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Abstract 

Recursive sections in a data path are constraints to the minimum value of data introduc­
tion latency (R) in that data path. ::Vlinimizing loop execution times is a way to increase 
the virtual data introduction frequency (1/ R), with the minimum values set by the loops 
themselves. For a number of applications, another method is possible to decrease the 
restart time while actually increasing the total execution time of the loop (Lr). An ad­
vantage of this method is that the increase of execution time is an external constraint. 
This paper presents a description of such problems, with the steps of scheduling performed 
for an application of this type. 

Keywords: high level synthesis, scheduling, recursive loops, constraints, scheduling 
methods. 

Glossary4 

Data path A directed graph representation of data transitions in a problem. Graph 
nodes are operations, edges are data connections and dependencies. 

Execution time Time needed by an (elementary) operational unit to calculate its 
output value from its inputs. It is denoted by t( i), where i is the number of operations. 

Latency - Time difference betw'een a set of data entering the data path and the output 
values belonging to that set of input data becoming available on the outputs (L). 

Loop or Recursive loop - A section in a data path executed in an iterative way such 
that every iteration requires the result of the previous iteration (as initial value) and data 
from the data path. As the time between successive iterations of the loop may not be 
smaller than the total of all execution units in the loop (Lr), the loop takes data from the 
outside at most with the frequency equal to 1/ L r . 

Loop core Hardware used in realizing the recursive part of the data path. 

lThe research outlined in this paper is supported by grant CP-940453 
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3Graduate student 
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Pipelined execution Feeding a system with a restart time less than the total latency 
is available in some units. Any such unit works in an overlapped, pipelined way. 

Restart time - The period time of new data input to the system (R). 

Time steps or Time cycles The time unit in time calculations, often expressed 
without dimension, i.e. 'a time of 3 [time cycles]'. 

Client or User processes - Separate processes feeding data to the recursive cores. 

Introduction 

Recursive loops are considered to be unavailable to overlapped execution 
during the scheduling phase of ASIC design. This is caused by the special 
nature of recursive execution: an iterative algorithm ma:y not be fed on the 
next data before the final result of the previous iteration is ready. As calcu­
lation of the next value requires a minimum of Lr cycles (L r is the total loop 
execution time), a restart latency under max Lr.i time cycles is impossible 

e1:ery 
loop 

in a data path containing recursive loops. However, there are some notable 
exceptions to the general case. In a special type of problems, recursive 
solutions are needed to calculate values of identical functions for different 
processes. Such an example is the centralized control of robots using the 
computed torque technique. Realizations of the computed torque technique 
require periodic calculations of a dynamic model for the robot joints to deal 
with changes in the environment. For the scheduling phase, this calculation 
may run simultaneously with torque calculations, in a conditional execu­
tion branch with a probability of + if a calculation is required for every N 
complete cycle. For our study the probability-based conditional execution 
is not significant, so from now on the recursive subsection is treated on its 
own, without the actual realization of the conditional branches. 

In the execution of a recursive loop, some parts of the loop are busy 
while the others are idle. As execution of such a loop is strictly sequential, 
the busy state 'propagates' along the data path in time (Pig. 1). 

As time limits permit, it is possible to introduce new data to the 
start of the loop that runs through the loop without data conflict with the 
previous data. This overlapped execution exploits the inherent idle states 
of the loop. vVith such a structure, more than one process may use the 
recursive core, if a strict order of data introduction is maintained. 

Pipeline Data-Flow Based Recursive Loop Scheduling 

Most of the published methods handle the recursive loop latencies (Lr) 
as the minimum value of the restarting time (R). This constraint causes 
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t 

Fig. 1. 

design methods to minimize the total execution time in loops. By using 
multiple-process recursive loops, we make possible for separate processes 
to share the same resources in such a '.'lay that the recursive core in process 
is realized only once. It means that the total loop sequence will be divided 
into smaller parts where each part can work parallel on a task and the 
parts rolling through the loop without breaking the rule of the recursion. 
To tune the loop and to control the periphery, the actual data (dj(i)) and 
the dependent new data ( dj(i + 1)) must arrive in the same time to the 
receptor elements in the loop. This means a synchronization problem in 
the sequences going through the loop-core (external synchronization) and 
an additional synchronization inside the loop (loop-core scheduling). Since 
the external synchronization is loop-core dependent this problem will be 
discussed after the classification of the recursive problems. As the basic 
synchronization tool is the delay (buffer), a recursive structure optimized 
for pipelined execution is likely tD work slower than the non-pipelined loop. 
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This speed loss may be small, especially if loop execution time is much 
greater than 1, as the buffers cause a latency increase of 1 each. 

Loop-Core Scheduling 

It is obvious to discuss the loop-core scheduling problem for the simplest 
case when the whole graph consists of one loop core, therefore the external 
synchronization is eliminated (Fig. 2). As another facility, the graph con­
tains just one receptor element at the beginning of the recursion. (It is easy 
to see that it does not mean any loss from the generality). The decision, 
whether the data must stay in the loop for another iteration or until the re­
cursion has been done, will also be made by this receptor element. To avoid 
a data synchronization problem between the feedback of the loop output 
(initial value of the next iteration) and the new data, the loop latency (Lr) 
should be equal to an integer multiple (N) of the restarting period (R): 

Lr = (N + l)*R. (1) 

o 
F.' 

Buffer 

Fig. 2. 

From [3J it is known that Lr is the function of Rand R, N (N means 
number of processes using the loop) are given values, (1) will fulfil just for 
special cases, which causes the synchronization problem inside the loop. 
To solve this problem the difference between Lr and R must be realized as 
an extra delay in the loop-core. In this way (1) will be modified: 

LT + K = (N + 1)* R, (2) 

where K is the number of the inserted buffers (delay element). The number 
of the inserted buffers are determined by 2 factors: 

(3) 
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- Scheduling the loop-core for the aimed restarting time (Ks): for this 
problem any known scheduling method can be used ([1,3,6,7]) to tune 
the opened loop. With [1] Ks is the sum of the number of the inserted 
buffers to the places where the transfer scores make it necessary and 
the buffers are inserted before the multiplied elements. 

- Synchronization between the input and the feedback of the loop (Kf): 
Kf can be calculated from (2) and (3): 

Kf = (N + 1)* R - Lr - Ks, (4) 

where Lr + Ks ~ (N + 1)* R. 
If Lr + Ks ~ (N + l)R* (the scheduling inserted more buffers than 

needed for the whole synchronization), then the feed back of the loop will 
be slower than the input side, so this additional problem must be taken 
into consideration during the external synchronization. In this case: 

Kf = O. (5) 

Classification of Recursive Problellls 

If we ignore the exact composition of a recursive loop core, data propagation 
has three main classes based on the number of iterations. The number of 
iterations a data set spends in a recursive loop (loop depth, li) is either a 
finite (constant or variable) or an infinite value. 

1) Iterative solutions of differential equations (Fig. 3) are remaining 
in an iterative state or a (usually) finite number of loop transitions, while 
the exact loop depth is data dependent. For these calculations no general 
data transition rule can be given. The time needed for the first data set to 
leave and a new set of data to be introduced to the iteration is 

min(R({(k)n + k - 1)) 
k 

(6) 

2) The set of problems with a fixed finite number of iterations is 
typical for the equivalent of FOR loops (which generally run for a constant 
number of times). An example of this is the class of FIR filters (Fig. 4), 
where the number of iterations is related to the order of the filter, which 
is a constant based on the nature of the problem. As with these problems 
Vi: I(i) == 10, total data transition time may be calculated as: 

(7) 
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Fig. 3. 
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Fig. 4. 

which is less than 
(8) 

time required without loop overlapping (x is the number of data sets put 
through the recursive calculations). From (7) and (8) the condition can be 
derived, when our method is worth using. If the ratio of (8) and (7) is less 
than 1, then the new design solves the problem faster. 

n~l,nR + (n - l)R 
L «l. x, r 

(9) 

From the meaning of x it is obvious that x is much greater than the other 
values in the equation, therefore: 

(10) 
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Neglecting the left side of (10) from (9), and applying some equivalent 
modifications: 

R n-l -«--. 
Lr n 

(11) 

The right side of (11) shows that the more the restarting period is decreased 
against the latency, the more efficient structure will be achieved and from 
the left side it can be seen that as more and more data are introduced to 
the structure, the result can be more and more efficient. 

3) Infinite loop depth is presented in the case of continuous calcula­
tions. Robots, for example, need to calibrate the dynamic model of their 
environment periodically, as long as the robot is moving. In this case the 
overlapped loop execution is usually slower than the non-pipe1ined version 
as modifying the loop core for overlapping increases L H. One of the ad­
vantages is the reduced cost of hardware components, which is generally 
possible as the nature of calculations is identical for every process. Abso­
lute time gain is therefore expressed in terms of realization costs, with a 
typical 3-process robot subsystem presenting only one fully utilized loop 
core instead of three partially idle systems. 
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External Synchronization 

The external synchronization will be illustrated on an example (Fig. 5) 
which is used for data filtering in voice-transfer processes. This recur­
sive algorithm contains all the possible data conflicts that can arise. The 
synchronization problems are negotiated here in the time order which elim­
inates any iterative steps during the scheduling process. In this example 
two different, but not independent loop-cores exist (The first follows the 1, 
2, 3, 4, 5, and the second, the critical path, follows the 1, 2, 8, 9, 10, 12, 13, 
5 sequence.) In the first step the shorter loop must be tuned to the critical 
recursive path, inserting extra buffers to the shorter path. The calculation 
of the buffer-number is described in [3]. In this example it means that 7 
buffers must be placed before the 5th element, to the 5.2 part. 

The synchronization problem can be simply solved by one of the algo­
rithms published in [1,3-6] before the 2, 3, 9, 10, ll, 12 and the 15 elements, 
handling the whole graph with opened feed-backs. The value of the LT' used 
in (2) will be given just after this step, since the synchronization may intro­
duce delay elements to the critical recursive path, which makes LT' longer. 
Another class of the synchronization problems is when the receptor ele­
ment uses the result of the loop-core (6th receptor in Fig. 5). In this case 
the algorithm is loop-dependent, because the result of the loop is available 
in different time cycles depending on the type of the loop (see in section 
'Classification of Recursive Problems'). This problem can be eliminated by 
inserting a shift register which can produce any contained data in any time 
step depending on the control of the system. The length of the shifter is 
determined by the 'Norst case (the longest possible loop execution time). 
For the problems of the 1st class (see in section" Classification of recursive 
problems") it modifies the structure of the control logic in [1]. In this case 
the control logic picks up the suitable data from the shift register when the 
recursive loop finished an iteration. 

Conclusion 

Recursion, being one of the three fundamental description methods (Turing­
machine, grammar and p,-recursive functions), is a feature often found in 
practical problems. Numerical methods, used in many applications are 
usually based on recursive solutions. Scheduling algorithms of recursion, 
as it is common to treat the loop as a solid execution block, maximizes 
data introduction (restart) frequency. This solid model does not enable 
the scheduler to increase system throughput. 
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The method presented in this paper deals with recursive systems in 
the other way: by separating loop components, in a special set of recur­
sive systems it is possible to tune the loop for an overlapping mode. This 
pipelined execution enables the systems to process data at a higher fre­
quency, increasing data throughput and decreasing processing time. The 
algorithm of recursive loop tuning is not bound to any of the scheduling 
methods. It is possible to insert it as an extension to most of the schedulers. 
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