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Abstract 

The present article concentrates on the dogleg-free l'vIanhattan model where horizontal 
and vertical wire segments are positioned on different sides of the board and each net 
(wire) has at most one horizontal segment. Gallai's classical result on interval packing 
can be applied in VLS1 routing to find, in linear time, a minimum-width dogleg-free 
routing in the \Ianhattan model, provided that all the terminals are on one side of a 
rectangular (single-row routing). \:Ye deal with the gener?-lization of this routing problem 
when we have the possibility to select another terminal from a corresponding set instead 
of a terminal to be connected. It will be shown that in this case there is no hope to find 
a polynomial algorithm because this problem is :\'P-complete. The results on dogleg-free 
\lanhattan routing can be connected with other application areas related to colouring of 
interval graphs. 

In this paper the alternative inten'al placement problem will be defined. \Ye show 
that this problem is :\P-complete. This implies the :\P-completeness of the single-row 
routing problem with alternative terminals. 

Keywords: VLSI. single-row routing. :\P-completeness. 

1. Introduction 

The single-I'm\' roU[ing problem is one of the simplest probleI1lb in VLSI 
routing. The description of this problem is the following. Given a channel 
with length n and width (c. The single-row routing is a special case of 
the channel routing when the terminals appear only on one side of the 
channel. A net is a collection of terminals. A channel routing problem 
is a set of pairwise disjoint nets. The solution of a routing problem is a 
set of subgraphs (\vires) where each subgraph connects all the terminals of 
the corresponding net under the conditions of the wiring model. In the 
:'IIanhattan model horizontal and vertical wire segments are positioned on 
different sides of the board. 

lThis work was supported by the Hungarian :\'ational Foundation for Scientific Re­
search (Grant :\0. OTEA T 017181) 
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LENGAUER (1990) presents a detailed exposition of the routing m the 
Manhattan model. The minimum width lvIanhattan single-ro\v routing is 
polynomial (GALLAI, 1958; see also RECSKL 1992). 

Now a generalization of the minimum \\'idth :\Ianhattan single-row 
routing will be investigated. It is typical in practice that some terminals are 
functionally eq'lLivalent, i.e. it does not matter 'which of them is contained by 
a net. The functionally equivalent terminals form functional classes. If no 
other terminal is functionally equivalent with a terminal then this terminal 
is the only member of its class. These terminals are called fixed terminals and 
the others alternative terminals. In this case a net is a collection of classes of 
terminals. A class may belong to more than one net. The routing problem 
with alternative terminals is to choose one terminal from each class of each 
net in such a way that each terminal is contained by at most one resultant net 
and the problem instance specified by the new nets can be routed optimally. 
Such a routing with alternative terminals can be regarded as a restricted 
version of the pin assignment problem (LE:\GAl'ER. 1990. pp. 364-366). 

Some other forms of the pin assignment problem have already been 
proved to be _V"P-complete (,..\TALLAH and H.·\\IBRl'SCH. 1981: CAI and 
\No:\G, 1991). \Ye investigate the internll placement at first and introduce 
the alternative interval placement problem. \\'e show that this problem 
is A'P-complete. This result implies the ,\"P-completeness of the routing 
problem with alternative terminals in one of the simplest cases. in the single­
ro\\' routing with minimulll wiclth in the :\Ianhattau model. This result holds 
even if a functional class has at most two members. a net contains at most 
one class with two members and a claC's helongs only to one net. 

2. Alternative Interval Placement 

Problem Given a finite set of intervals on a line. u.' rows and a set of disjoint 
pairs of rlw imcrvab. If an interval does not belong to any pair then it has 
to be placed into (Jlle of the rows. However. only one member of each pair 
ha:- to he placed into one of the rows. T\\'o intervals can be placed into the 
same row if and only if they have no common point. Can the intervals be 
placed uncler the prescribed conditions? 

Example Fig. la shows an example of the alternative interval place­
ment. The intervals belonging to the same pair are marked with the same 
letter. Fig. 1/) d('pict~ the solution with minimum width (i.e. with the min­
imllIll nu III b Cl' ()f the rows). Fig. 1 c and Fig. 1 d illustrate the same problem 
instance \l~i!lg another notation where a rectangle represents an interval. 

Definitions An interval is single if it does not belong to any pair. A 
choice is a set of the intervals containing each single interval and exactly 
one interval from each pair. 
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Fig. 1. Example of the alternative interval placement problem. (a) The problem 
instance. (b) Its solution. (c) The rectangular representation for the prob­
lem instance. (d) The rectangular representation for the solution 

3. Construction 

We shall reduce 3SAT to this problem. "Ve show how to construct an in­
stance of the alternative interval placement problem that can be realized in 
two rows if and only if the original instance of 3SAT is satisfiable. 

3.1. Variable 

An interval paIr corresponds to each variable. They will be referred to 
as va1'iable pairs. No two intervals in such pairs overlap each other. One 
interval in a pair corresponds to true and the other to false. 

Another interval pair corresponds to each occurrence of each variable. 
They will be referred to as literal pairs. (An occurrence of a variable to­
gether \vith possible negation is called literal.) One member of such a literal 
pair is located between the boundaries of the member of the variable pair 
corresponding to true if the occurrence of the variable is negated, othenvise 
it is between the boundaries of the member of the variable pair correspond­
ing to false. None of the members of literal pairs among the variable pairs 
overlap each other. 

In Fig. 2, occurrences of variables are marked with a letter and the 
corresponding literal pairs are marked with the same letter. In addition. 
there is a single interval which overlaps each interval belonging to variables. 
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clause I clause2- clause) 

A E U B D (' F 11 

!2. !2. !2. 
" " ~ B; fJ. 
" " r. False Tme False True False Tmt.! '" w 

A B C :r:j 
f---i f---i f---i f---i 

E D F A B 
f---i f---i f---i f---i f---i 

G I H 

:1:2 :f"2 .f:l .f:l 
f--.J (- ; c-- ii-) 

D E F G H I 
~ f--1 f- ._-) (.- ---1 f----1 f--- -, 

f---i f---i f---i \-( --------------.--, 

(a) 

(b) 
Fig. 2. The problem instance belonging to the formula (.cl VX2 V 1'3 )/\(X1 V:C2 VX3) /\ 

(Xl V X2 V X3) (a) Interval representation. (b) Rectangular representation 

3.2. Clause 

The intervals belonging to clauses are separated from the intervals belonging 
to variables. Three intervals belong to each clause. They are the cla'use 
triplets. The members of the same clause triplet overlap each other but 
members of different clause triplets don't. The members of the clause triplet 
are the other members of the literal pairs already mentioned in Section 3.1 
and, if less than three variables occur in the clause. single intervals. The 
members of the literal pairs in the clause triplet correspond to the variables 
occurring in the clause. 

The line containing the intervals can be divided into variable and clause 
sections. The variable section contains the variable pairs and the cla'use 
section contains the clause triplets. 

Figs. 2, 3 and 4 present instances of the alternative interval placement 
problem corresponding to Boolean formulas. 

3.3. The Proof of the XP -Completeness 

Theorem 1 The alternative interval placement problem is X'P -complete. 
Each instance of 3SAT can be translated into an instance of the alter­

native interval placement problem in polynomial time. \Ve prove that the 
instance of the alternative interval placement problem can be realized in 
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Fig. 3. The solution of the problem instance depicted in Fig. 2. (a) Interval rep-
resentation. (b) Rectangular representation 

t\VO rows if and only if the original instance of 3SAT is satisfiable. By Gal­
lai's theorem (G .. ULAl. 1958: see also RECSKI. 1992). the minimum width 
is equal to the maximum density. In case of the alternative interval place­
ment problem, the density of a point of the line containing the intervals is 
the number of chosen intervals covering the point. lsing Gallai's theorem 
and the definition of the choice, the previous theorem can be formulated as 
follows. 

Lemma 1 The instance of the alternative interval placement problem 
has a choice 'With maxim'lIm density 2 if and only if the original instance of 
3SAT is satisfiable. 

Proof: (if) Pick any truth assignment that satisfies the formula. 
Choose the member corresponding to the truth assignment from each vari­
able pair. Choose the member in the variable section from each literal pair 
if it is not overlapped by an already chosen variable interval. Otherwise. 
choose the member in the clause section. In this case if a literal is true then 
the member on the variable section is chosen. otherwise the member on the 
clause section. Thus. there is no point covered simultaneously by a member 
of a variable and a member of a literal pair. Hence at most one interval 
covers each point on the variable section beside the single interval covering 
the \vhole variable section. 

If the Boolean formula is satisfiable then at most two literals are false 
from each clause. Hence. at most two literal intervals are chosen from each 
clause triplet. Thus. the maximum density is two on the clause section as 
well. 

(only if) There is a choice where width 2 is enough for placing the inter­
vals. Let a variable be true if the interval corresponding to true is chosen 
from the variable pair and be false if the interval corresponding to false 
is chosen. ~o literal interval overlapped by a selected variable interval is 
chosen, otherwise two rows would not be enough. For this reason. the other 
member of the literal pair is chosen which is on the clause section. Because of 
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A B D ~ ~ ~ 
f----l f----l f----l f----l f----l f--) 

CAB C D E F 
f----lf----lf----lf----lf----lf----lf----lf----lf----lf----l 

f----l f----l f----l f-( ------__ _ 

(a) 

A B D F :1:1 :1:1 TIT . '21 '2 :I::J .I:;! 
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E 

(b) 
Fig. 4. The problem instance belonging to the formula (X'1 V X2 V X'3) 1\ XI 1\ X2 1\ X3 

(a) Interval representation. (b) Rectangular representation 

the construction. these literals are the false ones under the truth assignment. 
Since two rows are enough, at most two literal intervals are chosen from each 
clause triplet. Hence at most two literals can be false in each clause and so 
at least one is true. Thus the entire formula is satisfied. D 

4. Single-row Routing Problem Allowing Alternative Terminals 
is .\'P-Complete 

:'Iow we return to the alternative ~illgle-row routing problem in the '\lan11at­
tan model. In a restricted version of the ,\lanhanan routing each wire could 
occupy only one horizoIlt al row (rrackl. Thi:" model is called the 
Jvlanhattan mudel. If dogleg., are permitted then wires can sv;itch from olle 

row to another. \\-e remark that in the single-row routing. a problem in­
stance can he soh'eel ll.~ing the :"ame v;idth in the dogleg-free :\lanhatran 
model as if doglegs are permitted. For this reason. these two 'l'ariams of th(' 
'\Ianhattan model need Ilot he distinguished and we may assume that each 
,,-ire has only one horizuntal .~cgllleJlt. The soh'ability is trivial because any 
problem iIlstance can iH' soh'cel in this model if the width is large enough. 
The interesting problem is to find the minimum width. \Ye use the deci­
sion version of this optimiza tion prohlem which is to decide whether the 
specification can be realized \\'ith width le. 

Theorenl 2 The single-row f'Ulltingwith minimum width and alterna­
tive terminals is .\/P -camp/de in the lvlanhattall model. 

\Ye reduce the alternatin' inten-al placement problem to this problem. 
Each instance of the alternati"e inten-al placement can be transformed into 
an instance of the single-row routing \vith minimum width and alternative 
terminals as follows: 
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Fig. 5. Conversion of alternative nets into alternative terminals. (a) The original 
alternative net pair. (b) Its conversion into nets with alternative terminals 

Step 1. Modify the interval lengths in such a way that the intervals 
remain overlapping the same intervals, all intervals become closed and no 
two intervals have a common boundary. Assign terminals to the boundaries 
of the closed intervals. Thus, the set of intervals is converted into the set of 
two-terminal nets and the alternative interval placement problem is reduced 
to the variant of the single-row routing in the dogleg-free Manhattan model 
which allo,,;s alternative nets. \Ve have already proved that the alternative 
interval placement problem is j'/P -complete, hence the single-row routing 
with minimum width and alternative nets is ;'/P-complete in the YIanhattan 
model. This is true even if the width is 2. 

Step 2. ?\ow we reduce the routing problem with alternative nets to 
the routing problem with alrernative terminals. Insert new terminals and 
replace each alternati\-e net by a net with an alternative terminal pair and 
nvo nets withour alternati\-e terminals. as shown in Fig. 5. The effect of 
(ille such replacement is that the density of each vertical line is increased 
by olle. If there are I alterllCitino nets then the original problem instance 
with aiternati\-e nets can be routed using lC tracks if and only if the new one 
v.-ith altern(lti\-e termillab call he routed using lC + I tracks. For this reason. 
the ~ingle-row ront with minimum width and alternative terminals is 
.\'P-complete in the :\lanhattan model. ?\otice that although the routing 
problem with alternatiH' nets is .\'P-complete even if the width is fixed, the 
width does not remain fixed when it is converted into the routing problem 
·with alternative terminals. 

5. Conclusions 

In this paper we introduced the alternative interval placement problem and 
prond that it is XP-complete. that is computationally difficult. This result 
could be applied to other problems. \\'e proved that the routing problem 
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with alternative terminals or nets is lVP -complete even in one of the simplest 
cases in the sin,gle-rmv routing in the Manhattan model. 
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