
PERJODICA POLYTECHNICA SER. EL. ENG. \/OL. ';0, NO. 2. PP. 87-103 (1996)

SOFTWARE DIAGNOSIS USING COMPRESSED
SIGNATURE SEQUENCES

Istvan MAJZIK

Department of Measurement and Instrument Engineering
Technical University of Budapest

H-1521 Budapest, :vlliegyetem rkp. 9, Hungary
E-mail: majzik@mmt.bme.hu

Received: June 14, 1996

Abstract

Software monitoring and debugging can be efficiently supported by one of the concurrent
error detection methods, the application of watchdog processors. :\ watchdog processor,
as a co-processor, receives and evaluates signatures assigned to the states of the program
execution, After the checking, it stores the run-time sequence of signatures which identify
the statements of the program. In this way, a trace of the statements executed before
the error is available. The signature buffer can be efficiently utilized if the signature
sequence is compressed. In the paper, two real-time compression methods are presented
and compared. The first one uses predefined dictionaries, while the other one utilizes the
structural information encoded in the signatures.

Keywords: software diagnosis, compression, monitoring, watchdog processors.

1. Introduction

Post-mortem diagnosis of embedded (real-time) application programs is
often difficult, since in most of the cases the diagnosis is supported only
by some static information like a memory dump. The system designer is
interested in the trace of the erroneous program, i.e. in the sequence of
statements executed by the program before the error.

Complex and costly monitoring systems are implemented to collect
and store the trace data, often modifying the original operating environ­
ment and interfering with the timing of the monitored programs. The ma­
jority of the commonly used debugging tools requires architecture specific
hardware. For example, the RED method [1] uses a dedicated co-processor
for collecting trace data, the DCT toolset [2] utilizes a hardware bus mon­
itor. By the software approach, the source of the monitored program is
modified, inserting extra instructions which collect data. In ART [3] a spe­
cial reporting process is needed (permanently integrated into the applica­
tion software), in [4] or [S] the source is modified before compilation. Hy-

88 I. MA1ZIK

brid techniques like [6J and [7J add a few instructions to the code of the
program but the information is collected by dedicated hardware.

The error detection mechanisms implemented in highly dependable
systems often provide mechanisms to derive the trace of the program with
minor cost and additional effort. Our goal is to show that one of the com­
monly used run-time error detection methods, the application of watchdog
processors, can easily be extended to support the trace based diagnosis of
the program.

Dependable applications require continuous, concurrent run-time er­
ror detection mechanisms in order to highlight transient errors causing dis­
turbances in data and control flow. Errors in data can efficiently be de­
tected (and even corrected) by error detecting and correcting codes, while
one of the most efficient methods for the detection of control-flow errors
is the application of watchdog processors. A watchdog processor (WP [8])
is a relatively simple coprocessor monitoring the state of the system using
signatures, compact abstractions of the system state. In the assigned sig­
natures methods [9J, the checked program is modified at compilation time
by a preprocessor in a way that during the run the signatures are trans­
ferred to the WP. (The preprocessor analyzes the high-level program text,
labels the statements of the program by signatures and inserts the signa­
ture transfer instructions.) The WP evaluates the run-time sequence of
signatures on the basis of a predefined reference. If a signature being not
a valid successor of the previous signature is found then a control-flow er­
ror is detected: the program entered an erroneous state.

The signatures assigned by the preprocessor identify uniquely the
states of the program. In the default case, each individual statement of
the program is associated with a unique signature, but additional reduc­
tion phases can merge branch-free statement sequences into a block labelled
one by a single, joint signature. In this way, the run-time sequence of sig­
natures contains the necessary information on which basis the execution of
the program, the trace of the statements can be restored later. However,
the original error detection mechanism does not store this sequence of run­
time signatures in the WP. If a signature is accepted as a valid .one, then
the next reference value is derived and the actual signature is deleted, the
WP is prepared to receive and evaluate the next signature.

If the run-time signature sequence is stored in the WP, then a com­
plete log of the program execution is available, the trace of executed state­
ments can be restored. The difficulty is that this sequence is too long to
be stored in full extent for practical programs. Iteration loops, frequently
called procedures, synchronization cycles waiting for external events trans­
fer a large number of signatures to the WP preventing the storing of the
entire sequence in a buffer of limited size. A trade-off between the effi-

SOFTW4RE DIAGSOSIS 89

ciency and moderate cost is to implement a logic analyzer-like cyclic buffer
storing a limited log of signatures transferred before an error was detected.
The utilization of the cyclic buffer can be further improved by some kind of
information compression on the signature sequence before storing the log.
Since the majority of signatures originates from repetitive signature sub­
sequences, the compression is possible.

The basic idea is summarized as follows: The WP receives and com­
presses the run-time sequence of signatures. The compressed sequence is
stored in a cyclic buffer. If an error is detected then the application is
stopped and the buffer can be read by the diagnosis program. The content
of the buffer is decompressed, the original signature sequence and the state­
ments identified by the signatures are derived. In this way the trace of the
statements executed before the error is available for diagnostic purposes.

In Section 2 the compression of a general signature sequence is ex­
amined. A dictionary is constructed on the basis of the control flow graph
(CFG) of the program to be monitored. It contains the necessary program­
specific information in order to ensure the optimal compression of the run­
time signature sequence.

The special structure of the signatures used in the Signature Encoded
Instruction Stream (SEIS [10]) method allows the definition of a general
compression scheme. In this case no dictionary is needed, the run-time
signature sequence can be compressed without downloading any program­
specific dictionary. The compression technique is discussed in Section 3.
At the end, measurement results (Section 4) and the proposed diagnostic
environment (Section 5) are presented.

2. Compression of the Signature Sequence Using a
Predefined Dictionary

The theoretical problem of the compression of the signature sequence is a
problem of universal encoding. In our case, the message is the run-time
sequence of signatures, the message alphabet contains the valid signatures
while the encoding alphabet consists of a fixed number of characters. The
signature sequence is divided into words (sets of successive signatures) of
varying size and each word is encoded by a single character of the encoding
alphabet. The words and the corresponding characters form a dictionary.

In the common universal encoding schemes (Adaptive Huffman, Lem­
pel-Ziv I-H) the dictionary is built in run-time. The run-time construc­
tion of the dictionary is time-consuming and needs a fast and sophisticated
hardware. We propose a method which allows a simple hardware compres­
sor unit by using a predefined dictionary. The dictionary is built during

90 I. MA1ZIK

compilation, when the program is analyzed, the CFG is derived and the
signatures are assigned to the states of the program. Before the start of
the program, the dictionary is downloaded into the WP. The compression
mechanism utilizes the predefined dictionary: if a word is found in the sig­
nature sequence then the corresponding character is stored in the buffer
(in the case of repeating characters only a counter is increased). This ap­
proach ensures the simplicity of the compression hardware, however, the
efficiency of the compression depends on the definition of the dictionary,
i.e. on the optimal selection of the words.

The signature sequence is known completely only in run-time due
to the data dependences of the program run. But, since the control flow
graph of the program is known, some program paths, which are assumed
to be executed frequently, can be identified. This way, signature sequences
originating from the execution of these program paths can define the words
of the dictionary. The execution of the following structures can be taken
into account:

iterations (loops);
long (branch-free) sequences of instructions;
normal branches of selections (exception should rarely occur);
frequently called small procedures.

Sl:
e=j+k;
S2:
wltile (c>e)

S3:
if (c<d)

S4:
d=d+k;
ss:
c=c-d

else {
S6:
c=c-d/2;

}

S7:
printf(".");

}

S8:
printf("end") ;

c10

T3

c4 c6 cB

T4@ T6@ TB@
cS c7

TS@ T7@
S1 .. sB: signatures
c1 .. c23: characters

Fig. 1. A program CFG and the corresponding signature trees

SOFTH'ARE DIAGNOSIS 91

The preprocessor which analyzes the program text can define the dictio­
nary, identifying the above structures and deriving the signature sequences
associated with them.

To compress a run-time signature sequence, an extension of the tradi­
tional WP, a signature compressor is built. It receives the signatures, per­
forms on-line compression and stores the compacted sequence in the WP­
internal compression buffer. In the following, first the structure of the pre­
defined dictionary, then the compression algorithm and its properties are
presented.

2.1 The Dictionary

The words (i.e. signature sequences) in the dictionary are associated with
frequently executed program paths, but (due to the limited resources) reg­
ularly do not cover all of the possible paths of the program execution. The
signature sequences belonging to paths not mapped directly to words are
to be stored in the compression buffer as well. To ensure this,

each valid (single) signature is encoded by a unique character;
- prefixes of the defined words are encoded by unique characters as well.

The structure of the dictionary is a set of trees representing words
starting with a given signature. Each valid signature is a root of an indi­
vidual tree, followed by its immediate successor signatures in the sequences
according to the CFG, and so on until the endpoints of the tree. In this
way a node of the tree identifies a unique signature sequence starting with
the root signature and ending at the given node.

The nodes of the trees - and, consequently, the signature sequences in
the signature trees - are associated with unique characters of the encoding
alphabet. The character associated \vith a node encodes the signature
sequence along the path from the root of the tree to the given node (Fig. 1).
The above mentioned requirements are satisfied: each signature, as a root of
a tree, is encoded by a unique character, and prefixes of words are encoded
by a single character as well.

The construction of the signature trees is optimized in the sense that
a postfix of a word is represented by a path (in the tree starting with the
first signature of the postfix) only if it is awaited to occur separately in the
signature sequence, not following its prefix in the original word. E.g. if the
sequence of signatures s3-s4-s5-s7 is a path in the tree starting with s3,
and s4 always follows s3, then the postfix s4-s5-s7 is not represented by a
path in the tree starting with s4. Accordingly, most of the trees consist of
only the root signature. The nodes, which are included in several words,
are represented by nodes in several signature trees. In Fig. 1 an example

92

Original signature trees

c10
s8

Signature seguence -i>

s1 - s2 - s8
s1 - s2 - 53 - s4 - s5 - s7 - s8
s1 - s2 - s3 - 56 - s7 - s8

I .. \fA JZIA·

Trees with embedded characters

c10

c3 c15 c17 c19

With embedded characters -i>

s1 - s2 - 58

Encoding

c10
s1 -c19-s8 c13
s1-c18-58 c14

Fig. 2. Signature trees with embedded characters

CFG and the corresponding signature trees are presented. The possible
paths of the iteration are encoded separately since they are expected to be
executed frequently. Two complete paths are also covered by words.

There are (longer) paths in the CFG which share common subpaths.
Accordingly, the signature sequences corresponding to these subpaths are
included in various longer words. To reduce the size of the dictionary,
the compression algorithm enables the use of embedded characters. If a
signature sequence is encoded by a character then instead of the sequence
the character can be placed into the dictionary. To keep the compression
algorithm as simple as possible, only the characters should be used as
embedded characters which represent a path (signature sequence) from the
root to the end (leaf) of a signature tree. The signature trees depicted in
Fig. 2 illustrate how the size of the dictionary is reduced using embedded
characters.

2.2 The Compression Algorithm

The task of the compression algorithm is to find the longest word which
is encoded by a single character. (Note that in worst case each signature
is encoded by a separate character which corresponds to the root of the
tree associated with the signature.) If the maximal word is found then the
corresponding character is stored in the compression buffer. The compres-

93

sion buffer is a linear array of elements, each element consists of two fields:
one storing the character and a second one counting the subsequent occur­
rences of the character.

The compression begins in the StaTi phase then continues in the En­
coding phase: signatures are received and processed looking for the charac­
ter which encodes the sequence. Found a character that should be stored
in the compression buffer then the Storing phase is called. A character
stack is maintained by the algorithm (storing the predecessors of embed­
ded characters).

1 Start phase: If the first signature of a word has been received then
the tree associated with this signature is selected. The root of this
tree is the actual node. The next signature is received and processed
in the Encoding phase.

2 Encoding phase: The successors of the actual node are accessed.
- If there are successors (signatures or characters) of the actual

node then first the signature successors are read and compared
with the actual signature:
If there is a signature successor which equals the actual signature
then the node corresponding to it becomes the new actual node.
The next signature is received and the encoding of the word
continues in the Encoding phase.

- If none of the signature successors equals the actual signature
(or, there are no signature successors at all) then

- if there is no character successor of the actual node, then the
word is completed, the actual character is stored in the compres­
sion buffer (Storing phase) and the actual signature is processed
in the Start phase (as a first signature of a new word).

- if there is a character successor of the actual node then an em­
bedded word may follmv. The actual node is stored on the char­
acter stack, the actual signature is processed in the Start phase
(looking for the word belonging to the embedded character).

- If there are no successors (signatures or characters) of the actual
node, then the actual word is completed. It has to be examined
whether it is an embedded word or not.

- If there is no node stored on the character stack then the actual
word is a separate word. The actual character is stored in the
compression buffer (Storing phase), the actual signature is pro­
cessed in the Start phase (as a first signature of a new word).

- If there is a node stored on the character stack, then the actual
word (represented by the actual character) has to be examined
whether it is the embedded word following the node on the stack.
The node stored on the character stack (the node before the

94 I. MAJZlh-

embedded character) becomes the actual node. The successor
characters of this actual node are addressed and compared with
the actual character:
If there is a character successor of the actual node which equals
the actual character then the embedded word has been found.
The node corresponding to the valid character successor becomes
the new actual node, the top of the character stack is removed,
and the actual signature is processed in the Encoding phase (con­
tinuing the encoding of the word).
If there is no character successor of the actual node which equals
the actual character then the actual word is not the embedded
word: the original word is completed and additionally a new
word is found.
The characters of the character stack have to be stored in the
compression buffer (in the order they were written onto the
stack, Storing phase), thereafter the actual character has to be
stored in the compression buffer as well (Storing phase);
the actual signature is processed in the Start phase (as a first
signature of a new word).

3 Storing phase: If a character is found that encodes a signature
sequence then it is stored in the compression buffer as follows:
If the actual character is the same as the previous character stored
in the compression buffer then only its counter is increased by one.
Otherwise the actual character is stored in the next element of the
compression buffer (using 1 as the initial counter value).

2.3 Implementation of the Dictionary

For the sake of effectiveness and high speed of the signature compressor,
the signature trees of the dictionary are implemented as linked lis is in a
common diciionary buffer (a conventional memory array). A list element
(which is available at a given address of the buffer) representing a node of
a tree consists of the following fields:

the signature (or embedded character) associated with the node;
- the number of successors stored in the signature tree (limited to 3;

note that the structural properties of the control-flow graphs of pro­
grams enable this limitation as most of the signatures have only 1 or
2 valid immediate successors);

- a mask defining whether the successors are characters or signatures;
- a pointer addressing the successor nodes (address of the list element

representing the first successor; the other successors are stored in

SOFTWARE DIAGNOSIS 9.5

successlOn after the first one); if there IS no successor then a null
pointer is assigned.
The character which is associated with the node is exactly the address

of the list element, in this way it has not to be stored.
The placement of the linked lists in the dictionary buffer is performed

by the preprocessor which constructs the dictionary:
- The characters associated with the root nodes of the trees are exactly

the signatures associated with these nodes (i.e. the address of a list
element corresponding to a root node is the E:i.gnature which is associ­
ated with this node). This way, in the start phase of the compression
algorithm, the signature tree is accessed directly by the signature it­
self using it as the address.

- Since the other nodes (which are not root ones) can be associated
with arbitrary (but unique) characters, the dictionary buffer is fully
utilized (Fig. 3):

- list elements representing the root nodes are placed at the bot­
tom of the buffer, at the addresses determined directly by the
value of the signature;
list elements representing the successors of a given node are
found at successive (neighbouring) addresses, in this way the set
of successors is given by a single pointer.

2.4 Properties of the Compression Algorithm

The compression algorithm is real-time in the sense that the processing
time of a signature is bounded, independently whether the signature is
included in a word or it is encoded separately. The transfer of signatures
is not stopped or slowed down due to the need of compression.

Theoretically, the number of levels of the character embedding is not
limited. However, if a mismatch is detected by the algorithm then storing
the character stack needs extra time proportional with the number of char­
acters on the stack. It is controlled completely by the construction of the
dictionary, in this way the requirements of the real-time execution can be
taken into account.

The efficient hardware implementation is ensured by the following
design aspects:

- No run-time construction and modification of the dictionary is needed
(it is predefined).
The dictionary is stored in a form fully utilizing the dictionary buffer.

96 [.. \[.4 JZ[K

The root of a signature tree is addressed directly by the signature,
the successors of a node in a signature tree are addressed by a stored
pointer.
The examination of the possible successors requires a limited number
of comparisons.

3. Compression of the Signature Sequence in a SEIS WP

The previous section presented a compression scheme using a predefined
dictionary which can easily be derived analyzing the (high level) source
text of the program to be executed. The dictionary should be downloaded
into the compressor before the program run. In this way, starting new
programs requires the downloading of the new dictionaries which results in
time and hardware overhead (storage of multiple dictionaries), especially
in multi-tasking environments.

This section proposes a compression scheme which retains the sim­
plicity of the previous one but universal in the sense that it does not re­
quire any predefined dictionary. The scheme is based on the SEIS assign­
ment of signatures, thus it can be combined with SEIS watchdog proces­
sors. In the following, first the SEIS signature assignment is described then
the compression algorithm, its requirements and limitations are presented.

sign. count mask pointer addresses = characters

T1 s1 000 c9

r T2 s2 0 000 c2

T3 s3 2 000 c15 c2

s2 3 011 c10 '1 c9
) j s1, s2, ... signatures C. s8 0 c10 c1, c2, ... addresses,

c19 000 c13 c11 code characters

c18 000 c14 c12 R1, R2, ... root nodes

Fig. 3. Implementation of the dictionary

50FT\\·ARE DIAGNOSIS 97

3.1 The SEIS Signature Assignment

To keep the evaluation of the run-time signatures simple, the SEIS signa­
tures represent not only the statements of the program but also contain in­
formation about the valid (run-time) immediate successor signatures. Each
SEIS signature (as a statement label) consists of 3 individual parts called
sub labels. A signature is a valid successor of a previous signature if and
only if one of its sublabels is a valid successor of one of the sublabels of the
previous signature. The successor function of the sublabels is the function
increasing the value of the sublabels by one.

A valid path in the CFG is represented by a sequence of signatures
where each signature is a valid successor of the previous one. In this se­
quence, the successive signatures are connected by successor su blabels (an
edge of the CFG is associated with two unique sublabels, a startpoint sub­
label and an endpoint sublabel in the signatures belonging to the connected
nodes). Consider a signature in the run-time sequence. If the same sub­
label connects the predecessor signature to the actual one and the actual
signature to the successor one then the actual signature is called a com­
pressible signature in the sequence.

3.2 The Compression Algorithm

Each su blabel is unique in the signature set (within the limitations of the
number of bits in the signature w-ord), in this way one of the sublabels of
a signature identifies the complete signature, and thus a node of the CFG.
Based on this fact, a run-time sequence of signatures can be easily com­
pressed if all signatures in the sequence are compressible ones. In this case,
the sequence of signatures can be reduced to the sequence of sublabels
which connect the successive signatures. This sequence of sub labels is iden­
tified by the first and the last sublabels in the sequence (due to the deter­
ministic successor function), in this way it can be encoded by these two val­
ues, independently from the number of sublabels in the sequence (Fig. 4).

The compression algorithm examines the run-time signatures. If the
actual signature is a compressible one then the sequence may continue,
otherwise a subsequence is found which is reduced to a sublabel sequence
encoded by its first and last su blabels. The compressed sequence (the pair
of the two sublabels) is stored in the compression buffer.

1 Start phase: The first signature of a sequence is stored in a tempo­
rary buffer. The next signature is received. The sublabel of the first
signature which connects it to thi.c n pxt one is stored as start sub la-

98 I. MA1ZIK

bel, its successor in the next signature is marked as the actual sub la­
bel. The following signature is processed in the Encoding phase.
If there is no sublabel that connects the first signature to the next one
(e.g. this later one is an initial signature of a procedure) then the first
signature is stored (Storing phase, selecting an arbitrary sublabel of
it) and the next one is processed in the Start phase as first signature
of a new sequence.

2 Encoding phase: As the actual signature is received, it is examined
whether the previous signature is a compressible one.
If the previous signature is connected to the actual one by the actual
sublabel then it is a compressible signature. The successor of the
actual sublabel becomes the new actual sublabel, the next signature
is received and processed in the Encoding phase.

Sl:
e=j+k;
S2:
while (c>e)

S3:
if (c<d)

S4:
d=d+k;
SS:
c=c-d

}

else {
S6:
c=c-d/2;

}

S7:
printf(".");

}

S8:
printf ("end");

Example path:

Sublabel sequence:

Encoded by:

Run-time sequence:

1 x (13;1S)

s1-s2-s3-s4-s5-s7 -s3-s6-s7 -s3-s6-s7 -sS
Compression buffer:

1x(1;2) 1x(7;10) 1x(15;17) 1x(15;1S)

Fig. 4. Assignment and compression of SEIS signatures

If the sublabel of the previous signature, which connects it to the
actual signature, is not the actual one then the sublabel sequence

SOFTWARE DIAGSOSIS 99

is terminated. The encoded sequence is stored into the compression
buffer (Storing phase). The actual signature is processed in the Start
phase as first signature of a new sequence.

3 Storing phase: The compressed signature sequence is stored as the
pair of the start sublabel and the actual sublabel.
If this pair is the same as the previous one stored in the compression
buffer then only its counter is increased by one, otherwise the actual
pair is stored in the next element of the buffer (with 1 as initial counter
value).

3.3 Properties and Limitations of the SEIS Compression

In its original form, the assignment of the SEIS signatures did not take into
account the requirements of the compression. The edge sequences were de­
fined mainly in the order of the syntactic occurrence, the algorithm was not
optimized to assign compressible signatures. The efficiency of the above
defined SEIS compression can be further improved by path optimization:
preferred paths of the program execution, which are expected to be exe­
cuted frequently, can be distinguished by assigning compressible signatures
to the nodes. To do this, transformations are executed on the CFG before
the assignment of the sublabel values, still preserving the structural prop­
erties of it (i.e. not introducing additional paths). The following transfor­
mations are defined (Fig. 5):

cuJ

V ~
Shuffling of output edges Shuffling of input edges Duplication of edges

Pig. 5. Path optimization in the SEIS erG

- Shuffling the input or output edges of a node, i.e. reversing the sub­
labels in the signature;
Inserting duplicated edges between adjacent nodes of the CFG.
The first two transformations produce compressible signatures in a

given path, the third transformation (which can be followed by the first

100 I .. \fA JZII-:

two ones) enables a signature to be included in several different signature
sequences.

In the actual implementation of SEIS, the following constraints have
to be taken into account during the path optimization:

- The number of sublabels, thus the number of input/output edges
of a node is limited. (This limitation of sublabels is proved to be
still satisfactory for programs in common structural languages like C,
Pascal, Modula-2). Consequently, a signature can be embedded in
maximum 3 different compressible run-time sequences.
The number of input / output edges of nodes belonging to special state­
ments (exceptional cases in the structural languages, like goto, break,
etc.) is further limited. Additionally, in these nodes the way how the
output edges follow the input edges is fixed [11]. Due to these con­
straints, in most of the cases the necessary transformations cannot be
executed, thus the signatures belonging to these nodes terminate the
sequences of compressible signatures.
Due to the limitations of the path optimization in the SEIS CFG,

the optimal path selection and encoding cannot be performed in all cases.
The drawback is especially significant if there are more than 3 execution
paths (of about the same probability) in the body of a frequently executed
iteration. In these cases the general compression algorithm provides bet­
ter results, since there are no limitations in the path selection and encod­
ing. However, the lack of dictionaries makes the SEIS compression still
attractive.

4. Measurement Results

The real-time signature compressor can be built using a single FPGA cir­
cuit (Xilinx 3000 series) which needs only an interface to receive signatures
and an external memory array to store the compression buffer (and the
dictionary in the general case) [12]. The fast compression algorithm and
the low hardware overhead enable the circuit to be built into a conven­
tional watchdog processor unit [13]. The preliminary measurements were
performed using software simulation.

4.1 Compression Using a Predefined Dictionary

The effectiveness of the compression depends on the optimal selection of
the words, i.e. on the construction of the dictionary. To highlight this ef­
fect, the compression rate was measured constructing dictionaries of differ­
ent size. The benchmark program was a multi-grid based solver of differ-

SOFTVVARE DIAGNOSIS 101

ential equations, with reduced number of signatures (in average, every 5th
statement was associated with a signature). First the signature sequences
belonging to paths inside the iteration loops were encoded then additional
paths as well. The results (number of occupied elements in the compres­
sion buffer) are given in Table 1. The iteration loops of the solver are rela­
tively small, thus the compression rate is sensitive to small changes in the
dictionary. The iterations are data dependent, since for different input pa­
rameters (number of levels) the same changes in the dictionary result in
slightly different effects.

Table 1
Size of the compressed trace vs. dictionary size

Benchmark Without compression Dictionary size
85 89 95 116

multigrid 3 1.715 1.181 776 692 607
100% 69% 45% 40% 35%

multigrid 5 32.391 15.914 4.622 4.118 3.981
100% 49% 14% 13% 12%

4.2 Compression of SEIS Signatures

The effectiveness of the compression depends on the structure of the CFG
and on the result of the path optimization. The following measurements
were performed without additional path optimization (the original SElS
encoding algorithm was executed which encodes the paths looking for loops
in the CFG in the order of syntactic occurrence). The results are satis­
factory even in this case (Table 2). Signature sequences belonging to it­
eration loops and long statement sequences are compressed efficiently (in­
creasing the number of steps in the iteration of the multi-grid benchmark,
the compression becomes better). Nested loops and complex control struc­
tures make the compression difficult.

5. Support of Diagnosis

The compression buffer stores a limited number of signatures in a com­
pacted form. If an error (or other trigger event) is detected then the execu­
tion of the program is stopped and the compression buffer can be accessed
either by the checked computer itself or by external devices. On the basis

102

Benchmark

multigrid 3
multigrid 5
multigrid 7
whetstone
dhrystone 100
linpack

1. MAJZIK

Table 2
SEIS compression results

::\umber of Size of the
run-time signatures compressed trace

3.993
79.005

1.2.54.821
118.793
12.288

11.825.89·5

1008
13.386

160.073
38.895
3.705

603.300

Compression rate

25%
179C
131Jc
331Jc
301Jc

51Jc

of the stored signatures the sequence of statements executed before the er­
ror can be derived and analyzed (as part of the diagnostic procedure).

The successful diagnosis can be supported by the following extensions:
If the error is reproducible then the dictionary can be redefined on
the basis of the contents of the compression buffer (new paths can
be encoded which were not included in the dictionary), in this way a
longer signature sequence can be stored.
If the program reaches a well-defined stable point (e.g. commitment,
checkpoint generation, the initial state) then the compression can be
restarted. In this way the compression buffer contains the signature
sequence received after the stable point in the execution.
If a selected set of input events of the checked program (e.g. inter­
rupts, communication with other processes, input from peripherals,
timing events) is associated with signatures then input-specific or real­
time constraints can be diagnosed as well.
The statements executed before the error are presented in an envi­

ronment similar to the one of common debuggers: the statements or state­
ment sets of the program execution are highlighted in the source text sim­
ulating automatic trace or single step execution.

The above mentioned environment can help the input-domain based
testing of programs as well. Since the signatures identify the possible paths
of the program execution, it can be investigated whether a given test set
covers all of the possible branches of the program. The signatures not
transferred to the WP during the test identify the branches/paths which
were not executed.

6. Conclusion

In our paper a new approach of signature-based monitoring and debugging
of programs is proposed. It is shown that one of the concurrent error de-

SOFTWARE DIAG.'IOSIS 103

tection techniques, the application of watchdog processors can be extended
easily to support trace based diagnosis. Signatures which identify the states
of the program can be stored efficiently in a trace buffer, in a compressed
form. Two approaches for the real-time compression of the run-time sig­
nature sequence are presented and evaluated. Our future work is concen­
trated on the refinement of the diagnostic environment and on the improve­
ment of the path optimization in the case of SEIS signature assignment.

References

1. H1LL, C. R.: A Real-Time ..\licroprocessor Debugging Technique. In ACM SIGSOFTj
SIGPLAN Software Engineering Symposium on High Level Debugging, pp. 14.5-148,
1983.

2. BlIATT, D. GlIONA~j[, A. - RA~lANCJAN, R.: An Instrumented Testbed for Real-
Time Distributed Systems Development. In: IEEE Symp. on Real- Time Systems,
pp. 241-250, 1987.

3. TOKCDA, H. - KOTERA,..\1. :\lERCER, C. W.: A Real- Time :\lonitor for a Distributed
Real-Time Operating System. ACMjONR Workshop on Parallel and Distributed
Debugging, pp. 68-71, 1988.

4. TAL K. C. - CARVER, R. H. - OB.'dD, E. E.: Debugging Concurrent ADA Programs
by Deterministic Execution. IEEE Trans. on Software Engineering, Vo1. 17. ~o. 1.
pp. 4.5-63, 1991.

.5 . ..\lAEHLE, E. OBELOER, vY.: Delta-T: A '[ser-Transparent Software :\Ionitoring Tool
for "\lulti-Transputer Systems. ivficroprocessing and kficraprogramming, Vo1. 35,
pp. 24.5-252, 1992.

6. C . .uVEZ, J. P. PASQCIER, 0.: Real-time Behavior :\Ionitoring for ?llulti-Processor
Systems. kficrapracessing and Microprogramming, Vo1. 38, pp. 213-220, 1993.

- HABAN, D. - \VYBRANIETZ, D.: A Hybrid ?lIon it or for Behavior and Performance
Analysis of Distributed Systems. IEEE Trans. on Software Eng., Vo!. 16/2, pp. 197-
211,1990.

S. :\L';'!l:1100D, A.
Processors
1988.

.'v1cCLeSKEY, E ..].: Concurrent Error Detection 1..7 sing Watchdog
A Survey. IEEE Transactions on Computers, Vo1. 37. pp. 160-174,

9. Le, D. J.: Watchdog Processors and Structural Integrity Checking. IEEE Trans. on
Comp. Vo1. 31, pp. 681-685, 1982.

10. PATARICZA, A. - :\lAJZIK, I. - HOHL, vY. HONIG, J.: Watchdog Processors in
Parallel Systems. IvIicraprocessing and Microprogramming, Vo!. 39 (Proc. Euromi­
cra '9S. 19th Symposium on Microprocessing and Micraprogramming, Barcelona,
1993), pp. 69-74, 1993.

11. ..\1AJZIK, I.: SEIS: A Program Control-Flow Graph Encoding Algorithm for Control
Flow Checking. Technical Report ~o. TCB-TR-94-EE14, Technical 1..7niversity Bu­
dapest, Hungary, 66 pages, 1994.

12. LOVESZ, L.: Signature Based Software Diagnosis. Project laboratory report, Technical
1..7 niversity of Budapest, Dept. of ?lleasurement and Instrument Engineering, (in
Hungarian), 1994.

13. :\IA1ZIK, 1. - PATARICZA, A. - DAL CIN, lvI. HOllL, W. HONIG, J. - SIElI, V.: Hi­
erarchical Checking of Multiprocessors using vVatchdog Processors. Springer L~CS
852, Springer Verlag, Berlin, Heidelberg, pp. 386-403, 1994.

