cannot be reused and no new communica
tion activities can be accomplished on that channel. On the receiving side
all the calculations which need the received variable are delayed until the
end of the survive time.

Synchronous flag This flag controls the scheduling of communica
tion activities. If this flag is false for a certain communication activity,
the scheduler can put the send activity before the receive activity of the
same communication pair. No 'crosses' are allowed, however (see Fig. 9).
If the synchronous flag is true, the send and receive activities are scheduled
strictly at the same time.

S2

SI

THE RAF.4.EL .\fL"LTI- TARGET

R2

RI
S2

SI

RI

R2

Valid non-synchronous comnrunication
activity arrangement

Invalid arrangement ("cross")

Fig. 9. _-\liowed and not allowed communication schemes

8. Graph Description Language

21.5

The actual Rafael implementation does not contain a graph editor, the
user must construct the input algorithm graph himself or herself. A simple
graph description language is used for this purpose which will be described
briefly in this section.

According to the two software models in Rafael. there are two varia
tions of the graph description language. In the first variation (synchronous
dataflo,,:..-) only probes, nodes, delays and connections are allowed. Let us
see an example graph:

PROBE I 1 1 LTYPE 1 1
PROBE I 2 1 A.TYPE 1 1
PROBE 0 7 1
NODE 4 ADD (4)
NODE 5 ADD (4)
NODE 6 ADD (4)
IWDE 8 NUL (4)

HODE 3 CDlJST ((1 2 3 4»
DELAY 9 4 1
CONNECTION L1 4_1

CONNECTION 2_1 4_2

CONNECTION 2_1 5_1

CONNECTION 3_1 5_2

CONNECTION 4_1 6_1

CONNECTION 5_1 6_2

CONNECTION 6_1 8_1

CONNECTION 3_1 9_1

CONNECTION 9_1 8_2

CONNECTION 8_1 7_1

216 G. PALLER and f.:. CSEFALVA)'

PROBE <I/O> <nodenum> <type> <upsample> <dO\vnsample>
<I/O> is the input/output probe type, <nodenum> is the number of
the node, <type> is its type name. For convenience of the compiler,
Rafael stores the relative sample rate of the node in rational form.
<upsample> is the nominator, <downsample> is the denominator of
the relative sample rate (see section 11).

NODE <nodenum> <operation> <parameters>
<nodenum> is the node number, <operation> is the function at
tached to the node, <parameters> is the parameter list which de
pends on the function. In the case of the example ADD operator
determines the size of the vectors to be added.

DELAY <nodenum> <delay size> <delay length>
<nodenum> is the number of the node, <delay size> is the size of
one token it stores, <delay legth> is the number of delay stages data
fed into the delay goes through. Delays explicitly have TYPE in
puts/output types.

CONNECTION <onode>_<onum> <inode>_<inum>
Defines a connection between the output numbered <onum> of the
node having <onode> node number and an input described by similar
parameters.
The conditioned block dataflow model allows block definitions beside

the elements above. In this model only probes, block definitions and con
nection definitions are permitted at root level.

BLOCK NADD2 I1->6_1:TYPE1 12->5_2:
13->5_1 :TYPE1 01->6_1:

NODE 5 HUL (4)
NODE 6 ADD (4)
CONNECTION 5_1 6_2
ENDBLOCK NADD2

TYPE1
TYPE1

BLOCK !1UL2 C:BOOL I1->6_1:TYPE1 12->5_2: TYPE1
13->5_1 :TYPE1 01->6_1: TYPE1

NODE 5 HUL (4)
NODE 6 !1UL (4)
CONNECTION 5_1 6_2
ENDBLOCK HUL2

PROBE I 1 1 A_TYPE 1 1
PROBE I 2 1 A_TYPE 1 1

THE RAF'.A.EL ~Hr..;LT!~ TARGET 21,

PROBE I 3 1 A-TYPE 1 1
PROBE I 10 1 BOOL 1 1
PROBE 0 7 1

NODE 4 HADD2
NODE 5 l1UL2
CONNECTION 10_1 5_C

CONNECTION Ll 4_1
CONNECTION 2_1 4_2
CONNECTION 3_1 4_3
CONNECTION Ll 5_1
CONNECTION 2_1 5_2
CONNECTION 4_1 5_3
CONl!ECTION 5_1 7_1

The only new element is the BLOCK ... END BLOCK definition
pair. Blocks group their internal nodes into one virtual operator that can
be placed by a NODE definition. A internal node in a block is identified by
its block name and node number, two blocks can have internal nodes with
the same node number as internal nodes are i~visible outside of a block.
The block header contains the following elements:

I <inputnum> - ><inp nodenum>_<inp inputnum>:<typename>
Connects <inputnum> input of the virtual operator represented by
the block to <inp inputn·~m> input of <inp nodenum> internal node.
Type of the block's input is set to <typename>. Data fed into that
input of the block will be propagated to the internal node's input.

o <onum> - ><onodenum>_<out outputnum>:<typename>
Connects <onum> output of the virtual operator represented by the
block to <out outputnum> output of <onodenum> internal node.
Type of the block's output is set to <typename>. Data produced
by that output of the internal node will be propagated through the
output of the virtual node.

C : <typename> Indicates that the block has condition input and the
type of the condition input is <typename>. Condition input can be
referenced as 'C' in the CONNECTION definition.

9. The Database

Rafael provides a programmable operation and hardware database stored in
Lisp. The database is accessed by the compiler core through Lisp functions.
The interface of these Lisp functions is documented so that the database
programmer can interface to the compiler core.

218 G. P.'!'LLER and X. C.5EFALVAY

The database consists of two parts: operation database and hardware
database. Operation database stores the actual function set for all the sup
ported hardware devices while hardware database provides Lisp functions
that can calculate every characteristic of the target hardware system which
is necessary for scheduling and code generation.

The database is handled and maintained through the XLisp inter
preter and stored in Lisp lists. Because XLisp runs under ·Windows, all
its memory is virtualized so we can store the whole database in the mem
ory of XLisp. The simplifies greatly the implementation of the database
management because we simply use the built-in list manipulating functions
of LISP.

The Operation Database

The operation database has tvlO parts: operator headers and compilation
strategy functions. The operator headers are stored in lists which are bound
to the operator name. This list stores the following information:

The name of the compilation strategy routine.
The description of the input(s) (type, size).

- The description of the output(s) (type, size, storage class, sample rate
factor).
The execution time in system clock beats.
Parameters. The parameters and their meaning are defined by the
creator of the operator library. For example the parameters for the
FIR operator can be the length of the filter and the filter coefficients.
The actual values of the parameters are supplied when the user places
an operator, it is passed in the SFG script.
Constructor and destructor routines. The compiler creates a construc
tor function for each operator \vhich requests it. The constructors are
invoked before the operator is executed first time. Similarly, before
the SFG execution terminates, destructor functions are called for the
operators which need it.
The data structure above is described in a list like the following:

strategy list)
inputs)
outputs)
time function
parameters))
constructor strategy list)
destructor strategy list)

THE RAFAEL .\fr..;LTI~TARGET 219

The strategy list contains the names of the compilation strategy func
tions for each hardware device. It has the following format:

(devicel functionl) (device2 function2)
. .. (deviceN function!!))

The compilation strategy function is called each time during the code
generation pass when the schedule contains a reference to that function
and its program text must be generated. This LISP function gets the label
lists of the input and output branch descriptors (effectively labels of data
areas where the compiler allocated space for the temporary variables), the
parameter list (which contains data like coefficient vector of a filter, etc.)
and returns the program text to the compiler which writes it into the
output file. The strategy function can decide on the subroutine chosen
or the form of the generated program text depending on the input and
output connections and the actual parameters. The subroutine bodies can
be stored in an ordinary object library, in this case Rafael will place only
references into the code which can be resolved by the linker which belongs
to the DSP's development system. This subroutine library can be created
and maintained by the assembler and library manager tools of the DSP
development software package. Another design style is to in line all the
operation bodies which result in slightly faster code but larger code size.

The excellent symbol handling capability of the LISP which makes
this language so appropriate for the artifical intelligence applications can
be exploited in this system and 'we can build significant intelligence into
the strategy functions.

The input list stores the description of the operator's input. Its format
is the following:

(typel sizel
(typeN sizeH)

(type2 size2) ...

where type is the freely chosen signal type (for example time for time
domain signals) and size is the size of the input vector accepted by this
node. This size can also be a symbol from the parameter list (for example
the size of an FFT input can be N where N is a parameter supplied by the
SFG designer) or even a lambda function of the parameters. The type
name can be either static or dynamic. Dynamic type names have the form
of 'TYPEn' where n is an integer number. Dynamic type names are resolved
when they are connected to a statical one.

220 G. ?ALLER anc .':..:. CSEFALVAY

The output list is similar, but beside type and size it also contains
the storage class specifier and the upsample and downsample factors. Its
format is the following:

(typel sizel stl usl dsl)
(type2 size2 st2 us2 ds2)
(typeN sizeN stN usN dsN))

The storage class specifier shows whether the compiler has to allocate
space for the output variable or the space is reserved by the operator.
The us and ds values describe the change in sampling frequency caused by
the operator. The us denotes the multiplication, ds is the division of the
sampling frequency. For example the pair 2 1 means interpolation by 2.

The time function list stores Lisp functions which get the bound pa
rameter list and return the execution time of the operator on a given hard
ware. The list has the following format:

devicel lambdal
deviceN lambdaN

(device2 lambda2) .,.
)

where lambdal ... lambdaN are lambda expressions (no-header Lisp func
tions) which compute the execution time for the given device.

The parameter list contains operator-dependent data. For example
in the case of an HR filter it contains the size of the nominator and de
nominator coefficient vectors and the vectors themselves. In the operator
header the list is stored in unbound form (without parameter values), the
editor evaluates this list when placing an operator. The HR parameter list
would look like the following in unbound form:

(N COEFl M COEF2))

and in bound form (after the operator has been placed)

(3 (0.34 - 0.2 2.12) 4 (0.23 0.77 0.192 2.94))

This bound form is stored in the SFG description file and is passed
to the execution time computing and strategy functions when necessary.

The constructor and destructor strategy lists have the same format as
the strategy function. An operator may have constructor and/or destructor
functions pieces of code which are executed before the operator's first
run and after the operator's last run. If the operator does not need such
functions, NIL is stored instead of the name.

The following small code piece shows the implementation of the ADD
database entry for the TMS320C30 and DSP96002.

THE F{.-1FAEL '\fr...-LTI- TARGET

(setq add ' ((
c30add is C30 strategy function

(c30 c30add)
dsp96kadd is 96K strategy function

(dsp96k dsp96kadd)
)

Has two inputs, each of size n
(n is the operation parameter)

((typel n) (typel n))
Has one output, size n, automatic storage,
interpolating factor: 1

((typel n all)
Time functions for C30 .. ,

and 96K
((c30 (+ (* 2 n) 10)

:dsp96k (+ (* 2 n) 5)
)

Has only one parameter (n)
(n)

No constructor for C30 and 96K
((c30 nil) (dsp96k nil)

No destructor for C30 and 96K
((c30 nil) (dsp96k nil)

Target Hardware Database

221

The target hard'ware database provides the following information to the
compiler core:

- Processor numbers and processor types in the target system.
Activity, survive times and synchronization flag for any communica
tion activity.

- Communication cost estimation for any communication path in the
target system (for the scheduler).
Channel-processor pair assignment for any processor pair.

A set of Lisp functions must be written for each target system. It IS a
relatively inconvenient solution but allows greater flexibility.

222

10. Rafael Memory Management

Rafael allocates memory for temporary variables in compile time. When
the generated program runs on the target system, every variable is already
assigned a memory address. Rafael implements a simple 'first fit' dynamic
memory allocation scheme when compiling the graph.

vVhen a node is scheduled, Rafael allocates its output variables (the
input variables must have already been allocated). The scheduler keeps
track of the actual state of memory map by the means of chunk lists w'hich
describe, actually what size of blocks are occupied at what address in the
memory of the target processor. \iVhen allocating a variable the memory
manager simply walks this chain and finds the memory block with the
lowest address which is big enough to accommodate the variable to be
allocated.

\iVhen an output variable is created, its 'scope' is established. A vari
able goes out of scope if all the operations that consume this variable hase
already been executed. In this case the memory chunk assigned to the
variable is freed and the place the variable occupied can be reused. As the
scheduler cannot know when allocating the variable, on which processor(s)
that variable will be consumed. every instance (variable sent to other pro
cessors) of that variable stays 'alive' on every processor until all operations
that consume that variable terminate.

A variable can be local or globaL Local variables are used internally
by blocks. A variablte is local if it is created in a block not at root level and
it is consumed only by the operations of that block (so it is not connected
to a block output). Every other variable is global. Blocks have their own
address maps that start at relative address O. At the end of the scheduling
when we know, how much memory is required fir the global variables, local
variable addresses are relocated so that these variables be allocated starting
at the end of the memory allocated for global variables. Local variables of
blocks thus overlay each other (Pig. 10).

11. Compiler Passes

Rafael compiler works in 5 passes.

Reading Graph Description File

The compiler reads in the SFG file and parses it syntactically. Then it anal
yses the connection definitions and signals connection errors (connecting to

THE RAI::-'AEL .\!L·LT!~TARGET

~
>I3

V:u2

Varl

Memo!), Iilllp for Block A

~
~

Memo!)' map for Block B

~
ar3

V:u2

Vul

Memory map for root block

Memo!)' ITUp for Block A Memory map for Block B

memory top
Vu3

V:u2
V:u2

Varl Vul

Vu3

V:u2
Root block variables

Varl
base add.ress

Final memory ms.p

Fig. 10. Block memory Q\'erlaying in Rafael (s\lpposing 1 processor)

223

nonexisting node, nonexisting input, etc.). During this phase the compiler
rebuilds the tree in the memory of the computer, ready for analysis.

Type Check:ing

The compiler resolves the dynamic type names and checks if there are
type errors (see section 4 for further explanation). The type checker is a
recursive routine that propagates the stat~c type names from node to node
substituting dynamic type names with static ones and signaling errors if
type name violation is found. The type checking starts at descendants of
probes as they are the only nodes that surely do not have dynamic types.

IP F Checking

IPF stands for interpolation factor and is used to support Rafael's multirate
features (section 6). IPF is the rate of the node's execution in the multirate

224

model. IPF is represented by two distinct numbers, the nominator and the
denominator so IPF:1.4 means 1/4 execution rate.

Rafael uses a recursive subroutine similar to the typechecker to prop
agate IPFs along the graph and looks for the minimal IPF factor. Propa
gating IPF means that the IPF at the input of the operation is multiplied
by the sample frequency multiplication factor stored in the database at the
output description yielding output IPF then it is passed to all the nodes
connected to the outputs. The actual implementation of Rafael prescribes
that the output sample on all the outputs should be the same. During
the IPF propagation the minimal IPF in the graph is recorded. As IPF is
calculated by division or multiplication by integer factor, all IPFs in the
graph must be integer multiple of the minimal IPF. So the factor

IP Fnodc
Cioop =

IPFmin

is the loop count that determines, how many times an operation with IPF
I P Fnode must be repeated if the minimal IPF is I P Fmin. Note that oper
ation changing IPF are always executed on the higher input sample rate
and output sample rates (Fig. 11).

Nl~N2~~N3
IPF: 1/4 1/4 5/4

Loop 4 times

Loop 5 times

Fig. 11. IPFs in an example graph and looped schedule

THE RAFAEL .\fULTJ·TARGET :22.5

~
_____ ~ _ w __ wy ___________________ _

ASAP ALAP

Fig. 12. ASAP and ALAP schedules

Scheduling

The formally correct, typechecked graph \vith IPF values for all the nodes
calculated is then passed to the scheduler algorithm. The actual version of
Rafael contains only the RHLS scheduler but work is under way to imple
ment the much more efficient Springplay schediIler (P.ULER \YOLI:\SKI,

1995) in the software.
RHLS is an ALAP-based list scheduler which was made suitable for

heterogeneous environment. In the first step we create ASAP and ALAP
schedules in order to get the ALAP levels. 'vVe present briefly ASAP and
ALAP schedules below.

ASAP algorithm was presented first in Hc's classical publication (Hc,
1961). ASAP scheduler starts operations as soon as all the predecessor
nodes terminate the computation that is

E(ni) = max(E(pred(ni))) + t~,;asap, (1)

where t~,·il.'(!P is the execution time of node i and E(ni) is the earliest time
when ni can be executed. Node with no predecessors have E = O. This
simple version is only for homogeneous architectures. The original version
supposes unlimited resources and schedules nodes just at their E.

ALAP schedule is based on very similar principles. Nodes are sched
uled as late as possible without increasing the length of the schedule.

(2)

L(nz) is the latest time when ni can be executed in the case of minimal
length schedule. L values of nodes with no successors are initialized to the
maximal E value over the entire graph. Fig. 12 depicts the ASAP and
ALAP schedules of an example graph.

226 G. PALLER and h-. CSEP:1LFA}"

RHLS assume the we can always schedule the nodes on the fastest
processor possible so minimum execution time is supposed when building
the ASAP-ALAP schedules.

te.asap _ . (t-e)
ni - mIn n ,

where t; is the execution time vector that is composed of execution time
of node n on each processor. Then we define urgency of the operation n
like the following:

(3)

where tr is the virtual time and it will be detailed later.
The base of the scheduling heuristic is to assign the nodes on the

critical path to the fastest processor available. The more urgent it is to
execute a node (as its delaying \vould set back the execution of the whole
graph) the faster processor it deserves. The most urgent nodes are those
which have the lowest ALAP time.

vVe pick hence the node to be scheduled based on theuni urgency value
defined above (lowest urgency value means more urgent node) and we need
the best processor to execute it. The best processor selection is very simple:
we try the node on each processor considering the communication costs and
we pick the one on which the node achieves the earliest completion time.
Before trying a node on a processor, necessary communication activities are
scheduled tentatively so that we know how much time must be calculated
for fetching the input variables produced on other processors.

The heuristic algorithm works like the following:

Create the ready node list from nodes that have no predecessors;
while the ready list is not empty do

for all nodes do
if u(~.) < minimum so far

Candidate = node i;
end for
Try the candidate on each processor considering communication

cost;
Choose the processor on which the task achieves the earliest

ending time;
Schedule candidate node and the necessary communication

activities on candidate processor;
Update u(i)s and tv;
Add nodes that become ready to the ready list;

end while

As the real tni node starting times will generally not be equal to the
ideal ASAP or ALAP starting times the scheduler maintains real processor

THE llAFAEL .lfULTJ·TAllGET 22T

times and tl.' virtual time. The virtual time is used to track the time in
the ALAP schedule graph while the real time is the scheduling time on
the processors. The tl.' variable shows where we are in the ALAP schedule
graph, it is set to the lowest ALAP time among the ready nodes. The last
step is the updating of urgency and virtual time variables.

The version implemented in Rafael differs from the algorithm pre
sented above considers node repetition resulted by multiple sample rate
loops (see IPF checking section). The schedulers consider effective node
execution time as Cl oop . t~iasap and try to group nodes with the same IPF
together.

Code Generation

The scheduling done, Rafael generates the output text for each processor.
The code generator walks the activity list on each processor then asks the
Lisp code generator database functions to produce output text for them
which is then sent to the output file. Separate' output files are generated
for each processor. The model of output text will be discussed in detail in
the next section.

Cude Generation l1;lodel

Rafael has a parametriza ble code generation that allows each section of the
text generated to be redefined. The code generator invokes Lisp functions
that receive the parameters of the text section and the device for which
the code will be generated then it is the responsibility of these Lisp func
tions to produce the appropriate text. These code pieces are called code
generator service functions and they complement the operation strategy
routines. Every text section that Rafael writes to the output text file can
be redefined by modifying either the operation strategy functions (in the
case of operation texts) or the code generation service functions (headers,
communication routine codes, etc.).

Rafael generates three text sections for each processor (that may be
empty as well). For programmable processor-like devices, that Rafael was
designed for, the database programmer may wish to realize these three
sections as subroutines. These sections are the following:

1. Constructor section. Called only once from the user program before
the first iteration of the datafiow computation.

228 G. PALLER and f.:. C5EFALL4}'

2. Operation section. Called once for each iteration. Calling the opera
tion section entry label will actually execute the program generated
from the SFG.

3. Destructor section. Called once after the last iteration of the opera
tion section.

Each section has a start and end header that probably contain section
head label in the start header and 'return' instruction in the end header.
The sections contain the text generated by the operation constructor, strat
egy and destructor functions.

If the compiled SFG \vas written in block conditioned model, each sec
tion has a separated part for each block. In the constructor and destructor
sections it is rather a formality as Rafael guarantees no specific order among
the operators when it generates constructor and destructor sections. In the
operation section each block has a start and end header. The current op
eration library realizes blocks as subroutines so the start header defines a
block entry point label and the end header contains a 'return' statement.
The block subroutine contains the operation body texts in the schedule
order. Having block subroutines generated, Rafael emits the text for the
root block that contains probe calls and block invocations. Block invoca
tions in the current operation library result in subroutine 'calls' to block
subroutines.

12. Conclusions

Rafael cannot compete in complexity with the most advanced systems
partly because of the limited capabilities of the host computer we chose,
partly because of the significantly less human resources we could devote to
the project. The: f:nal product, the compiler itself has been implemented
but many support programs that \vould make its usage convenient have
not even been planned. For this reason the actual Rafael system is not
so 'user-friendly'. As all the resources were concentrated on the compiler
development, important parts of the system have not achieved the neces
sary level yet. The most important among them is the operation database
that contains only about a dozen operations only for the TMS320C.30 and
DSP96002 DSPs. A brave user of Rafael must face the immediate task
of filling up the database which requires Lisp programming. Lisp is con
sidered a difficult language among the users although the simple functions
needed by the compiler core should be easy to implement for a bit more
experienced programmer.

Two distinct influences can be discovered in the Rafael design. The
first one is Lee's synchronous dataflow approach and the Gabriel system

THE RAFAEL MULTI-TARGET 229

which gave us the first notions, how Rafael should look like. \Ve quickly
faced, however, the need of run-time decisions and the difficulties it causes
in a system based on synchronous dataflow. The second influence that
we embedded into Rafael was the way the synchronous language compilers
work and SynDEx transformes their output to distributed code. Critique of
the SynDEx approach was given and a model that was easy to implement
to an existing synchronous dataflow system was developed and realized.
Limits of this model were pointed out but we consider that in many practi
cal cases, notably in the DSP case they are acceptable. Further researches
are conducted to find a better way for handling dynamic structures in a
dataflow system.

So Rafael project achieved its aims at the following points:

A flexible multi-target SDF compiler has been realized on PC plat
form.
Effective scheduling algorithms have been developed for the hetero
geneous case.

Rafael still has a long way to go at the following fields:

More user-friendly environment (graph editor, database editor tools,
etc.).
Complete database for various DSP processors.
Better communication model.

References

A:.IAGBEG:\O:\. T. BES:\ .. H,D. L. - LE GCER:\iC. P.: Arborescent Canonical Form of
Boolean Expressions. INRJA Research Report. :\0. 2290 June. 199-1.

1:3l!.-\TTACHARYY,\. S. S. - LEE, E. A.: .\lemor:; .\Ianagement for Dataflow Programming
of .'vlultirate Signal Processing Algorithms, IEEE Transactions on Signal Processing.
\-01. -12, :\0. ·5. pp. 1190-1201, .'vIay 1994.

BUl:_-\!. P. L.\\,ERUH. C. LE GeER:\IC, P. .'vl.\FFEIs. O. SORSL. Y. (1994):
Interface SIG:\.·\L·SynDEx, I.\'RIA RESEARCH REPORT.:\o. 2206.

BOl'SSI:\OT. F. Snro:;s, R. (1991): The ESTEREL Language, Pr-iceedings of IEEE,
\-01. ,9, :\0. 9. pp. 1293-1303.

Ben: .. J. T. Eh. s. LEL E .. c\.. MESSERSCH'.llTT, D. (1991): .'vIultirate Signal
Processing in Ptolemy, Proc. IEEE ICASSp·91 Toronto, Canada, April 1991.

BecK, J. T. (1993): Scheduling Dynamic Dataflow Graphs with Bounded .'vIemory Csing
the Token FDlow .'vIodel. Ph.D. dissertation, C niversity of California at Berkeley.

BeCK. J. T. - HA. S. LEL E. _-\. - ivIESSERSCIl:.!ITT, D. G. (1994) .. -\ Framework for
Simulating and Prototyping Heterogeneous Systems. International Journal of Com
puter Simulation, special issue on Simulation Software Development, January, 1994.

GUI:;, D. - HILFI:\GER. P. RASAEY, J. - SCHEERS. C. DE '\IA:;, H. (1990). DSP
Specification Csing the Silage Language, ICASSP·90. pp. 10-57-1060. Albuquwrque,
April. 1990.

2:30

H.-UBWACHS.::\. CASP!. P. RAn!O::D. P. PIL.UD. D. (1991): The Synchronous
Data Flow Programming Language LCSTRE. PTOceedings of IEEE. \'01. 79. ::\0.9.
pp. 130.5-1:319. September 1991.

L.o,\\L\R. D. (19(r3): Design :'Ilodels and Data-Path :\lapping for Signal Processing .-\r
chitectures. Ph.D. dissertation. Eatholike l'-ni\'ersiteit Leu\·en. :\larch 199:3. LL\RY.
1(. W. WADDI\GTO\, \Y. (1990): DSP/C: A Standard High Ln'el Language for
DSP and ::\umeric processing, IEEE ICASSP-90. pp. 106S-1068, Albuquerqu. ::\ew
:\lexico. April 1990.

LEE, E. .'\. :'IIESSERSCIl:l!lTL D. G. (1987): Szazic scheduling of Synchronolls Data
Flow Programs for Digital Signal Processing. IEEE Tmn::'acti01l:' on Computers.
pp. 2.5-:3.5, \"01. C-:36, ::\0. 1. .January 1987.

LEE, E. A. Ho. W-H. GOE!. E. E. BIER . .1. C. .. B!L\TTACHARRY':A. S. (1989):
Gabriel: A Design Environment for DSP. IEEE TrailS. on Acoustics. Speech and
Signal Processing. \"01. :37. ::\0. 11. ::\ O\'em ber 1. 989.

LE GCER\IC. P. GACTIER. T. LE BORG\£.:\t. LE :\L\IRE. C. (1991.): Program-
ming Real-Time Applications with SIG::\AL. Proceedings of IEE8, \'01. 79. ::\0. 9.
pp. 1321-1:3:36, September 1991.

Hc. T. C. (1961): Parallel Sequencing and Assembly Line problems. Opu. Rcs .. \'01. 9.
pp. 841-818. ::\o\'ember 19b1.

DE .'-lA\". H. R.·\BAEY . .1. SIX. P. CL.o,£5E:'. L. (1986!: Cathedral-II. A Silicon
Compiler for Digital Signal Proccs;-;ing. IEEE /)e:;ign @ test. pp. 1:3-2-1. December
1986.

:\IESSERSCH:.IITL D. G. (1954): .-\ tool for struCTured functional simulation. IEEE J.
Selected Areas of Comnw.nicnt.icJ7!. \'01. SAC'- 2. Jan. 19><4.

PALLER, G. - WOLI;\SKl. C. (199.)): .. \ ::\ew Class of Compile-Time' Scheduling Algo
rithm for Heterogeneous Target :\rchitectures. IFAC/IFIP Wori.,,,hopo7l Real Tinu:
Programming. Fort Lauderdale. \oH'Illher 199·).

SOREL. Y. (1994): :\lassi\"(~l\' Parallei COf!lputiw~ Real 'limp Constraints
The Algorithm .-\!"chitcctul'e .\dcqlwtiofl FaT"llIlc!

I:-:chia.),Iay 199-L

