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Abstract 

In this paper we describe and analyze an application specific speed and flux estimation 
method of induction motors. The technique utilizes the mechanical equation of the drive, 
assuming a certain load torque characteristic. The goal is to extend the stable operat
ing range towards the low speeds. The stability and the steady state performance of 
the method is investigated numerically and by simulation. The dynamic performance is 
verified by experiments and simulation. 

Keywords: asynchronous drive. sensorless control, speed estimation, flux estimation, field 
oriented contro!' 

1. Introduction 

1.1. General Descripti?7l 

Today. cancelling the speed sensor became almost a base requirement for the 
wctor controlled induction drives. The obvious merit is the reduced costs 
regarding the speed sensor and the cables. The maintaining and repairing 
costs are also smaller. It effects the reliability and robustness of the dri\·e. 
so the fields where it can be applied is also wideni:J.g. 

On the other hand to realize field oriented control it is necessary to 
identify the rotor flux of the machine, which is quite problematic without 
speed sensor. At high speeds the well known identification methods [1], [2] 
\vork welL but in the range of low velocities their performance declines. 

1.2. Limits of the Known Identification Struci1lres 

Let us assume, that we used a simplified modell for the iduction machine, 
where the parameters of machine are transformed in such a manner, that 
the transformed rotor part of the leakage inductance is zero. VVe used the 
transformed parameters and quantities in the following \vithout any notice. 



288 I. V:4.RJASI and G. V:4.RGA 

-la.-----~------~------~----~------~ 

-15 /\ 
-za ~\ ! \ 

\ 
/ \ 

I \ 

-25 / \ 

::\ jl \~ 
-<a \ / 

. /~ 
-<5 \ / 

~ -58 

-ss e'---------5~B------~,B-,.B ------,S--,B-------:2~BB,---------'2SB 

torque [% 1 

Fig. 1. The real part of the first eigenvalue 

A possible way to determine the rotor flux vector in the stationary 
coordinate system is simply to integrate the induced voltage computed from 
the stator side: 

(1) 

Because of the open loop integration, any offset in the measured quantities 
causes a cumulative flux error. \Ve can have a low pass element instead 
of the integrator. but then the estimation would be inaccurate in the low 
frequencies. The low frequency operating range is critical from other aspects 
too. \Vhen the frequency is low, the voltage amplitude is also smalL In this 
case the real and calculated voltage drops can differ considerably because 
of the uncertain knowledge of motor parameters. Moreover in most of the 
applications it is assumed that the \'oltage of the motor is unambiguously 
determined by the pulse width. So this reference voltage signal is used 
instead of the measured phase values. This also causes an error because 
of the dead time, the voltage drop of the switching devices and the ripple 
of the DC voltage. Such an estimator can estimate the speed by the rotor 
voltage equation. 

The other possibility is to calculate the flux from the rotor side [3] 
through a first order element. where the input IS the stator current: 

t'r = J ( -~:: . Rs + j . ~ . t' r + is . Rr) dt . (2) 

where LT is the rotor inductance and we neglect the effect of saturation on 
its change. Because the rotor equation involves the rotation. ,ve must use 
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the stator side quantities to estimate the speed, which is then used again in 
the calculation of the flux. So the problems raised by the stator equation 
also exist here. 

At the end the conventional estimators can do nothing at standstill 
when there is no load torque. At this point the supply voltage has zero 
frequency. The only measured quantity, the current is determined simply 
by the Ohm's law: is = ~:, and the stator and rotor totally disjoint. For 

that reason the machine's speed and flux are not observable. 

2. Estimation of the Rotor Flux and the Speed III the Proposed 
System 

The estimator is \vorking in the rotating, rotor flux-oriented coordinate sys
tem. 

In this model we use the rotor voltage equation to calculate the mag
nitude of the flux on the basis of the d current and the magnetizing current: 

The magnetizing curve IS approximated by the following expression: 

;. 'lj'r ~)r -

( 
- ( - ) PO) 

Im = Imn' PI' -,-+ (I-PI)' -.. -
~n ~n 

vVe get the angular velocity by utilizing the mechanical equation: 

\vhere the torque IS: 

I 
- . (m - I"n/oad) , 
J 

1.5 . P . 4'r . 1q . 

(3) 

(4) 

(.5 ) 

(6 ) 

The angle position of the flux is necessary for the transformation of the 
currents from standing to field coordinates and its derivative is calculated 
by the sum of the mechanical speed and the slip angular frequency: 

dp _ 
Tt = Ws ==~. + (i) 

The transformation of the current vector is the following: £d,q = lx.y . e-J-i
j 

What this method requires -differently form the other known concepts
is the knowledge of the inertia and the load torque. The inertia can be mea
sured, but the load torque is usually treated as a disturbance and unknown 
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signal. However. in several applications such as machine tools. the load 
torque is well determi'ned at low stator frequency or at standstill. In this 
range the torque-speed characteristics of these machines are very close to 
zero, hence neglecting the load-torque they provide a good approximation. 

It is obvious that the knowledge of the stator parameters and the statal' 
voltage is unnecessary, so the errors that originate from the stator voltage 
equation are eliminated. 

3. Stability of the Identification 

The small sign stability can be studied from the state-space model of small 
dev ia t ions. 

Let us introduce the following small deviations: 

w"-w". :'::'(J p- Pm" :'::'m 10CId mload !illoCId. (8) 

\Ye intend to find Cl model: 

d r~. ~.~. l 
elf _ 0.(i J 

+ b· 0.l71lo([cl . 191 

If tll(' n'ai part of ,he ('igeI!value~ of the matrix A is negative than the 
~~·~te!ll i~ ~tahl(· for "lllall ('ha!ll;e~. 

From ill(' i :31, t.) I, 'I t differellti,tl (,<!llatl()ll~ ,ye can derive the model 
C(', 

th, FllLC Ampiitudc 

Re\YritiIl~ \:3; "'-"'::ilL rhe :--llh~rirllriol1 of ill(- :--:lEhll d('yiatioIl;--; (111(1 COIllparlllg 

\":ith ('3 j OIle ('(tll L::{'i: 

del' 0.1. 
0.i m )J . RI' ' 

df 
tlrll 

d:'::'i.'r . . --- = !0.lcl - 0.lml' RI' 
cif 

(lli 

\\'e must express thc dcviation of the magnetizing Cllrrent !1l the term of the 
flux deviation. Taking the 12) expreSSlOn: 

( 1 (12 ) 
L'" 
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If we approximate the second term with the first two elements of the Ta;ylor 

serIes: f (.r - ~:r) ;:::;:; f (:r) - ~:r . d~~x). we get 

(

0:'1' - ~L'r)P2 ;:::;:; 
L'n 

~VT' 
--'P2' 

Un 
( l'r)' P2- 1 . 

0:' ,n 

Substituting this into (12) 

im - ~im = imn · (PI' G'r + (1- PI)' (c'r )P2 
L'n L'n 

~ C' r ~ L' I' ( LL,,',,',',r

1 

) P2 -1) -PI' -'- - (1 - Pll ' -. -. P2 . 
Un Un 

and comparing this with (4) it is seen that 

~i771 
, ( ~L'r 
I m71 ' Pl' -- + (1 

U 71 

~L'r (LI~.',r2 )P2-
1

) . PI)' --. P2' 
L'n 

(13) 

(14) 

(15 ) 

The deviations of the d current component exist on the right hand side of the 
(11) equation. Therefore we should find an approximation for this, which 
must be a function only of the small changes. 

As we previously stated: i""y' .p = id.f!' Forming the real and imag-
inary part of the expression with the similar substitution as above yields: 

(i",+j·iy)·(cos(p ~p) j·sin(p-~p)) 

If the de\"iations are really small then cos(~p);:::;:; 1. sin(~p);:::;:; ~p. the above 
expression becomes the following: 

ix "cos(p) + iy . sin(p) (i x· . sin (p ) iy " cos(pj! . ~p+ 

+jii y " cos(p) - ix 'sin(p) + (i y " sin(p) + Ix' cos(p)) . ~pj (ll! 

id - iq . ~p + j . (iq ..L Id' ~P! 

Combining (16) and (1I!: 

(IS) 

So the change of the current components can be expressed by the change of 
the fiux angle. and the change of the fiux amplitude i;: then: 

dt 

( ( ,1,n12 L'r I,iq . ~p - -- . ~cr . I Pl + (1 - Pll . P2 " I 
\ C'n \ \ C'" 

P2 1\\ 

)) "Rr . 

(19 ) 
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S.2. Small Deviations of the Velocity 

using (5) and (6): 

d(w - ~w) 1 _ . .' . 
dt = J' (l.o· p. (Ell' - ~Wl')(lq - ~lq) (m/oad - L::.m/oad)) :::::: 

1 :::::: J' (1.5· p. (li.'l' . iq - ~E'l' . iq - lJ)l' . ~iq) - (m/oad - ~m/oad)) (20) 

neglecting the product of the deviations. 
From this and (5): 

Taking (18): 

d",· 

dt 

dt 

1 
-·(1.5,P·1::-·iq m/oad)· 
J 

1 
-. (1.5· p. C" iq - m/oCld). 
J 

S.S. Small Deviations of the Flux Angle 

The same way as before: 

Because 

that is with (18) 

dip - ~p) 

dt 

dp 
-= L::.",,' 
cIt 

I , 
1;'r T 

. the result 

RI' 
L::.i q -.-

le I' 

dp id . R,. . Iq' RI' 
- = L::.",,' - L::.pw--,- - L::.v"--.2-' 
cIt l,. c,. 

(21 ) 

(22) 

(23) 

(24) 

(25) 

:\ow \ve can form the state-space model of the system for small de\'iations 
from (19). (22) and (25): 

r 

i ne n . (PI + (1 (' y"-I) 

1 

Pll . P2 . .!:..I:. .R 0 iq·R,. 
ti'n I;'n r 

l.5·P·ia 0 1.5·P·L·r ·id X (26) 
--J-' J 

iq ·Rc 1 _ id·Rr --,,-
v- L·,· ,. 
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Notice that the A matrix does not contain the speed, so the stability of the 
system does not depend on it. 

In a given operating (steady state) point, which is given by 1/J,m,U: the 
values in the matrix (from (3), (4) and (6)): 

( ( 
l!J )P2) 

id = im = imn · PI' -',- + (1 - pll· -:-
1/-'n If-'n 

m 
(27) Iq = 

1..5 . P . 1/Jr 

hence the A matrix is available. 
In the system matrix there are two parameters: the flux and the torque. 

\Ve presume (' = L're!, which is set by the flux regulator below the field 
weakening range. Then stability can be studied by varying the torque. In 
Fig. 1. 2 and 3. the real parts of the eigenvalues of A in the function of the 
torque can be seen. The figures and the calculations were performed by a 
?vIATLAB program. It can be stated that over a certain torque the identifi
cation becomes unstable while the real component of the third eigenvalue is 
positive. With our motor this torque limit \\'as 225o/c of the nominal torque. 

Rea I Cc i gcnvilluc_2) 

-1B~~~~------__ ------r-------------, 

-15 

-2a 

Torque [~l 

Fig. 2. The real part of the second eigenvalue 

4. Stationer Condition 

:\ow let us investigate the steady state errors in stationer condition in case 
of a load torque estimation error, so T11load oF mload. If we assume that 
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From (9) for small deviations of m/oad: 

1 o = -A . b . 2:,.Tn/ oa J . 

\Ye normalize the different errors: 

deyiation:" are seen in Fig. 4. !J. 6. 

"':"p 
"':";n . Ill" 

(28) 

180 these 

As \\'e can see at Fig. 4. the amplitude of the estimated rotor nux b 

not highly affected by tl1P deyiation of load-torque \yheIl the load is small. 
For example at a load of 20Vr of the rated torque and in case of 1 '1i torque 
deviation is or the rated torque. the error of the estimated amplitude of the 
rotor flux will be as small as 0.04Si(. 

As we can see at Fig. !J. the deviation or load-torque has not significant 
effect on the estimated speed when the load is small. For example at a load 
of 20Si( of the rated torque and the torque cleviatic)ll is 
torque. the error or the estimated speed is 0.0-13S'; 

of the rated 

As we can see at Fig. 6. the phase of the estimated rotor nux is not 
highly affected by the deyiatlOn of load-torque when the load is small. Fm 
example at a load or 20'IC of the rated torque the torque deyiation is 1'IC or 
the rated torque. the error of the rotor flux phase will be 0041 0 
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Fig. 6. The steady state error of the flux angle 

5. Transient Behaviour 

5.1. Estimations for Small Deviations 

It is still not enough to investigate the proposed identification from the 
point of view of small signal stability, since in the most of applications there 
are large steps in the speed reference. VVhen there is high acceleration or 
deceleration, two new problems of the identification will arise. 

As it was shown in Chapter 3, the stability depends on the motor 
torque at the working point. As the torque is higher so the stability is 
worse. and at acceleration the static and dynamic load will be added. the 
stability will not be as good as it was estimated in Chapter 3. 

Theoretically the identification will be unstable, when sum of the static 
and dynamic torque 

d",' 
m = m/oad + J * -

dt 
(29) 

will reach a value. where the real component of one of the eigenvalues of A. is 
positive (See Fig. S). In practice for small positive eigenvalue (comparing to 
lithe duration of acceleration) the deviations of the identified state-variables 
at the end of the acceleration can roughly be estimated as 

(30) 
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where .6.x is the amplitude of the deviation in the direction of x eigenvector. 
.6.xo is its initial value at the start of the acceleration, ,\ is the eigenvalue 
belonging to x, Taee is the duration of the acceleration. 

An other problem arises at high acceleration or deceleration because 
of the uncertainty of the.] inertia. In this case the deviation of the motor
torque is 

Wace 
.6.m = -- . .6.,] . 

Taee 
(31) 

where Waee is the change of the mechanical speed during Taec. From this the 
resulted speed and flux deviations can be estimated according to Chapter 4. 

5.2. Transient Sim'ulation 

We have developed a transient simulator to check the results of the analytical 
estimations of the chapters above, and investigate the dynamic behaviour 
of the identification for large steps and large deviations. The transient sim
ulator was written in the C language and utilise the method of 4th order 
Runge-Kutta. Its output is a data file. \vhich is compatible with the eval
uation version of PSPICE, allowing detailed investigation of the resulted 
time-functions. 

First we checked the analytical results of the stability analysis in Chap
ter 2. For this we used a model of an induction motor powered by un
regulated symmetrical sinusoidal 3 phase voltage. The flow-chart of the 
identification can be seen at Fig. 7. 

Finally we checked the dynamic behaviour of a complete control sys
tem. including the motor. the flux and speed identification and an indirect 
field-oriented controller. The flow-chart of the field-oriented current con
troller can be seen at Fig. 9. 

As it can be seen in the flow-chart. we used only proportional con
troller. In spite of the lack of the integrator the current deviations a kept 
smalL since we used feed-fol"\Yard compensation from the estimated stator 
voltages valid for a working point: 

uhd Ws * is * iqJef 

(32) 

uhq ,,-'s * w + Rs * iqJe! + lL's * ls * idJe! 

Since the proposed method is going to be used especially in the low speed 
range, ,ve did not deal with field-weakening. so the reference of the flux 
is constant. 

For the sake of the easy implementation we used a proportional flux 
controller, but to avoid large flux deviation we used also current feed-forward 
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See equ. (-I) 

i. 

Fig. 7. Identification of rotor-flux. After the damping of the initial transients the 
identification was started with a small deviation in p. \Ye found the stability 
border at a load equal 2259[ of the rated torque at rated rotor flux.. A. 
little increase in torque caused instability as can be seen at Fig. 8. where 
the load was 230o/c (the plots are the flux amplitude error in the flux 
angle error in degrees. the speed reference. the real and the estimated speed 
[rad/sec]). 

from the magnetizing current (Fig. 10). \Yith thi5 method at steady state 
the output of the flux-controller is near zero. 

The main purpose of the transient simulation was to check the dynamic 
behaviour of the identification at large steps in the speed reference. \Ye also 
checked the dynamic beha\·iour for some uncertainty of the.] inertia 

.-\.t Fig. 11 t11e:'(:' was 110 inertia deyiation. The time-functions of the 
state \"ariables are \·ery similar as if the controller were working with speecl
sensor. The result is 1lllrealistically good. In a real system there are always 
disturbances at the current sensors and deviations of the motor parameters. 
The system has a pretty large positive feedback during acceleration, so Cl 

little deviation of the identified variables \vould be multiplied for the end of 
the acceleration. 

\Ve have also checked the transient behaviour of the controller. when 
the inertia used in the identification was different from the inertia used in 
the motor model. 

In both cases the control system remained stable. although the esti
mated torque is roughly different from the real one. 
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Fig. 8. Instability abow the mentioned torque limit 

Fig. 9. Current control with voltage feed-forward and voltage-limitation 
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Fig. 10. Flux and speed control 
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Fig. 11. Transient behayiour of the identification using 10091'. inertia 

6. Experimental System 

The control system and identification was implemented on a 16 bit micro
controller. 

We used the uPD 78P368 controller from :\EC. which was designed 
directly to control three-phase inYerters. The main features of the chosen 
controller are: 

El built in three phase pulse-width modulator with dead-time generation. 

El a 10 bit A/D converter with 8/1 multiplexer. 
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Fig. 12. Transient behaviour of the identification using 80% inertia 

Os 025 o cs 
o . ~ ,", 

1 qref i q time 

Fig. 13. Transient behaviour of the identification using 150% inertia 

III a quick core with pipe-line structure (minimal instruction execution 
time is 188ns) 

III :2 kbyte internal RAYI can be used for time-critical programs. 
III asynchronous and synchronous serial lines. 
III macro facilities for data transfer without processor overhead. 
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Fig. 14. Transient behaviour of the identification at the experimental system 

(For other details see [5] and [6]) 
The time critical part of the software (including the identification, 

the flux. speed and current controllers) was programmed using assembly 
language. 

Almost every part runs in every -'lOOps. except for the speed and flux 
controller. which runs in every SOOps and 1600ps respectively and the P\-Y~1 
system \vhich runs in e\-ery lOOps. The flow-chart of the implemented system 
is equal to the system \\"as used for the transient simulation. 

The main circuit of the 1 k\Y im-erter was made by D-Tech GmbH. 
Germany. The 1 k\\- motor was made by Hanning Elekto\\-erke. Germany. 
The motor parameters can be found in the Appendix. 

The inn'rter needed a relatively large_ 2fts dead-time. which roughly 
disturbed the output voltage. An other difficulty raised because of the 
method of current sensing. The current \\-as measured by 100 mY shunt
resistors with a cOlllmon Illode \'oltage jumping up and down with about 
300\' /100ns. In spite of the effort that was made to filter out noises from 
the current signals it still contains about 10SiC white noise. 

In this environment we still could reach a stable. safe control system 
with a relatively quick response for speed reference steps. 

The signals in Fig. 14 were measured or estimated by the controller of 
the experimental system and was send through an RS232 serial line to an 
IB~I PC. \\"here the data were converted into a data file compatible with 
the evaluation version of SPICE_ 
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7. Conclusions 

We investigated the proposed method of identifying flux and speed both 
from the \'iewpoint of stability and the remaining errors. \Ve found that 
the method is useful in low speed domain, when there is no large static 
load torque. The stability could be improved, when the motor is somewhat 
overexcited. 

\Ye suggest using the proposed method in the low frequency range, 
where currently this is the only stable system in noisy environment. At 
higher frequency an other observer like method (such as suggested in [4]) 
should be used. The border of the method is approximately 10-309C of the 
nominal speed. depending on the circumstances as noises in current and 
voltage signals. uIlcertainty of the motor parameters used in the identifica
tion. 
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9. Appendix 

l\1otor Parameters 

..v'TI 

j-:J 

:2 * pi * 50.0 
l.0[ 1]. 
0.3:26[V 5] 

R._ 1.:236[S"l] 
RI 1.--!l1[S"l]. 
L._ 8.717e-3rHi. 

5]. (Rated motor frequency) 

1."1/ 0.:261[\'5]. (parameter of flux model) 
iT/m 3.0874[..1.]' (parameter of flux model) 

0.783:2[lJ. (parameter of flux model) 
p:2 ;3.0[1J. (parameter of flux model) 

J 0.0010'5[kgm 2], 
Ill" 3.:2[:\"m] (nominal torque) 
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p 
w 

m 

m/oad 
p 

Rr 

Rs 
Is 
J 
Pl·P2 

Nomenclature 

is the stator voltage vector 
is the stator current vector 
is the rotor flux vector 
is the real component of the stator current vector 
is the imaginary component of the stator current vector 
is the d component of the stator current vector 
is the q component of the stator current vector 
IS the magnetising current 
IS the magnitude of the rotor flux 
IS the angle of the rotor flux 
is the angular rotor velocity 
is the angular stator velocity 
is the electromagnetic torque 
is the load torque 
is the number of pole pairs 
is the reduced rotor resistance (so that the rotor leakage 
inductance is zero) 
is the stator resistance 
is the reduced stator leakage inductance 
is the moment of inertia 
are parameters of the magnetising curve 
denotes to the nominal values 
denotes to the estimated values 
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