
PEfUODfCA POLYTECH.';]CA .iEH. EL. ESG, ,'OL,';'1. ,\"0, J, PP. 2:31-:239 (1997)

AN EXPERIMENTAL INVESTIGATION OF A
l\1ULTI-PROCESSOR SCHEDULING SYSTEM

Colin REE\'ES and Helen KARATZ,'\~

School of .\lathematica! and Information Sciences
Co\'entry rni\'ersity, rK

Email: CRReevesQuk.ac.coLcck
x Department of .\Iathematics

Aristotle C ni\'ersity of Thessaloniki
Thessaloniki, Greece

Email: cbdzO.5Q;grtheunll.earn

Abstract

The scheduling of jobs through a multi-processor system is important from many aspects,
It is often assumed that jobs are scheduled on the basis of some simple rule, such as
First-Come First-Served, or Shortest Processing Time First.

In earlier work we fOlInd some evidence to suggest that use of a more sophisticated
strategy, based Oil the llse of it Genetic Algorithm (GA) to 'look ahead', could enhance
system performance, Here v;e ill\'cstigatc this i(~ea mo;'e thoroughly,

1. Introduction

Recent advanced in heuristic methods for static sequencing problems have
included several reports [1, 2, 3] of the use of genetic algorithms, \vhich
have been found to be robust and efficient \vays of solving such problems,
In an earlier paper [4], we considered the use of a genetic algorithm (GA)
to solve a dynamic flowshop sequencing problem, This problem relates to
the sequencing of jobs on machines in a manufacturing enviroI1ment, but
this case has obvious parallels in a computing context, where the jobs are
program tasks, and the machines are processors, There is a difference in
that the scheduling of computer program tasks needs to be done in real
time, which is not so critical a requirement in a manufacturing environ
ment, But first we need to establish whether such an approach can indeed
out-perform simple scheduling rules, before considering how it could be
implemented in practice,

VVe consider a some\vhat idealised problem, where jobs arrive at a job
pool before passing through m processors arranged in series, The time ti)
required for processing job i on processor j is known, or can be reliably
estimated, There is infinite buffer storage between consecutive processors,
and no job pre-emption is allowed, Initially there are n' jobs in the pool,

232 c. REEFES and H. KARATZA

but further jobs arrive as time passes, in accordance with a known inter
arrival time probability distribution.

()--{Kl-~ ... ~
Job pool

The problem is at any stage to determine the sequence in which the
jobs in the pool should be processed in order to optimise some measure
of performance. This is clearly a dynamic problem, since as more jobs
arrive the current 'best' sequence may have to change. Of course this is
an approximation to what really happens - in real problems jobs may not
call on all processors in the same order, they may need to visit a subset of
processors more than once, and so on. However, our purpose in studying
this simplified version of the problem, as outlined above, was to test the
effectiveness of different ways of scheduling jobs. Simple scheduling rules
are usually concerned only with the next job, without trying to consider
the current job pool as a whole. Our hypothesis is that using a GA to 'look
ahead' would be a more effective means of approaching such a problem.

There are a number of ways of assessing the performance of a system
like that described. It was decided that the most natural performance
measures would be the mean response time,

R(n) = :t Cj - Aj
n

j=l

where n jobs have been processed, and job j arrived at time Aj , and was
completed at time C j ; and the throughput rate,

n
T(n) = C _ 4.

n - 1

These performance measures are of course correlated to some extent, but
while response time refers to the system performance from the viewpoint
of the jobs, throughput rate measures performance from the server's per
spective.

2. Implementation

A simulation model of the system described above was programmed, as
shown in the box below:

J.YI/EST1GATJOS OF A .\fULTI~PROCE5S0R SCHEDCLING S}'STE.\1

I - Initialise job pool;

I Compute job sequence:

I Schedule 1st job:

1 Compute 1st event time TE :

1- Repeat

I
I

I

If no arrivals before TE then

l. schedule next job:

2. compute next event time TE :

I else

I l. add additional job(s) to current job pool:

I
I
I

I
I

I
2. re-compute job sequence for current pool; I
3. schedule next job

I
-1. compute next event time TE :

Cntil simulation time exceeds a specified limit.

233

Clearly, the GA enters at the points where a re-computation of the 'best'
sequence of the current job pool is required. The simple scheduling rules
would also be implemented at this stage.

It is important to realize that by re-computing the best sequence from
the current job pool, we make the assumption that a good overall solution
will be obtained if ,ve try at any stage to sequence the currently available
jobs as if no more jobs will arrive. It is this hypothesis that we shall
evaluate by comparing with more traditional job scheduling criteria.

2.1. The Genetic Algorithm

The GA used to solve the sequencing problem was adapted from that de
scribed in [3], whose characteristics can be summarised as follows:

23-1

I an initial population of :30 chromosomes using a sequence

I representation: .
• I

I pare!!t selection using ranking: I
I - incremental population replacement (also known as a steady-state GAl:

1- replacement of a randomly chosen string of below-median 1
1 fitness: I

a sequence-based crossoYer (sec [3] for details): i

- an adaptiYc mutation rate:

I a termination condition of O(n m log[m -1-

I objecti\'e function e\·aluations.

I
I

I

At the first stage, the initial chromosomes were chosen at random, and this
could also be done at each subsequent application of the GA. However, by
basing, at each stage, the initial population on the population of solutions
obtained at the previous stage, we found that good solutions to the current
problem were determined more rapidly, which may be an advantage when
a decision on the next job to be sequenced is needed in real-time.

2.2. Other Selection Criteria

There were 3 obvious candidates for simple selection criteria instead of the
GA: we could use

- job arrival order (FeFS):
shortest (first machine) processing-time order (SPT(l)).
shortest (tctal) processing-time order (SPT(all));

The first of these corresponds to doing nothing, simply scheduling
on a First-Come First-Served basis; the other two attempt to take into
account the likely delay to other jobs that could be incurred by scheduling
a specified job now. Clearly, by scheduling a job with a large processing
time requirement when other (shorter) jobs are available, the response-time
for those other jobs is likely to be increased. The first machine is of course
the most important in our model, since once the current job completes
processing on the first machine, we are free to schedule another. The
rationale for SPT (all) is that, like the GA, it also tries to 'look ahead'
beyond the immediate decision.

These type of criteria have been studied for some special cases of
single-processor scheduling problems using a queuing-theoretic framework,
and CO:\\\"A Y et al. [5] have an interesting discussion which shows that,

under certain conditions, the Shortest-Processing Time criterion is optimal
for single-machine problems. However, this cannot be shown to hold for
multi-processor problems.

:~ ~ mrt-g~ -
_ I mrt-spt -

3u r

30 ~

20

I;)

10

~~~--~~--~~--~~j 
o 100 200 300 400 500 600 700 

Fig. 1. ~lean response times 

3. Test Problems 

Several sets of test problems were geclerateci. In each case, the arrival 
rate and service (processing) rate of jobs 'were assumed to be the same: 
clearly, if the arrival rate is greater than the service rate, the size of the 
job pool will increase without bound, "lvhich v;ould not be tolerated in a 
real system. Job arrivals were assumed to occur according to a Poisson 
process, but job-processing times were generated from 5 different distribu
tions with different coefficients of variation (CV s) of processing-times. We 
used Erlang-k (hypo-exponential) distributions with k = 4 and k = 16, 
an exponential distribution (corresponding to a Poisson process), and two 
branching-Erlang distributions to simulate distributions with high CVs. 
The complete range of CV values was {0.25, 0.5, 1, 2, 4}. General de
tails of the distributions used and their characteristics can be found in, for 
example, SACER CHA:;m' [6]. 

In each case, 30 jobs were assumed to be in the pool initially, and the 
simulation was continued until a further 530 jobs had entered the system. 
In the first group of problems, the number of processors was set at 4. 
The values of T(n) and R(n) were measured when each job completed 
all its tasks. They could then be plotted on a graph as shown in the 
example below. 



236 C. REE\'ES .. !nd H. i\."ARA.TZA. 

To do this for every run is clearly impracticable; in order to summarise 
these graphs, we calculated the average difference between the T(n) and 
R(n) values for GA and FCFS over the whole run length. Thus we could 
obtain a measure of the success of the GA against the 'donothing' option. 
We then repeated this for SPT(l) against FCFS, and SPT(all) against 
FCFS. Each case was replicated 4 times, so the results reported in Table 1 
below are the means of 4 runs in each case. In this table, the first value in 
each cell is the average difference for R(n), the second for T(n). 

Table 1 
.. herage differences in :\lRT &: TPR: 4 processors 

CV G:\ SPT(l) SPT(all) 

0.2.5 -10.33 -9.1·5 -12.,6 
0.024 0.Dl! 0.03-1 

0 . .50 -10.48 -8.73 -16.03 
0.023 0.012 0.0.58 

1.00 -1,.3.5 -13.26 -20.37 
0.0·56 0.032 0.112 

2.00 -32.32 -21.0.5 -:39.90 
0.119 0.0.52 0.201 

4.00 -30.76 -6.97 -Ti .61 
0.1-11 0.026 0.1'·! 

The whole procedure was then repeated for the case of 8 processors, 
with the results shown in Table 2. 

Table 2 
:\\'erage differences in :\IRT <\: TPR: .'j processors 

C\· GA SPT(1 ) SPT(all) 

0.2.5 12.·52 -8.64 -lVi4 
0.0:38 0.016 0.036 

0 .. 50 -8.72 -6.94 -13.03 
0.022 0.007 0.041 

1.00 -17 . .54 10.06 -21.0.5 
0.0.56 0.006 0.097 

2.00 -34 . .58 -12.·50 -3,.74 
0.090 0.024 0.140 

4.00 -62.32 -21.16 -.59.71 
0.133 0.028 0.170 



:t3, 

On the whole, all 3 rules were able to improve system pel"iormance, 
in terms of both performance metrics: that is, it is possible to improve 
performance both from the point of view of the system throughput and at 
the same time to provide a better service from the point of view of the 
customer. 

It is clear that SPT( 1) provides the last improvement in performance 
over FeFS. It can also be seen that SPT(all) nearly always does slightly 
better than using the GA. This contradicts our earlier findings, reported 
in [4]. We have not yet fully resolved this contradiction, which may be 
simply an artefact of the random number streams used in the simulation. 
However, this latest work is based on more extensive and comprehensive 
testing, and is probably more reliable. The differencE's are in any case fairly 
small. 

1.4 ,----,----,-----,---,-------, 

1.2 

0.8 

0.6 

0.4 

0.2 L.-__ -'--__ -'--__ -'-__ --'-__ --'-__ .......L __ ---' 

o 100 200 300 400 500 600 700 

Fig. S. Throughput rates 

\Ve must also bear in mind the amount of computing has to be done in each 
case. In terms of time actually spent in selecting the next job, SPT(l) 
needs the least, while SPT(all) needs slightly more, since it requires the 
summation of processing times for m machines. The amount needed for the 
GA can be user-controlled, depending on what degree of convergence to the 
(unknown) optimal sequence is desired. In practice, and on average, it took 
an order of magnitude more computation than the SPT rules. (There was 
considerable variability, too: in the case CV < 1, for most of the simulation 
period the queue lengths tended to be much greater, which meant the GA 
had far bigger problems to solve, and thus took much longer.) In view of 
this, it would seem desirable to use the simpler SPT( all) rule. 



4. Conclusions 

The results obtained confirm that, on average, the performance of a multi
processor system is improved by using a 'look-ahead' rule for scheduling 
rather than FCFS. However, contrary to our original expectations, the 
extra sophistication of a G A- based sched uler was not in this case worth 
using. The SPT(all) rule also uses a 'look-ahead' principle, and in this 
case produced superior results to the GA, and produced them much faster. 
In any particular problem the actual time needed for scheduling must also 
be considered, so whether there is any gain over FCFS in practice \vill of 
course be problem-dependent. 

The problem investigated is rather straightforward, so in a sense it is 
not surprizing that a simple rule like SPT(ali) performs well. \Ve intend to 
investigate more complex problems where more sophisticated approaches 
such as GAs might be needed. 

'Ne should also emphasize that in real problems processing times are 
not always known in advance, although we may be able to predict them 
with a fair degree of accuracy. Genetic algorithms have been found effective 
for stochastic flowshop sequencing [7], and future work will also investigate 
the potential for using GAs in multi-processor systems which are both 
dynamic and stochastic. 

References 

hms to SciluLle Flow 
Shop Releases. In J. D. SehaE'er (Ed.! i i 9'39) of the Srd Iniulwtionai 
Conference on Genetic h>illfmanfl. Los .-\Ito". CA. 

2. C\RTWRIGHT. H . .\1. '\[OTT. G. F. (1901 Looking :\ro\:nd: [sing Clues from 
the Data Space to Guide Genetic .-\Igorithm Searche;;. In R. E. Belew and L. B. 
Booker (Eds.) (1991) Proceeding" of the International COTlfercnct" Oil Genetic 
A 19orilhms . .\Iorgan Kau frnann. San .\[ ateo. C.\. 

3. REE\'ES, C. R. (199:3): A Genetic Algorithm for Flo\\"51:op Se'luerlcing. Computers & 
Ops. Res., (to appear). 

:1. REEYES. C. R. EARATZA, H. (199:3): Dynamic Sr:quencing of a .\Iulti-proce;;sor 
System: a Genetic Algorithm Approach. In R. F. AlbrechL C. R. Ree"es and :\". 
C. Steele (Eds.) (1993) Proceedings of International Confe7'ence on Artificial Nwral 
Networks and Geneiic Algorithms, Springer- \·f;riag. \-ienna. 

'5. CO:;WAY, R. \\". .\L-\xWELL. \\". L. :\IILL£R. L. \\'. (1967): Theory of Scheduling. 
Addison- Wesley, Reading, '\Iass. 

6. S.HER. C. H. CHA:;DY, K . .\1. (1981j: Computer S,·st('fl)., Performance .\Iodelling. 
Prentice-HalL :\"ew .Jersey. 

(. REEVES. C. R. (1992): .-\ Genetic Algorithm _-\pproilc!, to S10Citibtic Flowshop Se
quencing. Proc. lEE Colloquium on Genetic Algorit.!uli,< for Control and Systems 
Engineering. Digest :\"0. 1992/106. lEE, Londoll. 


