
PERJODICA POLYTECHXICA SER. EL. ENG. VOL. 40. NO. 2, PP. 77-85 (1996)

PIPELINED EXECUTION IN MULTI-USER
SEQUENTIAL RECURSIVE LOOPS 1

Istvan JANKOVITS 2 and Tamas VISEGRADI3

Department of Process Control
Technical University of Budapest

H-1.521 Budapest, Hungary

Received: June 10, 1995
Revised: January 8, 1996

Abstract

Recursive sections in a data path are constraints to the minimum value of data introduc­
tion latency (R) in that data path. ::Vlinimizing loop execution times is a way to increase
the virtual data introduction frequency (1/ R), with the minimum values set by the loops
themselves. For a number of applications, another method is possible to decrease the
restart time while actually increasing the total execution time of the loop (Lr). An ad­
vantage of this method is that the increase of execution time is an external constraint.
This paper presents a description of such problems, with the steps of scheduling performed
for an application of this type.

Keywords: high level synthesis, scheduling, recursive loops, constraints, scheduling
methods.

Glossary4

Data path A directed graph representation of data transitions in a problem. Graph
nodes are operations, edges are data connections and dependencies.

Execution time Time needed by an (elementary) operational unit to calculate its
output value from its inputs. It is denoted by t(i), where i is the number of operations.

Latency - Time difference betw'een a set of data entering the data path and the output
values belonging to that set of input data becoming available on the outputs (L).

Loop or Recursive loop - A section in a data path executed in an iterative way such
that every iteration requires the result of the previous iteration (as initial value) and data
from the data path. As the time between successive iterations of the loop may not be
smaller than the total of all execution units in the loop (Lr), the loop takes data from the
outside at most with the frequency equal to 1/ L r .

Loop core Hardware used in realizing the recursive part of the data path.

lThe research outlined in this paper is supported by grant CP-940453
2Ph.D. student
3Graduate student
4More detailed definitions in [1]

78 I. J:LVKOVITS and T. VISEGRADI

Pipelined execution Feeding a system with a restart time less than the total latency
is available in some units. Any such unit works in an overlapped, pipelined way.

Restart time - The period time of new data input to the system (R).

Time steps or Time cycles The time unit in time calculations, often expressed
without dimension, i.e. 'a time of 3 [time cycles]'.

Client or User processes - Separate processes feeding data to the recursive cores.

Introduction

Recursive loops are considered to be unavailable to overlapped execution
during the scheduling phase of ASIC design. This is caused by the special
nature of recursive execution: an iterative algorithm ma:y not be fed on the
next data before the final result of the previous iteration is ready. As calcu­
lation of the next value requires a minimum of Lr cycles (L r is the total loop
execution time), a restart latency under max Lr.i time cycles is impossible

e1:ery
loop

in a data path containing recursive loops. However, there are some notable
exceptions to the general case. In a special type of problems, recursive
solutions are needed to calculate values of identical functions for different
processes. Such an example is the centralized control of robots using the
computed torque technique. Realizations of the computed torque technique
require periodic calculations of a dynamic model for the robot joints to deal
with changes in the environment. For the scheduling phase, this calculation
may run simultaneously with torque calculations, in a conditional execu­
tion branch with a probability of + if a calculation is required for every N
complete cycle. For our study the probability-based conditional execution
is not significant, so from now on the recursive subsection is treated on its
own, without the actual realization of the conditional branches.

In the execution of a recursive loop, some parts of the loop are busy
while the others are idle. As execution of such a loop is strictly sequential,
the busy state 'propagates' along the data path in time (Pig. 1).

As time limits permit, it is possible to introduce new data to the
start of the loop that runs through the loop without data conflict with the
previous data. This overlapped execution exploits the inherent idle states
of the loop. vVith such a structure, more than one process may use the
recursive core, if a strict order of data introduction is maintained.

Pipeline Data-Flow Based Recursive Loop Scheduling

Most of the published methods handle the recursive loop latencies (Lr)
as the minimum value of the restarting time (R). This constraint causes

PIPELINED EXECUTION 79

t

Fig. 1.

design methods to minimize the total execution time in loops. By using
multiple-process recursive loops, we make possible for separate processes
to share the same resources in such a '.'lay that the recursive core in process
is realized only once. It means that the total loop sequence will be divided
into smaller parts where each part can work parallel on a task and the
parts rolling through the loop without breaking the rule of the recursion.
To tune the loop and to control the periphery, the actual data (dj(i)) and
the dependent new data (dj(i + 1)) must arrive in the same time to the
receptor elements in the loop. This means a synchronization problem in
the sequences going through the loop-core (external synchronization) and
an additional synchronization inside the loop (loop-core scheduling). Since
the external synchronization is loop-core dependent this problem will be
discussed after the classification of the recursive problems. As the basic
synchronization tool is the delay (buffer), a recursive structure optimized
for pipelined execution is likely tD work slower than the non-pipelined loop.

80 I. JANKOVITS and T. VISEGR.4DI

This speed loss may be small, especially if loop execution time is much
greater than 1, as the buffers cause a latency increase of 1 each.

Loop-Core Scheduling

It is obvious to discuss the loop-core scheduling problem for the simplest
case when the whole graph consists of one loop core, therefore the external
synchronization is eliminated (Fig. 2). As another facility, the graph con­
tains just one receptor element at the beginning of the recursion. (It is easy
to see that it does not mean any loss from the generality). The decision,
whether the data must stay in the loop for another iteration or until the re­
cursion has been done, will also be made by this receptor element. To avoid
a data synchronization problem between the feedback of the loop output
(initial value of the next iteration) and the new data, the loop latency (Lr)
should be equal to an integer multiple (N) of the restarting period (R):

Lr = (N + l)*R. (1)

o
F.'

Buffer

Fig. 2.

From [3J it is known that Lr is the function of Rand R, N (N means
number of processes using the loop) are given values, (1) will fulfil just for
special cases, which causes the synchronization problem inside the loop.
To solve this problem the difference between Lr and R must be realized as
an extra delay in the loop-core. In this way (1) will be modified:

LT + K = (N + 1)* R, (2)

where K is the number of the inserted buffers (delay element). The number
of the inserted buffers are determined by 2 factors:

(3)

PIPELINED EXECUTION 81

- Scheduling the loop-core for the aimed restarting time (Ks): for this
problem any known scheduling method can be used ([1,3,6,7]) to tune
the opened loop. With [1] Ks is the sum of the number of the inserted
buffers to the places where the transfer scores make it necessary and
the buffers are inserted before the multiplied elements.

- Synchronization between the input and the feedback of the loop (Kf):
Kf can be calculated from (2) and (3):

Kf = (N + 1)* R - Lr - Ks, (4)

where Lr + Ks ~ (N + 1)* R.
If Lr + Ks ~ (N + l)R* (the scheduling inserted more buffers than

needed for the whole synchronization), then the feed back of the loop will
be slower than the input side, so this additional problem must be taken
into consideration during the external synchronization. In this case:

Kf = O. (5)

Classification of Recursive Problellls

If we ignore the exact composition of a recursive loop core, data propagation
has three main classes based on the number of iterations. The number of
iterations a data set spends in a recursive loop (loop depth, li) is either a
finite (constant or variable) or an infinite value.

1) Iterative solutions of differential equations (Fig. 3) are remaining
in an iterative state or a (usually) finite number of loop transitions, while
the exact loop depth is data dependent. For these calculations no general
data transition rule can be given. The time needed for the first data set to
leave and a new set of data to be introduced to the iteration is

min(R({(k)n + k - 1))
k

(6)

2) The set of problems with a fixed finite number of iterations is
typical for the equivalent of FOR loops (which generally run for a constant
number of times). An example of this is the class of FIR filters (Fig. 4),
where the number of iterations is related to the order of the filter, which
is a constant based on the nature of the problem. As with these problems
Vi: I(i) == 10, total data transition time may be calculated as:

(7)

82 I. JANKOVITS and T. VISEGR.4DI

Fig. 3.

Y[i+ Ij={Yjij+x[i+ I J)'"
Y~D:x[il+x[i+1)),s,

i9l ... 7

Fig. 4.

which is less than
(8)

time required without loop overlapping (x is the number of data sets put
through the recursive calculations). From (7) and (8) the condition can be
derived, when our method is worth using. If the ratio of (8) and (7) is less
than 1, then the new design solves the problem faster.

n~l,nR + (n - l)R
L «l. x, r

(9)

From the meaning of x it is obvious that x is much greater than the other
values in the equation, therefore:

(10)

PIPELINED EXECUTION 83

1.1
Fe t(i)

$ 7

I

~ 6

7 $ 4

$ 3
10

0 3

$ 2

$
Fig. 5.

Neglecting the left side of (10) from (9), and applying some equivalent
modifications:

R n-l -«--.
Lr n

(11)

The right side of (11) shows that the more the restarting period is decreased
against the latency, the more efficient structure will be achieved and from
the left side it can be seen that as more and more data are introduced to
the structure, the result can be more and more efficient.

3) Infinite loop depth is presented in the case of continuous calcula­
tions. Robots, for example, need to calibrate the dynamic model of their
environment periodically, as long as the robot is moving. In this case the
overlapped loop execution is usually slower than the non-pipe1ined version
as modifying the loop core for overlapping increases L H. One of the ad­
vantages is the reduced cost of hardware components, which is generally
possible as the nature of calculations is identical for every process. Abso­
lute time gain is therefore expressed in terms of realization costs, with a
typical 3-process robot subsystem presenting only one fully utilized loop
core instead of three partially idle systems.

84 J.].4NKOVJTS and T. VISEGR.4DJ

External Synchronization

The external synchronization will be illustrated on an example (Fig. 5)
which is used for data filtering in voice-transfer processes. This recur­
sive algorithm contains all the possible data conflicts that can arise. The
synchronization problems are negotiated here in the time order which elim­
inates any iterative steps during the scheduling process. In this example
two different, but not independent loop-cores exist (The first follows the 1,
2, 3, 4, 5, and the second, the critical path, follows the 1, 2, 8, 9, 10, 12, 13,
5 sequence.) In the first step the shorter loop must be tuned to the critical
recursive path, inserting extra buffers to the shorter path. The calculation
of the buffer-number is described in [3]. In this example it means that 7
buffers must be placed before the 5th element, to the 5.2 part.

The synchronization problem can be simply solved by one of the algo­
rithms published in [1,3-6] before the 2, 3, 9, 10, ll, 12 and the 15 elements,
handling the whole graph with opened feed-backs. The value of the LT' used
in (2) will be given just after this step, since the synchronization may intro­
duce delay elements to the critical recursive path, which makes LT' longer.
Another class of the synchronization problems is when the receptor ele­
ment uses the result of the loop-core (6th receptor in Fig. 5). In this case
the algorithm is loop-dependent, because the result of the loop is available
in different time cycles depending on the type of the loop (see in section
'Classification of Recursive Problems'). This problem can be eliminated by
inserting a shift register which can produce any contained data in any time
step depending on the control of the system. The length of the shifter is
determined by the 'Norst case (the longest possible loop execution time).
For the problems of the 1st class (see in section" Classification of recursive
problems") it modifies the structure of the control logic in [1]. In this case
the control logic picks up the suitable data from the shift register when the
recursive loop finished an iteration.

Conclusion

Recursion, being one of the three fundamental description methods (Turing­
machine, grammar and p,-recursive functions), is a feature often found in
practical problems. Numerical methods, used in many applications are
usually based on recursive solutions. Scheduling algorithms of recursion,
as it is common to treat the loop as a solid execution block, maximizes
data introduction (restart) frequency. This solid model does not enable
the scheduler to increase system throughput.

PIPELISED EXECUTIOS 8.5

The method presented in this paper deals with recursive systems in
the other way: by separating loop components, in a special set of recur­
sive systems it is possible to tune the loop for an overlapping mode. This
pipelined execution enables the systems to process data at a higher fre­
quency, increasing data throughput and decreasing processing time. The
algorithm of recursive loop tuning is not bound to any of the scheduling
methods. It is possible to insert it as an extension to most of the schedulers.

References

1. ARATO, P. - BERES. 1. (1994): A High-Level Datapath Synthesis 1Iethod for Pipelined
Structures. Proc. of The 8th Symposium on Microcomputer and Microprocessor Ap­
plication.

2. ARATO, P. (1990): Logic Synthesis of Special-Purpose Hardware Structures Based on
a Pipelined Dataflow ::Vlodel. Department of Process Control, TuB, Report.

3. ARATO, P. - JA:-lKOVITS, 1. RliCI?\SKL A.: Time Scaled High-Level Synthesis for
Pipelined Data-flow Structures, Proceedings of ATW'94.

4. CHE?\G-TsliNG HWA?\G JI.-I.H?\-HCR?\G LEE YU-CHI?\ Hsc (1991): A Formal Ap-
proach to the Scheduling Problem in High Level Synthesis, IEEE Transactions on
Computer-Aided Design, Vo!. 10, ?\o. 4, April 1991.

5. High-Level VLSI Synthesis, Edited by Raul Camposano &: Wayne Wolf, Kulwer Aca­
demic Publisher, 1991.

6. ROSE?\STIEL, \'1. - KRA:'1ER, H.: Scheduling and Assignment in High Level·Synthesis.
7. CASAVA?\T, A. E. - KI Soo HWA?\G ::Vlc):ALL, K.):.: PISY):-High-Level Synthesis

of Application Specific Pipelined Hardware, .
8. PACLC\, P. G. - K?\IGHT, .]. P.: Force-directed Scheduling for the Behavioral Synthesis

of ASIC's, IEEE Transactions on Computer-Aided Design, 1989/6.

