
PERIODICA POLYTECHNICA SER. EL. E-'G. \·OL. 41. -'0.4. PP. 251-257 (199,)

A COMPREHENSIVE METHOD FOR THE TEST
CALCULATION OF COMPLEX DIGITAL CIRCUITS

.16zsef SZIRAY

Szechenyi College
Faculty of Informatics and Electronic Engineering

Hedervari ut 3.
H-9026 Gyor. Hungary

E-mail: sziraygrsl.szif.hu

Received: .J une .s. 1997

Abstract

The paper presents a general test calculation principle which serves for producing tests for
a wide range of possible faults: stuck-at-constant logic level (single, multiple), bridging
(single), as well as behavioural (functional. single) faults. The proposed method handles
multi-valued logic, where the number of logic values is unlimited. The level of circuit
modelling is also allowed to vary in a wide range: switch level. gate le\'el. functional level.
etc. are equally allowed, Both combinational and sequential circuits are considered, The
principle is comparatively simple. and it yields an opportunity to be realized by an efficient
computer program.

Keywords: test-pattern calculation. fault modelling. multi-\'alued logic. modelling of logic
networks. hardware-description languages,

1. Introduction

For the purposes of built-in self testing (BIST), an increasing demand
is experienced for possessing efficient test sets that are capable of detecting
a wide variety of faults in complex digital circuits. The fulfilment of this
demand is especially important in the field of VL51 C~IOS circuits which
are rapidly spreading in the modern hardware construction.

This paper is intended to present a general test cdculation principle
that is suitable for producing tests for a wide range of possible faults: stuck­
at-constant logic level (single. multiple). bridging (single). as well as blO­
havioural (functionaL single) faults, The proposed principle handles mlllti­
\'alued logic, where the number of logic values is unlimited, ",\.11 of those
representations are accepted here which operate in the logic domain by ap­
plying multi-valued logic, For instance. if the circuit behiwiour is described
by the VHDL language [lJ. the logic values will correspond to the signal
values in the actual description. ~Ioreover. the le\'el of circuit modelling is
also allo\ved to yary in a \\'ide range: switch le\'el. gate leyel. fUllctional level.
etc. are equally allowed, (The comprehensive circuit representation based
on alternatiye graphs in [2] can also be accepted here.) At the same time.

252 J.SZIRAY

the proposed principle is comparatively simple, and it yields an opportunity
to be realized by an efficient computer program, both for combinational and
for sequential circuits.

2. The Test Calculation Principle

The test calculation principle to be presented enables the user to model the
digi t al circuits at various levels, namely:

• Switch level for :VIOS circuits: the transistors are the building ele­
ments .

• Gate level: logic gates are applied exclusively.
o Functional level: the logic values of an element are calculated 'with

knowledge of its external functional behaviour. For this modelling
purpose, high level hardware-description languages (HDL's) can
be applied. for instance. VHDL.

Let the \'ector of primary input and output variables for the complete
netv,;ork be .r = (.q, X2 ,xn) and 53 = (Z1, Z2," .. zm). respectively. Let
the set of possible logic values in the net\vork be F = {l'l. V2 .. •. ,l"s}' In
addition to the elements of Y the indifferent or don't care value cl will be
applied.

Suppose that a sequence of primary input vectors X(t) = .q. :c2 Xi

detects q 2: 1 simultaneous faults at a primary output Zj. :-;-ow the task of
calculating X(t) can be stated in the following ,","ay. Find a sequence of
input patterns \vhich implies Zj = 0 in the fault-free network. and Zj = 3
in the faulty network. where 0 E F. .3 E F. and 0 =!= .1 .

To reach this goal, we associate the logic values Lt and J \vith Zj. and
attempt to find a sequence of input patterns which equally justifies

1) the normal value of Zj for the normal (fault-free) network. and
:2) the faulty value of Zj for the faulty net-,vork.

In the first case. X (t) just ifies Z j = 0 through the values of all the
necessary network lines in the usual manner. In the second case. ho\\"e\"e1".
since the faulty values are self-dependent. they need not be justified by X(t).
Thus, in the faulty network. X(t) and the faulty values justify Zj = 3 jointly.

The test sequence can be derived by applying the line-value justifi­
cation concept. As known. line-value justification is a procedure with the
aim of successively assigning input \"alue5 to the logic elements in such Cl way
that they are consistent \vith each pre\"ioudy assigned value. (This concept
is an auxiliary calculation process for justifying an initial set of logic values
in a network, first applied in the D-algorithm for two-valued logic [3]. [4].)

In our approach. the computations are carried out simultaneously in
the normal and faulty network. i.e .. in the normal and the faulty domain.

TEST CALCUL.4TIOS OF COMPLEX DIGIT.4L CIRCUITS 253

Logic values simultaneously representing signal values in both the normal
and the faulty networks are called composite values. Line justification
performed in terms of composite values is referred to as composite justifi­
cation [5]. [6]. The two components of a composite value will be separated
by a slash, with the normal component preceding the faulty one. The actual
logic value of the i-th line in the network \"ill be denoted by u(i). Then, for
example, a composite value of line i is

vU) = uJCj .

In the composite justification the computational costs can be greatly reduced
by the following consideration [5]. The signal values in the normal and
faulty net\vorks cannot differ at the lines that do not carry any signals
propagating from the sites of the faults. These are called inactive lines,
for \vhich C'i =!= l'j would represent inconsistency if they had the composite
value of vii L'j. It should be realized that for our purposes it is sufficient to
determine which lines (called potentially active lines) carry signals from
the faulty lines to :::j. This holds true, since all the other lines in the nehvork
are either inactive or are not involved in the justification process. The set of
potentially active lines can be generated by intersecting the set of the lines
that are reached from the faulty lines with the set of the lines from which Zj

can be reached. The two sets are very easy to obtain by topologically tracing
out the signal connections. This is done by starting from the faulty lines
and proceeding forward. then starting from :::j. and proceeding backward.
If a line is encountered in both the forward and backward tracing then it is
potentially active.

The implementation of the above principle for a synchronous sequen­
tial network may require the justification process to be performed through
different 5[Orage ~tates of the Ilenvork. \vhich results in a test sequence .Y(t)
of length t. The detailed principle of doing it for stuck-at-O / 1 faults is
descri bed in

In the following. we are going to present the necessary and sumClent
conditions for performing the composite justification in case of different fault
models.

3. Tests for Different Fault lYlodels

3.1. Shlck-at- Constant Lugic Level Faults

An arbitrary signal is erroneously presen-ing a certain logic value (for ex­
ample. logic 0 or 1. high impedance value. ete.), independent of the actual
control values which may influence the normal value of this signal. Any
logic values are allowed \,'ithin rhe range of possible values for that particu-

254 J. SZlRAY

lar signal. It should be added that not only single faults, but also multiple
faults are included. with no limits in their multiplicity.

Let the set of lines with stuck faults be denoted by SL, where the
number of lines belonging to 5 L is q. If the stuck value at line i of SL is
Si. then the initial set of the logic values that are to be justified will be as
follows:

:::j = 0/.3
for a selected pnmary output. where

o E \'. J E V and 0 i= ;3 ,

and
d i) = cl / S i for each i E 5 L

In the justification process. the value cl need not be justified. whereas the
stuck values Si must not be justified.

3.2. Br£clging (Coupling) FmLits

They are defined for two signals. This type of fault occurs when a signal
erroneously takes up the normal logic \'alue of another signal. In this case
the two signals are said to be bridged (coupled). Only single occurrence is
stipulated here for the bridging faults.

Let the dominant logic value of t\VO bridged lines be •• :: It means that
the '."alue w' will appear on both lines. instead of the normal different ,'alues.
If the bridged lines are b1 and b2 then the initial values for the composite
justification ,,;ill be as follows:

:::j = 0/:3

for a selected pnmary output. where

J E \' and 0 =f 3 .

and
c(bl) = db2) = rI/w' .

In the justification process. the following measures have to be taken for the
bridged lines:

a) If either of them is reached by a determined logic value (i.e .. Cl value
other than cl) in the normal domain, then the value of the other bridged
line mus t be set to •• ; / v.:.

b) If in a backtrack process. bl or b2 is reached. then the initial value
cl/wo has to be assigned to both lines again. as the solution when can­
celling the former decisions. i.e .. \vhen cancelling the former calculated
logic values.

TEST G.4LCc·L.4TIOS OF CO~rpLEX DIGlT.4L CIRCUITS 255

s.s. Behavioural (Punctional) Faults

This type of fault is related to a logic module j\;I; for which the faulty
behaviour is to be previously defined by the user. The definition can be
made by means of a high level HDL (e.g .. VHDL), where the faulty output
responses are gi"ven explicitly, at the presence of the faultless input signals or
the faultless input sequence obtained by AI;. In our case, only single-module
faults will be handled at a time.

The initial values to be justified are:

Zj = 0/3

for a selected pnmary output. where

o E 1i, 13 E 1/- and 0 =I- ,13 1

and the input/output signals of !H; in the normal domain. as well as the
faulty output signals of IvIi in the faulty domain.

S.4. Switch Level Faults

The fault model of MOS circuits includes stuck-at-1/0 logic faults on the
connecting lines, and switch faults in the transistors: stuck open (the tran­
sistor is erroneously in an open circuit state), and stuck short (the transistor
is erroneously in a short circuit state). The paper [7] describes a procedure
to convert a transistor structure into an equivalent logic gate structure. In
this way the transistor faults can be converted to stuck faults in the logic
structure. All this makes it possible to use composite justification for single
and multiple faults in :\10S circuits, without any modifications.

On the other hand, it is also possible to apply the direct sv;itch level
(transistor) structure when performing composite justification. Here the
initial settings are:

Zj = a/ f3

for a selected primary output, where a =I- ,B.
The possible values for a and f3 are logic 0 and 1, as well as high

impedance state (Z). Furthermore, the faulty transistors are to be JI1 their
faulty state (open or short) in the faulty domain.

In this approach line justification involves the tracing back of the pos­
sible switching paths through the transistors in the circuit. The detailed
description of the algorithm exceeds the frames of this paper.

256 J. SZIRA Y

4. Concluding Remarks

This paper has been meant for showing how the test calculation algorithm
first published in [5] can be generalized for a wide range of fault models
and circuit models. The flexibility of the composite justification is based
on the fact that it establishes the minimal necessary and sufficient set of
logic values which yield the test conditions for the faults. As seen, the tests
are obtained by justifying the initial logic conditions. The salient advantage
of composite justification is the total absence of the fault propagation
phase. This feature makes the approach extremely flexible in terms of circuit
modelling and fault classes. The same applies to the use of an HDL [8], [9].
As known, the fault propagation phase. i.e .. D-propagation is an inherent
part of the \vide-spread D-algorithm [3] [4], \vhere this phase implies serious
difficulties for functional level models and multiple faults.

The test generation algorithm called PODE?vI (Path-Oriented DEci­
sion Making) [11], [12] was shown to be more efficient than the D-algorithm.
The improvement is related to the decision tree of the line justification,
in that the PODE?vI algorithm has indeed succeeded in reducing the oc­
currences of backtraces, in comparison with the D-algorithm. In the D­
algorithm, since the assignment of values is allowed to internal lines, more
than one choice is available at each internal line or gate, and backtracking
could occur at each gate. In contrast. the PODElvI algorithm allows assign­
ing values only to primary inputs. The values assigned to primary inputs
are then propagated toward internal lines by the logic implication. Thus, in
this approach, backtracking can occur only at the primary inputs.

The results achieved in the PODE)'! algorithm can be further im­
proved, since there still remained many possibilities of reducing the number
of backtracks in the algorithm. Such an improvement has been the FA:\,
algorithm [13], [14]. The fanout-oriented test-generation algorithm FA:i
traces out the structure of the network. in order to find the nonexistence of
the solution as soon as possible. Also. logic implication is widely involved
in the procedure.

On the other hand. the acceleration results in the PODE::vr and FA:i
algorithms are relied on the use of the gate-level ner-work structure [12].
However, if functional level modelling is considered then the structural and
logic analyses performed in both algorithms become extremely cumbersome
and hardly feasible. In contrast. the approaches based on composite justi­
fication are not really limited by the way of network modelling. The same
is applied to the network types. i.e .. combinational or sequential. and also.
the types and multiplicity of the faults.

As far as the computer implementation is concerned. only line justi­
fication is to be accomplished in the presented principle, which is also an
advantage. In order to perform the line-value justification. the inverse
models of the building elements in the network are required. An inverse

TEST C.4LCUL.4TION OF COMPLEX DIGITAL CIRCUITS 257

model defines the set of possible input patterns which result in a specific
state or an output pattern [8], [lOJ. For this purpose, high level hardware­
description languages, such as VHDL, can also be applied [9J.

The computerized implementation of the proposed principle will handle
multi-valued logic, \vhere the number of logic values corresponds to the
number of the possible signal values in the HDL applied for modelling [8], [9J.

The complexity of a logic module is not limited in principle. Only
practical trade-offs, such as processing time, and user efforts in terms of
modelling accuracy are to be considered.

Acknow ledgement

The author \vishes to thank Dr. Andnis Pataricza for his valuable advice in prepar­
ing the present paper.

References

[lJ NAVABI, Z.: VHDL: Analysis and ~lodeling of Digital Systems, McGraw-Hill, Inc.,
USA,1993.

[2J UBAR, R.: Test Generation for Digital Systems Based on Alternative Graphs, De­
pendable Computing - EDCC-1 (Ed. by D. Echtle, D. Hammer and D. Powell), pp.
1.51-164, Springer-Verlag, Berlin, 1994.

[3J ROTH, J. P.: Diagnosis of Automata Failures: a Calculation and a Method. IBM
Journal of Research and Development, Vol. 10, pp. 278-291, July 1966.

[4J BREUER, M. A. - FRIED:VIAN, A. D.: Diagnosis and Reliable Design of Digital
Systems, Computer Science Press. USA, 1976.

[.5J SZIRAY, .1.: Test Calculation for Logic Networks by Composite Justification. Digital
Processes, Vol. .5, No. 1-2. pp. 3-1.5, 1979.

[6J SZIRAY. J.: Functional Le\'el Test Calculation and Fault Simulation for Logic Net­
works, Discrete Simulation and Related Fields (Ed. by A. Javor), pp. 223-234. North­
Holland Publishing Company, Amsterdam, 1982.

[7J JAIN. S. K. - AGRAWAL, V. D.: .\lodeling and Test Generation Algorithms for .\1OS
Circuits, IEEE Trans. on Computers, Vol. C-34, pp. 426-433, '\Iay 198.5.

[8] SZIRAY, .J. - NAGY. Zs.: OPART: A Hardware-Description Language for Test Gen­
eration, Microprocessing and .\Iicroprogramming. (Ed. by P. Nunez), pp . .52.5--530.
North-Holland Publishing Companv. Amsterdam. 1991.

[9] SALLAY. B. TILLY. I<. .. - PAT.'\RICZA. A. . CSERT.~N, G. - HEGEDl's. Z. -
PETRI. A. - SURJ . .\.;\', L. SZIRAY, J.: A Proposed VHDL Subset for Test Gen­
eration Purposes, Technical Report FUTEG-1/1994, PECO 9624 Project. Budapest.
1994.

[10] BREUER, M. A. - FRIEDMA;\', A. D.: Functional Level Primitives in Test Generation.
IEEE Trans. on Computers, Vo!. C-29, pp. 223-23.5, March 1980.

[11] GOEL, P.: An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits, IEEE Trans. on Computers, Vol. C-:30, pp. 21.5-222, March 1981.

[12] ABRA:VlOVICI, M. - BREUER, M. A. FRIEDMAN, A. D.: Digital Systems Testing
and Testable Desicrn, Computer Science Press, USA, 1990.

[13J FUJIWARA, H. S'HIMONO T.: On the Acceleration of Test Generation Algorithms.
IEEE Trans. on Computers, Vol. C-32, pp. 11:37-1144, December 1983.

[14J FUJIWARA, H.: Logic Testing and Design for Testability, The MIT Press, USA. 198.5.

