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Abstract

Current trends in the development of design automation tools atin at a radical increase
in productivity by offering highly antomated design tools. As applications include even
critical control applications, dependability becames wu hmportant design Issue.

A novel approach supporting coucurrent diagnosiic engineering using a dataflow
behavioural description is presented in this paper. The basic idea of this new method
is the extension of the descriptions of the functional elements with the models of fault
effects and fault propagation at each level of the hardware-software codesign hierarchy,
thus allowing design for testability of digital computing systems.

Using the presented approacl test generation can be done concurrently with the
system design and not only in the back-end design plase as it had been done previously.
For test generation purposes the generalized forms of the well-known logic gate level test
design algorithms can be used.

Keywords: diagnostic design, testability, test generation. PODEM, dataflow., HW-5W
codesign.

1. Introduction

The advent of low-cost implementation techunologies of application specific
circuits opens new horizons for custom-tailored solutions. The availabil-
ity of low-cost. but highly complex off-thie-shelf programmable components
(PLDs) and ASIC technologies allows such a background for the use even
for small enterprises, and not ouly for the market leaders in state-of-the-art
technologies. like some five vears ago. Recent efforts aim at the reduction
of cost and time of the design tasks by developing integrated environments
for system engineering. These offer various tools for the computer archi-
tects and circuit designers based on a homogeneous tool-box and common
engineering database for the whole design process. An importaunt charac-
teristic of such tools is that activities performed earlier only after the final
engineering design are pushed forward iuto an early design phase, thus
allowing a radical shortening of the design-feedback loop. Practical expe-
riences show a 1:20 reduction in design tiwme, while the resulting hardware
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overhead due to the automated design is as low as 40%. Moreover, the use
of automated design technologies improves radically the product’s design
quality. Such a design approach is hardware-software codesign (Fig. I).
that denotes “the joint specification. design. and synthesis of mixed HW-
SW systems” (BORIELLO et al.. 1995).

A main insufficiency of these tools originates in the lack of an inte-
grated support for the follow-up phases of depeudability analysis. This
becomes crucial in safety related applications, like process control and au-
tomation. The avoidance of costly re-desigu cveles needs the pushing of
diagnostic design (test generation. testability analysis). into early phases
of system design as well. Iu (SIMPSON - SHEPPARD, 1994) a method is
presented for doing testability analysis as part of integrated diagnostics in
early design phases, but the problem of generating and designing of the
test set remains still unsolved.

The aim of our work 1s the development of a tool-hox for model-
based diagnostic aud dependability evaluation in the form of an extension
of the existing functional design tools. The basic models and technologies
developed are fully coherent with those used in the original tools in order
to keep the integrity of the design environment and avoiding unnecessary
model transformations.

The basic idea of the wethodology is as follows:

1. A svstem is modelled at the highest level of abstraction of the func-
tional design process usually by dataflow models (ScHoexn, 1992),
(BoNDAVALLI ~ SIMONCINI, 1993). Only the flow of data and the
processing-related delay times are modelled in the form of token Hows
without any description of the individual data transformation i the
compouerlits {Level 1 aud Level 2 wnenterpreied modolling in Fig. 1).
This phase aims primarily at performance analysis and optimization
and it is supported by formal analysis methods. e.g. on the basis of
automatic translations into Petrl nets.

2. More and more structural and tunctional details are added by stepwise
refinement into this imtial model. thus defining increasingly precisely
the system’s structure and the data processing functions of its com-
poneunts. (Level 3 mived uninterpreicd-interpreted modelling in Fig. 1.

3. Finally, when all component functions become fully defined (Level 4
interpreted modelling 1u Fig. 1), hardware-software separation can be
done and the antomatic or interactive hardware and software synthesis
processes can be started,

The presented approach is based on the idea of extending the datafiow
notation by incorporating faults and fault effects. This extended notation
will be used in the modelling phases of HW-SW codesigu, thus fault related
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Fig. 1. HW-SW codesign process

information can be gained concurrently with the system design by the eval-
unation of this composite model.

In uninterpreted modelling the tokens representing the data can be
marked either as correct or as erroneous. A superset of the fault propaga-
tion paths can be estimated by tracing their How from the fault site in the
network. Due to the simplifications all elements are assumed to propagate
potentially all fanlts, (no data dependencies are modelled) ouly necessary
conditions cau be estimated. but even this over-pessimistic result can still
be used for an effective control strategy in the test search procedures in
more detailed models.

Later, after introducing data depeundencies at the mixed and inter-
preted models costly heuristic or structural test generation algorithin must
be invoked for the final decisiou. However. the high-level dependability
analysis provides not only an mexpensive way for comparative analysis of
alternative constructs, but serves as a tool for test strategy desigu. In pre-
vious works (CSERTAN et al., 1994, CserTAN, 1994, CSERTAN et al., 1995)
and in this work it is shown that the following problewms can be solved using
the preseuted approach:

- fault stmulation

— test generation. fail-safe test generation

— estimation of optimal diagnostics strategies

- testability analysis for both built in and maintenance tests
— failure modes and effects analysis (FMEA).



28 iy OF

The paper is organized as follows: Section 2 introduces the modelling ap-
proach, and presents a simple system and its model as an example. In Sec-
tion 3 a representative of the family of test pattern generation algorithms
is presented. and a test is generated for the example. Finally. Section 5
contains conchuding remarks and a short overview of the future work.

2. The Modelling Approach
2.1 The Foult Model

Faults are mainly hardware related and usually modelled at a lower
level of abstraction. Therefore it is necessary to introduce an error model at
higher levels of abstraction. Since in uninterpreted modelling data depen-
dencies are nndefined. 1t has to express uncertainties due to the neglected
data dependencies. In the proposed approach a multi-valued fault model
is used iustead of the stuck-at ¢ate-level fault model. Tts advautage is the
high expressive power for the description: the quite complex functional
units can be described more precisely and various other requirements, like
safe testing. can be considered. A porential multi-valued fault model can be
defined: according to the black-hox modelling approach, component faults
are tdentified by the rongh. aud for the sake of the compactuess, simplified
classification of the resnles they deliver:

- 0k wessage denotes that the component delivered correct computa-
tional result

— inc message denotes that the component delivered incorrect data

- dead message will he sent. 1 the component. due to a fatal fault, does
not deliver results av all,

- X message 1s iused to express nucertainty, The correctuess of the result
depends o the actnal data values received by the compouent and on
the actual mplementation of the compouent (for a given data value
it wounld be ok. for another it would be 1nc).

2.2 The Dataflow Notation

The datatlow notation. proposed in (JONSSON. 1989). is well-suitable for
conceptual modelling of cowputing systems in the early design phases
(BONDAVALLI-SIMONCINI). for early validation of computing systems
(BERNARDESCHIL. 1993), and for performance evaluation (CSERTAN et al..
1994).

A dataflow network N is a set of nodes Py, which executes comncur-
rently and exchanges data over point-to-point communication channels Cy.
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The dataflow node represents the functional elements of the system. The
signal propagation attributes of an element are described by a simple re-
lation between inputs and outputs, eventually depending on the previous
state of the node. Note that as the correlation of the inputs and outputs
is described by this relation in a weaker formn than by an input-output
function. this behaviour can be also non-deterministic. The channels of
the dataflow network syvmbolize the interaction between the functional el-
ements of the system. Internal channels link two nodes. Input (output)
channels counect a single node to the outside world representing the pri-
mary inputs {outputs) of the svstem. Comnunication evenis occur when
data items (subsequently called tokens) are inserted into an input channel
(input event describing the arrival of some data to the primary inputs) or
data items are removed from an output chaunel (output event denoting the
appearance of results on a primary output of the system).

The functional beliaviour of a node p is defined by a set of firing rules
R;. 5, defines the set of possible states of the node. A node is ready to
execute as soou as the data reguired by one of its firing rules are available
and the node is in a proper state. The meaning of firing rule f € Rp.
denoted by f = (s. Xi. s', Xout) is that if the node p is in state s € S, each
of the input channels ¢ € I, holds at least X, (/) data items. then firing
rule f is potentially selected for execution. The execution of firing rule
f removes X, (¢) data items from each input chaunel ¢ € I, and outputs
Now(j) data items on each output channel j € O, while the node changes
its state from s to 5.

2.9 An Ezample

The selected example 1s very simple due to space limitation and cannot
introduce the full modelling power of the presented approach (refer to
CSERTAN, 1994). The system is an intelligent scales, that can calculate
the price of goods according to its weight and to the unit price. Modelling
is done at the highest level of abstraction (nuinterpreted modelling). The
fault model 15 restricted to single internal faults. that can be one of the
following:

- eq-more identifies the fault when a component delivers a result, which
is either equal to or larger than the correct one. Actually in our case
it is considered as a fault-free result.

- less is sent by a compounent if it delivers a result, that is less than
the correct one.

- dead denotes that a component does not deliver results ar all.

- X expresses the uncertainty when either ok/more or less could be sent.
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price_per_unit . from_price_in from_weight_sensor [ goods
price in 3 y weight sensor ?—-
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INTELLIGENT SCALES:
Py ={price in, weight_sensor, conlroller, display, arithmetic}
Cx;lprice_per_unit. from_price_in, from_weight_sensor, goods, to_display, to_arithmetic, from_arithmetic,
from_ctrl, price_out}

WEIGHT SENSOR: fl=(eq-more; goods=eq-more; eq-more; eq-more->from_weight)
I={goods} . {2=(eq-more; goods=less; eq-more; less->from_weight)
O={from_weight_sensor} 3=(eq-more; goods=dead; eq-more; X->from_weight)
S={eq-more , less, dead) fd=(eq-more; goods=x; eq-more; X->from_weight)

R={f] ... {3} f3=(less; goods=eq-more; less; less->from_weight)

f6=(less; goods=less; less; less->from_weight)
{7=(ess; goods=dead; less; less->from_weight)
f8=(less: goods=x; less; less->from_weight)

Fig. 2. Data flow model of the intelligent scales

We assuine that the system has no bhuilt-in fault detection capabilities.
From the point of view of the shopkeeper fault less is of the greatest severity
since in this case the price paid by the customer is less than the value of
the goods. The dataflow graph of the system and the formal notation of
one of the nodes are shown m Fig. 2. (Note that if it 1s necessary the token
eg-more could be split wnto two tokens ok and more.)

The system consists of 5 parts: price in reads in the price per unit of
the goods from a keyboard and sends it to the controller and to the display
as well. Malfunctions of the compounent are: not delivering result (e.g. due
to a broken wire), or delivering faulty result less The weight seunsor
measures the weight of the goods and sends the results to the controller.
The weight seusor always seuds resuli. but it cau be cither eg—more or
less. The controller receives the weight and the price per unit of the
goods in the first step of its functioning and delivers them to the arithmetic
unit. In the second step the computed price received from the arithmetic
unit is forwarded to the display. The controller can deliver either eq-more
or Less results. orit can be even dead. The arithmetic uuit is respounsible
for computing the price of the goods from the price of the unit and from
the weight. When the component is faulty computation results can be
incorrect or it is possible that the compounent does not deliver results at
all. Finally., the display displays the price per unit and the price of the
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measured goods. The display can have one of the faults eq-more, less,
dead.

Inputs of the systemn are:  price_per._unit, goods. while
price.out is the output of the system. The initial state of fault-free
components is okg. A verbal iluterpretation of some firing rules of the
weight_sensor node (Fig. 2) is:

f1- During a fault-free functioning this rule describes the component.

Since ounly fault-free messages eq-more are received and the com-

ponent does not have auy internal fault. it remains in fault-free state

eq-more.

f2- Describes the fault propagation of the fault-free component: if the
input message, received from goods is faulty less, the result will also
be faulty less and it will be delivered into from weight.

f5- Due to an internal fault the sensor measures the goods faulty. The
result of the measurement is less than the weight of the goods, and
the faulty result is delivered to the coutroller via from weight.

3. Test Design in HW-SW Codesign

The base of effective faulr detection and diagnostics is a well-planned test
strategy. In this section we will show that test strategy design can be
done concurrently with system design by using a dataflow model based
automatic test pattern generation (ATPG). The presented algorithm is a
generalized form of logic gate-level test pattern generation algoritluns. The
idea of gencralization arises when considering the correspoudence bhetween
the two models:

- Similarity to the gate- and module-level stuck-at fault model, where
faults are wodelled at the output of logic vates. Errors of a functional
dataflow node are manifested at the outputs in the form of errouneous
11esSages.

- The behaviour of a dataflow functional element is deseribed by a
trausfer relation, similarly to the truth or state transition tables of
logic gates and modules.

- The model may contain loops, that just like in case of sequential logic,

have to be cut and au iterative array model can be constructed in both
cases (ABRAMOVICI et al.. 1990).
Since components can lLave states. the testing of a systewn has to
start from a predefined initial system state. {(In practical dataflow
models examined till yet there was no need for the search of a self-
initialization sequence).
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We will exploit this correspondence and present the high-level version of a
gate-level ATPG algorithm. As a representative example we selected the
well-known PODEM algorithm (ABRAMOVICI et al., 1990. GOEL, 1981)

that is widely used for rest generation for stuck-at faults in logic circuits.

3.1 The PODEM Algorithm

In order to generate a test for a given fault the problem of test generation
1s recursively divided into the sub-problems of: implication and checking:
line justification; fault propagation. Implication and checking aims at the
reduction of the problem space, line justification is responsible for setting
the primary inputs (Pls) according to a given line and fault propagation
tries to propagate the state of a line to the primary outputs (POs). The
PODEM (Path-Oriented Decision Making) algorithm ( Fig. 3) is character-
1ized by a direct search process: it directly manipulates the Pls and tries
to propagate the fault to the POs. In each step of the algorithm checking
and implication is done. To keep track the still open problems a set is
maintained during the algorithm: the D-froniier coutains the gates from
the outputs of which the fault has to be propagated towards the POs. The
advantage of PODEM() over otlier test pattern generation algorithms is
that due to the direct search:

- no consisteucy check is needed

— the J-frontier can be eliminated

- backward implication is not necessary.

1: PODEM{;

2: begin

3: if (error at PO) then return SUCCESS

1: if (test not possible} then return FAILURE
5: k=0Objective (]

6: j=Backtrace (k)

IE for {v=all possible faults)

2 begin

9: Imply (j.v)
10: if (PODEM()=SUCCESS) then return SUCCESS
11l: end
12: return FAILURE
13: end

Fig. 3. The PODEM algorithm
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In the proposed approach solution of the subproblewms is slightly dif-
ferent from the original one:

~ Due to the mndti-valued fault model eg-more, less, dead, x val-

ues are used nstead of 0 and 1. Tt means that instead of values D

(1 in the good. 0 in the faulty circuit) and D (0/1). fanlt-pairs eq-

more/less. eq-more/dead. eq-more/x.less/eq-more.
less/dead, less/x, dead/eg-more, dead/less , dead/x are
propagated.

Instead of the truth table fiving rules are wsed. Possible actions de-
pend on the state of the component. States of the component have
to be cousistent in subsequent blocks of the iterative array model
(predecessor and successor states).

Cliecking has to ensure that the coustraints imposed by the global
testing requirements, e.g. safe testing, are fulfilled.

Test generation starts with initialization of the chanuels. where the value
ND (not defined) is assigned to cach channel. After the initialization the
Podem() procedure is called (Frg. 3). In each step when Podem() is ex-
ecuted some chieckings occur, a PI s selected, implication is done., and
Podem() 15 called recursively again to clhieck the results of the implication
step. The activities of the Podew() procedure can be outlined as:

Step 3 the stop criterion is checked. g if a fanle pair has been propagated
to a PO, test geueration is successtul.

L Objective () /* fault is n=f*/

2: begin

3: Hiall output of uis NDjthen N=y
-+ elge select w node N frow D-frontier
B select one input m of N

fi:

return o
end

=1

Fiy. 4. Procedure objective

Step 4 if no test can be generated, Podem() has to be stopped. This is
the case when:

the target fault cannot be activated, since a different value has been
propagated to the output of the faulty component.

1o error propagation step can be done. since the D-frontier is empty.

Step 5 an objective (a chanuel) for error propagation 1s selected. Usually
it is a channel from the D-frontier.

Step 6 a PI being in conunection with che selected channel is selected.
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Steps T—12 All possible faults are probed at the Pls in order to fulfil the
objective by umuplications. If none of the probes are successful Podem()
returns failure and another PI (according to Step 6) has to be selected and
probed again.

In each step Podem() is executed two other procedures are called:
Objective() selects a chanuel to which a fault pair has to be propagated.
For this reason m:

Steps 3,4 a compounent is selected. It is cither the compounent a test has
to be geunerated for or it is a compouent frow the D-frontier.

Step 5 a still unassigned (it has a value ND) inpur of the node is selected.

;' Backtrace (k)

2: begin

3: white (k is an output)

4 begin

S select an input j of node n SU R b an outpo of ¢t
: k=]

7 end

B: return k

9: end

Fig. 5. Procedure backirace

The other procedure Backtracc() is responsible for Hinding the Pls. with
which adjustment a fault pair has o be propagated to the selected channel:

Steps 3-7 A search is done toward the Pls of the datafiow modelled system.
To an output of a componeut an nput 1s assigned. It will denote the
implication path from the P to the selected objective.

3.2 Test Generation for the Erample

To enlighten the previously defined algorithun, test generation is shown in
detail for the Less fanlt of rlie coutroller component in the simple example.
Steps of the test generation are presented i Fry. 6 step by step. Note that
identifiers of chaunels arve ouwitred!

Steps of test generation can be explained as:

Step O Initialization. ND is assigued ro all channels. Test generation can
be started.

Step 1 First call of the Podem() procedure. Since the POs have not
been reached vet, Objective() and Backrrace() are called. In this step all
the outputs of the controller nuit are ND. thus the objective is channel
from_price_in. Backtrace identifies the PI price_per_unit. Afterward
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Step 0:
ND (T ND ND T
— price in ; §weightsenso
ND
ND
-— display arithmetic
L H
R —ve———————
Step 1:

Objective()=irom_price_in

Backtrace()=price_per_unit

Imply() -> price_per_umnit=eq-more, to_display=eq-more. from_price_in=cg-more
D={coniroller}

eq-more | T !\ eq-more ND ! R ND
— price in ?; ] | weight sensor i~—-
— | {

eq-more

ND T
a— display

. arithmetic

Step 2:

Objective()=from_weighi_sensor

Backtrace()=goods

Imply() -> goods=eq-more. from_weight_sensor=eq-more. to_arithmetic=cq-more/less. from_arithmetic=eg-more/less.
from_ctri=eg-more/iess. price_oui=eg-more/less

D={display!
eq-more ) eq-more ¢4-inore H . Lg-more
price in - weight sensor j~—-
[ e———wee——— Semm———
§ ¥
eq-more i controller
‘ﬁ___._‘ eq-morefless

eq-more/iess

K eg-more
- display -—

arithmetic

eq-ntorefle

Step 3:

SUCCESS

Fig. 6. Test generation for less fauli of the controller
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implication is done, but no error pairs appear, thus the D-frontier remains
empty.

Step 2 After the unplication of the first step. Podem() is called again.
This time the objective is channel from_welght_sensor. Backtrace now
identifies the other PI of the system: goods. As a result of immplication an
error pair appears ou the output channel of the display compouneunt, that is
now element of the D-frontier.

Step 3 Third. last call of Podem(). Checkiug detects the error pair eq-
more /less at the PO price_out, thus test generation is finished suc-
cesstully.

The result means, if the controller has a 1less fault, it can be detected
by measuring a known weight. (Price must also be typed correctly.)

4. Conclusion and Future Work

In this work we presented a modelling approach which can be used in the
early phases of HW-SW codesign. It supports testability and depeundabil-
ity analysils in such a way that it becomes an integral part of the design
process. since in the proposed dataflow model both the functional and
fault propagation/fault effects information are incorporated. By means of
a simple example we have shown that even in this phase of the design test
strategy design and testability analysis can be done concurrently with the
systemn desigi.

Future work lncorporates the inplementation of an enviroument in
which depeudable hardware-software codesigu cau be done. For this reason
the Ptolemy design environment. developed at the University of California
at Berkeley. will be used.
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