
PERIODIC.4 POLYTECHNIC.4 SER. EL. ENG. I'OL. 39, NO. 1, PP. 3-26 (1995)

SIMULATION-BASED PERFORMABILITY ANALYSIS
OF MULTIPROCESSOR SYSTEMS

Axel HEIN and \iVolfgang HOHL

Institute for Computer Science HI (IMMDIII)
University of Erlangen-Niirnberg

Martensstr. 3
D - 91058 Erlangen

e-mail: alhein@immd3.informatik.uni-erlangen.de

Received: Dec 16, 1994

Abstract

The primary focus in the analysis of multiprocessor systems has traditionally been on their
performance. However, their large number of components, their complex network topolo­
gies, and sophisticated system software can make them very unreliable. The dependability
of a computing system ought to be considered in an early stage of its development in order
to take influence on the system architecture and to achieve best performance with high
dependability. In this paper a simulation-based method for the combined performance
and dependability analysis of fault tolerant multiprocessor systems are presented which
provide meaningful results already during the design phase.

Keywords: fault tolerant multiprocessor systems, performability analysis, object-oriented
model design, process-oriented simulation.

1. Introduction

The performability analysis of multiprocessor systems is a complex and im­
portant issue. This class of computing systems designed for the computa­
tion of time-consuming numerical algorithms has to provide fault tolerance
mechanisms in order to tolerate the failure of components and to continue
working even with reduced performance. The probability of a component
failure increases with increasing number of components and the whole sys­
tem would be useless if every component failure caused a failure of the
complete system.

Performance and dependability can be analysed via various meth­
ods. Measurements based on benchmarking or monitoring are only possi­
ble when the real machine or a prototype already exists. In this late phase
of the design cycle the hardware and major parts of the system software
are fixed and cannot easily be changed. Therefore, it is difficult to correct
weak points and bottlenecks. In order to exert an influence on the sys­
tem design the performance and dependability analysis has to take place as

4 A. HEIN and IV. HOHL

soon as possible, i.e., already during the design phase. Theoretical meth­
ods like analytieal and simulation models facilitate the evaluation of com­
plex systems during the early design phase.

In this contribution, the simulation environment SimPar (REIN 1994)
is described which combines object-oriented software design and process­
oriented simulation allowing a detailed performability evaluation of mas­
sively parallel systems. The simulation considers specific fault tolerance
mechanisms and actual workloads as well as the inter-component depen­
dencies thus capturing the essential characteristics of the actual system.

\Ve address the issue of dependability analysis via simulation-based
fault injection of massively parallel systems. Faults are injected in a simu­
lation model of the target architecture which also comprises software imple­
mented fault tolerance algorithms and application programs. In this way,
the dependability of the multiprocessor system can be analysed under real­
istic circumstances and the evaluation can be carried out already during the
system development. Discovered faults and weak points of the system de­
sign can be corrected to avoid their manifestation in the hardware system.

The paper is organized as follows. In Section 2 popular methods and
existing tools for performance and dependability evaluation of computing
systems resp. related works are briefly described. \Ve present a simulation
environment and a concrete simulation model developed for the performa­
bility analysis of multiprocessor systems in Section 3. The simulation ex­
periments of Section 4 prove the usefulness and efficiency of the approach:
in Section 5 the main issues of the paper are summarized and a brief out­
look for future work is given.

2. Modelling Techniques and Related Works

A modelling environment for performability analysis has to provide sup­
port for the modelling of the topology and functionality of the target sys­
tem as well as for the consideration of workload and for fault injection.
Performance analysis would be superficial and only of theoretical interest,
if realistic workload is not taken into account. For example, the peak per­
formance of a multiprocessor system is often calculated as the product of
the peak performance of a single processing node and the number of pro­
cessing nodes; this artificial scenario does not consider the communication
overhead of distributed systems and is not realistic at all. Fault injection
is mandatory for dependability analysis and can be conducted dependent
on the modelling technique in various ways. To summarize briefly, a mod­
elling environment which fulfills our needs and requirements has to provide
the following characteristics:

SIMULATION-BASED PERFORl'lfABILITY A,VALYSIS 5

Our main interest is the evaluation of massively parallel systems in­
cluding easy scalability. The resulting models are large-scale and
ought to be scalable. An object-oriented model design facilitates the
specification, implementation, and feasibility of such large and flexi­
ble models. An important feature is the simplicity to define the log­
ical and physical interrelationships among the numerous single com­
ponents.
In order to depict realistic workload, it is desirable to take into con­
sideration real application programs or their time and resource re­
quirements such as computing time, communication requirements, in­
put/output behaviour, etc. "\vithin the models.
:Modelled system components such as processors or routing switches
can be set in faulty states, i.e., their predefined fault-free behaviour is
disturbed. This feature of fault injection is considered and interpreted
differently from different point of views corresponding to the used
modelling technique.

In this section, two of the most important and popular modelling
techniques and some modelling tools are discussed which are widely used
in the field of performance and dependability analysis of multiprocessor
systems.

2.1 Analytical Methods

Analytical methods like Markov processes, queuing systems and various
types of Petri nets are popular methods to construct models of the target
system, which can be solved by analytical and numerical procedures. These
types of models depict the target system on a very high level of abstraction
in the very early design phase; sophisticated and well-known algorithms en­
able the computer architect to specify and analyse a rough model of the tar­
get system in a short time. Recently, lvIarkov reward models and a specific
class of timed Petri nets, the Generalized Stochastic Petri Nets (GSPN), are
frequently used methods and provide useful tools in performability analysis.

Numerous analytical models of massively parallel systems are based
on variants of standard Petri nets, which are effective means for the de­
scription and analysis of con currency and synchronization in parallel sys­
tems. Standard Petri nets are well suited for the description of the log­
ical structure of systems, but they do not include any time concept, i.e.,
they cannot be used to carry out a quantitative analysis of the system be­
haviour. The consideration of time in Petri nets allows the modelling of
the dynamic behaviour of systems, taking into account both the state evo-

6 A. HEIN and Vi. HOHL

lution and the duration of each action performed by the system. Different
approaches of timed Petri nets are discussed by MARSAN (1990).

\Videly used versions of timed Petri nets are called Stochastic Petri
Nets (SPN) OvlARsAN et al., 1984 and MOLLOY 1981). They are obtained
by associating with each transition in a Petri net an exponentially dis­
tributed random variable which expresses the delay from the enabling to
the firing of the transition. MOLLOY (1981) showed that (SPN) are isomor­
phic to continuous-time Markov chains (CTMC) which can be handled via
well-known analytical and numerical methods.

The so-called GSP Ns (Generalized Stochastic Petri Nets) are intro­
duced by MARSAN et al. (1984) and (1987). They are an extension of the
SP Ns in which timed and immediate transitions both are allowed. Imme­
diate transitions fire in zero time once they are enabled. Timed transitions
fire after a random, exponentially distributed enabling time. It has been
proven that GSPNs are isomorphic to CTMCs, i.e., every GSPN model can
automatically be converted to a CTMC.

A formal definition and comprehensive description of SPSs and
GSPNs including numerous examples can be found at (:YL.x.RSA:\ et al.,
1986). In recent years, numerous tools have been developed and presented
supporting the analysis of SPN and GSPN models such as PENPET
(LEPOLD, 1992), SHARPE (TRIVEDI et al., 1987), SPiVP (TRIVEDI et al.,
1990) and others. Because of the isomorphism of GSPlYs and CT1\,ICs,
the models can be analysed via procedures which are implemented in these
tools. The user has to construct and parametrize the GSPiY model: the
tools generate the underlying CTjlC and analyse it via analytical and nu­
merical methods.

The so-called stochastic activity networks (SA.~Y) implemented in the
tool VltraSAi\ are an extension of GSP.Y s (SA:.iDERS et aL 1991 and
1993). Impulse-based re·wards, which are associated \vith the completion
of an activity. and rate-based rewards are allowed: the latter are associated
with markings. A specification method for combining various submodels
in a hierarchical manner is provided.

I\lodels based on GSPSs and CTjlCs can represent massiYely par­
allel systems only on a very abstract level because of their fast growing
complexity and the huge state-space. A support of hierarchical model de­
sign which has only been found in SHARPE facilitates the realization of
large-scale models using this modelling technique. \Yorkload is considered
implicitly, i.e., the model designer defines working, non-working, and other
states of the system as well as transitions between the states. In GS P cY s
and CT1VICs, fault injection is carried out by defining transitions from
fault-free system states to faulty system states, and vice versa, and putting
a probability or distribution function on them. Rewards can be added to

SIMULATION-BASED PERFORMABILITY ANALYSIS 7

the model states in order to measure performance and - in case of faults -
performance degradation.

2.2 Simulation Models

Simulation models of the target architecture are powerful means delivering
accurate results and avoiding some constraints of analytical modelling such
as state space explosion and simplifying assumptions. In comparison to the
GSPN or CTMCbased analytical tools, simulation-based tools offer greater
flexibility. Different levels of detail can easily be simulated, from the gate
to the system level, and complex relationships and dependencies among
the system components can be modelled. Furthermore, more complicated
time behaviours can be considered, for instance deterministic time as well
as Weibull or normal distributed time.

Simulation tools provide different types of model construction, for in­
stance the abstract Petri net method and the object-oriented method, where
each component of the basic system is represented by an object in the sim­
ulation model. Simulation tools provide the user with a simulation engine
which handles the administration of the event list and the scheduling of the
pseudoparallel processes running in the simulation environment. Further­
more, the tools contain algorithms for the generation of random numbers
and the recording of information which arise during the runs of the simula­
tion experiments. The user only has to define the model, the experiments,
and the characteristics to be measured.

Several tools developed in the last decade facilitate the detailed anal­
ysis of parallel system via simulation-based methods, such as C++SIM,
CSIM, DEPEND, SIMPACK++, which are briefly described in this section.
Typically, a process-oriented approach is chosen which is more convenient
and feasible for the construction of large-scale models and for the mod­
elling of complex intercomponent dependencies than the pure event-driven
approach (Schwetman 1986). The system behaviour is described by a col­
lection of asynchronous processes (or co-routines) that interact with one
another. Processes represent the functionalities of the system components,
e.g. of the processors or routing switches. Only one process executes in any
instance of real runtime, but many processes may execute at any instance of
simulation time. The processes which are currently inactive are placed on a
simulation queue, which is arranged in increasing order of simulation time.
The execution of these processes is coordinated by a simulation scheduler.

Besides, the process-oriented simulation environment allows actual
user-defined distributed programs to be run within the simulation envi­
ronment to analyse the complete system considering the multiprocessor

8 A. HEIN and W. HOHL

hardware, operating system, and workload. The workload consists of user­
defined algorithms modelling the structure and the dynamic behaviour of
application programs \~hich are common from the point of view of compu­
tation and communication.

2.2.1 C++ SIM

C++ SIM (LITTLE et al., 1991) is a simulation package written in
C++ which provides discrete process-based simulation similar to SI M­
ULA's simulation class and libraries. The simulation environment pro­
vides active object.s, which are instances of C++ classes, as the units of
simulation. For its implementation, use has been made of Sun Microsys­
terns lightweight process (thread) package which can be replaced by other
lightweight process packages.

The processes are the basic components of this tool and the user has
to use the type inheritance facilities of C++ to generate his models, i. e.,
the user can define his own classes of processes representing the desired
functionalities. The paradigm of object orientation facilitates the construc­
tion and maintenance of hierarchical and large-scale models; nevertheless,
the definition of the complex relationships between the numerous compo­
nents is not sufficiently supported and a suitable modelling environment
has to provide such easy-to-handle means. Software written in C and C++
can be executed within the simulation environment representing realistic
\vorkload, whereas fault injection is not possible

2.2.2 CSIM

CSIM (SCHWETMAN, 1986) is written in C and runs on various comput­
ers and operating systems. It is a process-oriented simulation package for
use with C or C++ programs. It is developed for the performance evalua­
tion of computer and communication systems. CSIM is implemented as a
library of routines to create simulation programs. It can be used as an ex­
ecution and test environment for parallel programs. A simulation model is
specified by writing a C or C++ program and by including the library and
simulat.ion environment offered by CSIM. The stat.istics gathering is par­
tially automated and is easy to extend. Facilit.ies representing basic servers
and storages can be declared and allocated using several different. service
disciplines (FCFS, Round-Robin, etc.). CSIM offers more powerful basic
objects t.han C++SIM, but basically, the same points concerning the use­
fulness and drawbacks of C++SIM already mentioned in Section 2.2.1 are
valid for CSIM.

SIMULATION·BASED PERFORMABlLITY ANALYSIS 9

DEPEND has been developed by Gos\vami and Iyer (1992 and 1993). Like
CSIM it is a process-oriented simulation environment, but it supports de­
pendability and performance analysis by allowing the simulated injection
of faults in the simulated components. DEPEND is written in C++; it was
designed to handle functional fault models which simulate the system level
manifestation of low-level faults, such as stuck-at faults.

For model construction the user has to write a C++ or C control
program using the pseudoparallel simulation environment and the object
library provided by DEPEND (Fig. 2.1). After compiling and linking the
experiment can be carried out. Faults are injected into the components as
well as faulty components can be repaired. Besides, data are automatically
gathered in the fault statistics.

In the following part, we only speak about objects, but more exactly
and following the terminology of object-oriented programming, DEPEND
provides classes and the user has to instantiate the classes in order to
create objects. There are basic objects for the synchronization of processes
(events), for the exchange of messages between processes (mailboxes), and
for the statistics gathering. Complex objects simulate the behaviour of
a self-checking processor, of a TMR-system, or of a fault tolerant link
connection. All objects are designed with four criteria (GOSWAMI AND
IYER, 1992):

The objects make very few assumptions and should be of general­
purpose.
The objects should easily interface with other objects.
The objects should be easy to customize and easy to use in creating
new objects.
The object should provide default functionality to reduce the work
done by a user. It should be possible to override these defaults.

Another fundamental DEPEND object, the fault injector, is used to
inject faults in any components to disturb their predefined behaviour. To
activate the injector, the user specifies the time to fault distribution for
each component and the fault subroutine which specifies the fault model.
For instance, as soon as a fault is injected into a link, the messages are cor­
rupted or lost by a process modifying or destroying the messages. Various
distributions of fault injection time, such as exponential, \Veibull, or load

10 A. HEIN and W. HOHL

dependent can be used. A fault report including mean time between fail­
ures, mean time to repair, etc. is automatically created and updated dur­
ing the simulation runs.

execution in pseudo-parallel
run-time environment

Fig. 2.1. Steps in developing and simulating a model with DEPEND

Soft,vare written in C or C++ for the target system can be executed within
the simulation environment to examine their runtime behaviour or to test
implemented fault tolerance algorithms. DEPEND has successfully been
used for the analysis of a TMR-based system and for the simulation of
software behaviour under hardware faults (GoswAMI, 1993).

DEPEND provides powerful and flexible objects for dependability
analysis of small models like TMR systems, but it does not sufficiently sup­
port the development of large-scale models of massively parallel systems.
There is a lack of methods facilitating the definition of the complex rela­
tionships and intercomponent dependencies which are typical for multipro­
cessor systems.

2.2.4 SIMPACK++

SIMPACK (Fishwick) is a collection of C and C++ libraries and executable
programs for computer simulation. Several different simulation algorithms

SIl .. fULATION·BASED PERFORMABILITY ANALYSIS 11

are supported including discrete event simulation, continuous simulation
and combined simulation. The following modelling types are available:

Declarative models: models with explicit state transitions as finite
state machines and Markov models.
Functional models: queuing networks, block models, pulse processes
and stochastic Petri nets.
Constraint models: defined by differential and difference equations.
Multimodels: hybrid conglomerates of other models connected in a
graph or network to solve combined simulation problems at multiple
abstraction levels.

SIMPACK has been used in simulation classes at the University of
Florida. It was originally coded in C and many parts have been ported to
C++. For abstract models such as queuing systems and Markov models
SIMPA CK is an interesting and useful tool, but it is not sufficiently suited
for a detailed simulation of fault tolerant massively parallel systems con­
sidering the possibility of fault injection.

3. SimPaT - an Environment for the Simulation-Based
Performability Analysis of Multiprocessor Systems

The tool DEPEND (Goswami and Iyer 1992) has been taken as the ba­
sic simulation engine and has been extended to facilitate the modelling of
multiprocessor systems. DEPEND provides a pseudo-parallel runtime en­
vironment which schedules the light-weight processes and a library of el­
ementary objects such as mailboxes, links and fault tolerant servers (de­
scribed in Section 2.2.3). In addition, dependability experiments can be
performed by injecting simulated faults into the components. DEPElvD
does not sufficiently provide means for the design and implementation of
large-scale models resulting from massively parallel systems. The simula­
tion environment SimPaT is developed to enhance the modelling power of
DEPEND and its main issue is the evaluation of massively parallel systems
which provide elementary fault tolerance mechanisms such as spare proces­
sors and redundant communication paths.

SimPaT is an easy-to-handle extension of DEPEND; it provides proce­
dures for the development of models of massively parallel systems and, thus,
facilitates the performability analysis of these systems. Various classes rep­
resenting complex components like interconnection networks and classes
for specific components such as routing switches and processors have been
implemented. The system architecture is modelled as well as its functional

12 A. HEIN and W. HOHL

behaviour. Methods are provided which enable the user to depict the hard­
ware topology of the target multiprocessor system, to define his simulation
experiments, and to start application programs running \vithin the simula­
tion environment.

For instance, a distributed numerical algorithm is running concur­
rently to fault-diagnosis programs and a Weibull distribution defines the
failure time of the routing switches. After the occurrence and detection of
a routing switch failure the simulated multiprocessor system has to be re­
configured and restarted; furthermore, another routing mechanism must be
considered to bypass the faulty routing switch. The reconfiguration policy
causes a loss of performance due to the routing switch failure which can be
measured via the simulation model.

Like DEPEND, SimPar combines process-oriented simulation and
object-oriented model design in order to facilitate an efficient model devel­
opment and a feasible handling of large-scale models.

3.1 Object-Oriented Model Development

Object-oriented design is the construction of a software system as a
structured collection of abstract data type implementations. Data abstrac­
tion and inheritance are central features of the object-oriented software de­
sign which are ideal for the design, reusability, and scalability of large-scale
models of massively parallel systems. Inheritance allows a new class to be
derived from an existing class and to inherit its features in order to become
an extension or a specialization. In several phases of inheritance and deriva­
tion very powerful and specialized classes can be provided without reim­
plementing every class from scratch. Additionally, the class hierarchy fa­
cilitates the reusability and maintainability of complex simulation models.

In accordance with the object-oriented approach classes are imple­
mented in the object-oriented language C++ representing the processors,
routing switches, and links which encapsulate the component-specific func­
tionalities.

When the model of the target multiprocessor system is initialized,
objects of these classes are created and dependencies between the objects
are defined in a manner that the essential characteristics of the real sys­
tem are simulated. The physical connections between the processors, rout­
ing switches, and links are simulated via logical depelldencies between cor­
responding objects. The object-oriented design facilitates the hierarchical
model construction, the encapsulation of the component-specific function­
ality, and the reusability of the models. For instance, the model can easily
be modified by replacing the class of the processor by another class, which

SIMULATION·BASED PERFORMABILITY ANALYSIS 13

simulates the real processor in more details or represents a completely dif­
ferent type of the processor. The classes representing the links and routing
switches of the target system are combined in macro classes which model
the interconnection network of the system and can be replaced by classes
representing other networks with minimal effort.

The user has only to define the topology and the size of his simulation
model, for instance, the number of processors (an example for the scalabil­
ity of a simulation model is given in Section 3.3). An appropriate number
of objects of the processors, routing switches and links is initialized and the
interrelationships between the objects are defined without any additional
lines of user code or an additional effort during the preparation of a simu­
lation run. Thus, easy scalability of complex and sophisticated simulation
models is ensured.

3.2 Target System

In this section the topology of a concrete multiprocessor system is pre­
sented. The target hard\vare is a Parsytec GC multiprocessor system which
has been the hardware platform of the FT M P SI project (Parsytec, 1991).
This massively parallel machine is designed in order to run scientific and
technical application programs requiring huge computing power. This is
achieved by the large number of processing elements and their connection
via communication paths providing high band"width. In addition to this,
the Parsytec GC system takes into account the increasing probability ofthe
failure of system components, \vhen their number becomes very large: re­
dundant processors replace faulty processors and the communication paths
are redundant to reduce communication delays as well as to tolerate the
failure of links and routing switches.

The architecture consists of a data network on which the user appli­
cation runs and a control net\vork which performs supervising and moni­
toring functions. The topology of the data network is a three-dimensional
grid in which each node corresponds to a cluster containing 16 processors
plus 1 spare processor: these 17 processors are fully and redundantly con­
nected via 4 crossbar-like routing switches (Fig. 3.1).

The control network also forms a three-dimensional grid; each con­
trol unit consists of a control processor and a control routing switch and
supervises 4 clusters of the data network (Fig. 3.2). An entity of 4 clusters
and a control unit forms a cube. \Yithin the clusters the routing switches

1 ESPRIT project 6731: FTMPS (a practical approach to Fault-Tolerant ;-'fassively
Parallel Systems)

14 A. HEI.V and W. HOHL

\
\ I

\ I

\ : cluster with 4 routing switches :

\t ~~ ~6'::I_p.::o.:e:s':.'"~ _____ ~

Fig. 3.1. Grid topology of the data network

f:!1l cluster

• control unit

data network

control-network

Fig. 3.2. Grid topology of the control network

and processors are lined up in 4 daisy chains via 2 additional control links,
·whereas the spare processor is directly connected to the control unit (Fig.
3.3). The control network is the hardware basis of the fault tolerance soft­
ware developed for the Parsytec GC. The processors and routing switches
of the data network send error messages to the control units when their
on-chip control hardware detects an error. The control processors can stop
the application programs running on the processors of the data network by
sending halt messages via the control network. Furthermore, the control
processors supervise their neighboring processors in the three-dimensional
grid of the control network.

SI.IfULATION·BASED PERFORMABILITY ANALYSIS

-x-------

+Y

control unit

• routing switch

~ control-processor

• application-processor

-- control-network

Fig. 3.3. Control network within a cube

3.3 Simulation Model of the Target System

15

SimPar has been used to construct the simulation model of the Parsytec
GC in accordance with the object-oriented approach in order to facili­
tate the scalability and reusability of the simulation model. In the fol­
lowing, SimParGc stands for the simulation model of the Parsytec GC
(REIN, 1994). Each object in the model represents a group of physical
components performing some system function. Classes of objects are im­
plemented which simulate the functionalities of the processors, links and
routing s,yitches in the target system (Fig. 3.4). These objects are hier­
archically connected together to form a complete system. In this section
a simulation model of the concrete architecture is described, but the con­
cepts are generally usable and a simulation model of any multiprocessor
topology can be developed ,yith SimPar following the same approach.

The processor object is supposed to perform processes, to schedule
them, and it has to receive and send messages. As soon as a fault is
injected or a latent fault is activated, the processor object ejects any jobs
in progress and stops handling messages. The on-chip control hardv,rare
of the pro€essor is modelled to simulate fault injection and fault tolerance
experiments in an accurate manner, i. e., if an error is detected by the on­
chip control hardware a corresponding error message is sent to the control
processor of its cube.

16

f fault
injection

process
scheduling

processor object

A. HEIN and W. HOHL

fault
injection

message handling
routing

GG ••• GG

routing switch object

Fig. 3.4. Basic components

fault

link object

The routing switch object receives and fon'lards messages: the on-chip
control hardware fulfills the same task as the on-chip control hardware of
the processor object. A faulty routing switch communicates no longer with
its links, and all messages buffered in the routing switch are lost.

The link object receives messages at a port and forwards it to the
other port. When a link object is injected, it stops forwarding messages
from the incoming to the outgoing port or it corrupts messages. The rela­
tionships and dependencies among the basic components of the simulation
environment have to be defined in a "'lay, that the topology and functional­
ity of the target system are represented. More complex objects are created
which model parts of the multiprocessor system, such as clusters and cubes
of the Parsytec GC (Fig. 3.5). A cluster object contains several processor
objects and routing switch objects \'lhich are connected by an appropriate
number of link objects. The cube object comprises a processor object, a
routing switch object and several link objects modelling the control net of
a cube. The cluster and cube objects model the topology and functional­
ity of a cluster and a cube of the Parsytec GC, respectively, which are de­
scribed in Section 3.2.

After the user has defined the number of clusters in the three spatial
dimensions. of the data network, the required number of clusters and control
unit objects are automatically initialized, and the model of the target archi­
tecture is constructed in two steps. Firstly, the interdependencies between
the cluster and cube objects are defined to model the topology of a single
cube of the target system; secondly, additional link objects are positioned

SIMULATION·BASED PERFORMABILITY ANALYSIS 17

000··· 0 0
~ ~ ~ ... ~ ~ ~ ~

• m~ 0···m • c:::::5I
•
~ ••• ~

E1 ~
cluster objects cube object

Fig. 3.5. Objects for clusters and cu bes

to enable communication via the data network between the cluster objects
as well as communication via the control network between the control unit
objects. The final object is a model of the overall target multiprocessor sys­
tem (Fig. 3.6, object MP). The hierarchical model structure supported by
the object-oriented design facilitates the scalability and reusability of the
simulation model. For instance, the processor object (Fig. 3.4) can easily be
replaced by another object, which models the real processor in more detail.

The multiprocessor object MP is totally scalable by varying the num­
ber of clusters in the three dimensional grid of the data network. It is the
interface to the user-written control program, i.e., the user has to call meth­
ods of the MP object to load user-defined processes on the processors of the
data and control net>vork. These processes can be real distributed applica­
tion programs as ;,vell as operating system routines. For instance, fault tol­
erance programs to perform fault diagnosis and reconfiguration of the sim­
ulated multiprocessor system can run on the simulated multiprocessor sys­
tem as well as distributed number crunching algorithms modelling realistic
workload. Messages are sent from the sending processor object through the
intermediate link and routing switch objects of the data or control network
to the receiving processor object. Like in the target system, successfully
received messages are acknowledged. Additionally, the MP object provides
methods to define the fault injection, to get information about the current
system state, and to output fault reports. The system analyser prepares
his experiments by simply calling methods of the MP object.

To summarize, the following steps are required to prepare and run a
simulation experiment with SimPar:

18 A. HEIN and W. HOHL

B c==:JI B ~

! •• • ~···O o ... ~ ... • •• j
!

B
~ B · · •
~

.... ~ ~ •••

Fig. 3.6. Object MP: model of the complete multiprocessor system

1. Definition of the multiprocessor architecture. If SimParac is used,
the basic topology is predefined and it is sufficient to input the size of
the system. Furthermore, the global random number generator used
for fault injection has to be initialized with a seed.

2. Definition of the dependability experiment, for instance fault injec­
tion into various components based on distribution functions. Fault
tolerance algorithms can be loaded and executed on the simulated
multiprocessor system.

3. Definition of the workload. User-defined application processes are
mapped and loaded on the model in order to simulate a realistic work­
load scenario.

4. Start of the experiment.
5. End of the experiment; output and analysis of the simulation results.

4. Examples

In this section we present two problems which have to be examined within
the FT MPS project and which are analysed with the simulation model
SimParac described above. The first example described in Section 4.1
deals with fault diagnosis which is based on heartbeat messages; the fault
diagnosis algorithm specified for the Parsytec GC multiprocessor system

i
i

SIMULATIOS-B.4SED PERFOR.\fABILlTY ASALYSIS 19

uses heartbeat messages to detect and localize faulty processors. Spare pro­
cessors are available in the target system which replace faulty ones; different
reconfiguration policies are possible and their efficiency depends strongly
on the actual distributed application programs as 'we show in Section 4.2.

4.1 Fault Diagnosis based on Heartbeat Messages

Fault tolerance methods are added to SimParGc in the form of an
error detection and localization mechanism based on heart beat messages
and on the fail-silent assumption of the processing nodes.

__________ J

----------,
I

I

Fig. 4.1. Heartbeat messages

control-unit

I!iIIiIiI routing switch

~ control processor

• application processor

One of the tasks of the control processors is the detection and localization
of faulty application processors. For this purpose we implement heartbeat
messages sent by the application processors to the associated control pro­
cessor. A specific connection is used between one routing switch per clus­
ter of the data net\\"ork and the routing switch of the control unit, which is
the only hardware connection between data and control network. Each ap­
plication processor performs an additional high-priority process that peri­
odically sends a heart beat message. Furthermore, on each control proces­
sor a supervisor process periodically checks the time stamps of the associ­
ated application processors of the 4 clusters. The paths of the heartbeat
messages within a cube are shown in Fig. 4.1.

The messages are sent periodically in predefined time intervals and
the control processors perform timeout checks. Ewry control processor

20 A. HEIN and W. HOHL

updates the last time stamp of an application processor as soon as it re­
ceives a heartbeat message of this processor. The frequency of the heart­
beat messages has a large impact on the efficiency of this error detection
mechanism. On the one hand, errors of sub components as processors in a
multiprocessor environment have to be detected as fast as possible to avoid
error propagation; in order to achieve a short latency time, the heartbeat
messages have to be sent and checked very frequently. On the other hand,
processes sending heartbeat messages can influence the runtime of the con­
current application programs.

·When implementing heartbeat messages in distributed systems the
three parameters TA.L, Tsv and TDlvI have to be defined. TAL is the time
interval after that the application processor has to send a heartbeat mes­
sage. A high-priority process is started on every application processor send­
ing the messages in an infinite loop. Since we use a priority-driven process­
scheduling strategy and since there are no other high-priority processes
running on the application processors, the process sending heartbeat mes­
sages accesses the processor as soon as it calls for it.

After every Tsv time units a high-priority process running on every
control processor checks the last time stamps of its associated application
processors and assumes that a processor is faulty if its last time stamp is
older than Tm.I time units.

The maximum allmved delay time TD:'II between two successive time
stamps of an application processor has to consider the time interval TAL,
but also the possible time delay of the message caused by high message
traffic and contention in the network. If T D:vI is too small, the control
processor would falsely assume that a non-faulty application processor is
faulty, whereas its heartbeat message is blocked in the network and does
not arrive in time.

It is an important and complex issue to tune this mechanism to
achieve small error detection times without false alarms and to influence
the flow and runtime of application programs during the fault-free case as
little as possible. \Ve implement and execute the described mechanism on
SimParcc, the simulation model of the Parsytec Gc, and vary the pa­
rameters TAL, Tsv: and TD 1'vI, to find out their influence on the latency
times. The heartbeat messages use both the data network and the control
network, because they are sent via the connection between them.

In order to simulate a realistic situation, we start an application pro­
gram concurrently to the processes of the heartbeat mechanism. The ap­
plication program models the \vorkload and performs a grid-like communi­
cation pattern, i.e., application process (i,j) exchanges data with applica­
tion processes (i -1,j), (i + Lj), (i,j -1) and (i,j + 1). This communica­
tion pattern is typical for a large class of numerical algorithms such as the

SJ.\fULATION-BASED PERFORMABILITY ANALYSIS 21

red-black relaxation or multigrid methods for the analysis of partial differ­
ential equations, in which the data are partitioned among the processing
nodes. The simulation model is initialized \vith 4 clusters and a control
unit forming a cube.

The results of the simulation experiments do not show any measurable
difference of latency times between the experiments \vith and without the
concurrently running application program performing frequent interprocess
communication. This is due to the fact that the processes sending heartbeat
messages are the only high-priority processes running on the application
processors; therefore, it is guaranteed that it is executed by the processor
as soon as it calls for the processor. Another reason is the high redundancy
in the data network of the clusters. Every processor has 4 links w'hich can
be used for interprocessor communication and the application processes
have at most 4 logical neighbouring processes, i.e., the links are not loaded
intensively. The process sending heartbeat messages can only use the link
connected to the routing switch of the data network which has a link to
the control unit. The links between the control processor and the routing
switches of the data network are not used by application processes; there­
fore, running application processes including their communication have al­
most no impact on the contention situation in this part of the network.

In Fig. 4.2 the curves represent the mean latency times of the heartbe­
at-based error detection mechanism \vith concurrent application processes.
Heartbeat messages are sent in intervals of T.4L = 1.0 sec; the time intervals
Tsv" and TDM are shown in the figure. It can be seen that the latency times
increase almost linearly with Tsv. An interesting fact is that the latency
time is not reduced if TDM is chosen smaller than 1.1 sec (not shown in
the figure). For comparison purposes curve ctrl shows the mean latency
time, if the error is detected by the on-chip control hardv·;are of the injected
application processor and an error message is automatically sent to the
control processor; the mean latency time in this case is 4.404e-6 sec. The
values are based OIl the performance of the target system and are measured
with a relative error less than 5.0 percent.

4.2 Impact of Reconfiguration Policies on the Run Time of Distributed
Application Programs

In this example we inject permanent faults in the processors of the data
network. After error detection and fault diagnosis the system is reconfig­
ured and the application processes of faulty processors are restarted on the
spare processors. If the initial mapping was optimal, a loss of performance
has to be accepted which will be measured. The loss of performance causes

22

16

14

-. 12 <.;

" .::.
'" 10
~
C· 8
~
.3 6
:::
" ~ 4

2

0

A. HEIN and 1V. HOHL

0 2 4 6 8 10
Tsv {sec]

Fig. 4.2 . .\lean latency times

12 14

TDM [se~] =

"IO.O" ~

"8.0" -+-
"6.0" -B-
"4.0" -')(-
"2.0"
"1.5"
"1.]"

"clrl"

.b.

"'-. <> •

longer run times of the distributed application programs and is due to the
fact that the communication between processes takes more time. The re­
configuration policy can assign processes ·which have run on processors of
the same cluster to processors of different clusters possibly resulting in
longer communication times.

Only 16 of the 17 processors in a cluster are used for application pro­
grams. The 17th processor of each cluster is a spare processor. ·which can
replace a faulty one. Simulating a system with 4 (8) clusters, we map the
logically neighboring processes on the processors follo,ying an optimal map­
ping scheme and run the application on the 64 (128) processing nodes. \Ye
measure the mean communication times without processor failures. In the
optimal case. at most one processor per cluster fails and is replaced by the
spare processor of the same cluster. .-\ primitiYC reconfiguration algorithm
which does not consider this policy increases the communication overhead.
Additionally, if more than one processor per cluster fails. spare processors
of other clusters, which are selected in accordance with a predefined rule,
have to take over the processes.

A numerical algorithm is started on the simulated multiprocessor. of
which the communication pattern is a simple line. i.e., process i exchanges
data ,yith process i + 1 and process i - 1. For this communication pattern
it is quite easy to construct an optimal mapping scheme allowing shortest
communication time and therefore shortest run time of the distributed
algorithm on the underlying architecture.

SIMULATION-BASED PERFORMABILITY ANALYSIS 23

The efficiency of the following reconfiguration policies is measured in
terms of run time of the distributed application.

reconfa: If the spare processor of cluster 1 is still intact and free,
it replaces the faulty processor; otherwise, if the spare processor of
cluster 2 is still intact and free, it is selected; otherwise the spare
processor of cluster 3 is checked, etc.
reconfb: A processor of cluster fcl fails. The spare processor of cluster
fcl takes over the processes of the faulty processor, if it is fault-free
and unused. Otherwise, the processors of cluster fcl + 1, fcl + 2,
fcl + 3 and so on until cluster fcl - 1 are checked.
reconfc: A cluster is randomly chosen until a cluster with an unused
and intact spare processor is found which replaces the faulty processor.

52.6 r-----....... ----....----~---___:::.
"reconCa" -+--

52.5
"reconCb" -+-

"reconCc" -e--

~ 52.3
..:::.
;;:
·s s
<i2 52.1

o 2 3 4
Nwnber of Processor Failures

Fig. 4.3. Run time of a system with 4 clusters (1 cube)

A single processor failure has no impact on the run time of the algorithm
if reconfiguration policy reconfb is selected (Fig. 4.3 and Fig. 4.4). This
is due to the facts that the spare processor belongs to the same cluster as
the faulty processor and within a cluster the interprocessor connections are
symmetric and redundant (Fig. 3.1')' In a system of 4 clusters as well as
in a system of 8 clusters the mean run time of strategy reconfb is clearly
shorter ~pan the mean run times of reconfa and reconfc which have only
minor differences for any number of processor failures.

The statistical results in Section 4.2 are measured with a relative error
of less than 1.0 percent.

24 A. HEIN and W. HOHL

This experiment will be extended allowing a larger number of proces­
sor failures than spare processors available. Processes of additionally failed
processors have to be scheduled to processors which already run applica­
tion processes; it is assumed that the run time of the overall application
will heavily increase since not only the communication but also the compu­
tation will take additional time. Furthermore, other communication pat­
terns will be considered such as a mesh-like or cluster-oriented communi­
cation pattern considering communication which is more intensive within
the clusters than between processors of different clusters.

54

"reconCa" --
53.5

"reconCb" -+--

...., "reconCc" -e--
<.)

" '"' -.
" 53

J
:::

52.5 '" ~

3 4 5 6 7 8
Nwnber of Processor Failures

Fig. 4.4. Run time of a system with 8 clusters (2 cubes)

5. Summary and Future Works

In this paper, we presented a method for an efficient performability analy­
sis of fault tolerant massively parallel systems. The modelling environment
SimPar has been implemented based on process-oriented simulation and
object-oriented model development which are well suited for the design of
large-scale models and for the modelling of complex inter-component de­
pendencies. Real distributed programs can run on the simulated multipro­
cessor systems representing realistic workloads and valid scenarios for per­
formance and dependability evaluation. In future, we will use SimPar to
investigate the impact of sophisticated fault tolerance algorithms on the
run time behaviour of various distributed application programs and bench­
marks on different multiprocessor topologies.

SIMULATION·BASED PERFORMABILITY ANALYSIS 2·5

Currently new features are being added to SimPar to offer an easy-to­
handle and powerful tool for the modelling of user-defined multiprocessor
systems. Simulation objects of I/O components such as hard disks will be
provided to take the I/O behaviour of the simulated multiprocessor system
into consideration. This feature ,vill allow accurate investigations of fault
tolerance algorithms including checkpointing, diagnosis, reconfiguration,
and recovery.

Furthermore, within the FT iv! P 5 project a simulation model repre­
senting the Parsytec GC/PP architecture, Parsytec's multiprocessor sys­
tem using the PowerPC processor as computing nodes and transputer as
communication processors (Parsytec, 1994), is being developed based on
SimPar. In a future version of SimPar various process scheduling poli­
cies, such as pre-emptive resume, pre-emptive round robin, etc., will be
available. Additionally, an interface to a portable parallel programming
environment such as PVM (Parallel Virtual Machine) (GEIST et al., 1993)
or P4 (BUTLER et al., 1994) will be provided in order to run portable par­
allel programs without changes on the simulated multiprocessor systems.

References

BCTLER, R. M. - LcsK, E.L. (1994): User's Guide to the p4 Parallel Programming Sys­
tem. Argonne National Laboratory, Mathematics and Computer Science Division.
Argonne, IL (USA), 1994.

FISHWICK, P. A. 0: SIMPACJ(: Getting Started with Simulation Programming in C
and C++. Department of Computer Information Science, University of Florida.

GEIST, A. ET AL. (1993): PVM 3 User's Guide and Reference Manual. Oak Ridge National
Laboratory, Oak Ridge, Tennessee. Tennessee, May 1993.

GOSWA~lI, K. K. - hER, R. K. (1992): DEPEND: A Simulation-Based Environment for
System-Level Dependability Analysis. Cent er for Reliable and High-Performance
Computing, University of Illinois at Urbana-Champaign, 1992.

GOSW.UlI, K. K. (1993): Design for Dependability: A Simulation-Based Approach. Ph.D.
Thesis, Cent er for Reliable and High-Performance Computing, University of Illinois
at Urbana-Champaign, 1993.

HEI:;, A. (1994): SimPaTGC - Ein Simulator zur Leistungs- und Zuverlssigkeits-Analyse
des Multiprozessorsystems Parsytec GC, Version 1.0. Internal Report 2/94, IMMD
Ill, University of Erlangen-Niirnberg, 1994.

LEPOLD, R. (1992): PENPET: A New Approach to Performability Modelling Using
Stochastic Petri Nets. in B. R. Haverkort, 1. G. Niemegeers, and N. M. van Dijk
(eds), Proc. of the First Int. Workshop on Performability Modelling of Computer
and Communication Systems, 1992.

LITTLE. M. C. MCCliE, D. 1. (1991): Construction and Use of a Simulation Package in
C +-f. Department of Computing Science, University of Newcastle upon Tyne, 1991.

MARS.H, M. A., - BALBO, G. COl'TE, G. (1984): A Class of Generalized Stochastic
Petri Nets for the Performance Evaluation of Multiprocessor Systems. Transactions
on Computer Systems (acm), Vo!. 2, No. 2, May 1984, pp. 93-122.

26 A. HEIN and W. HOHL

MARSAN, M. A., BALBO, G. CONTE, G. (1986): Performance Models of Multipro-
cessor Systems. Cambridge, London: the MIT Press, 1986.

MARSAN, M. A., B.UBO, G., CHIOLA, G. - CONTE, G. (1987): Generalized Stochas­
tic Petri Nets Revisited: Random Switches and Priorities. Proc. of the Interna­
tional Workshop on Petri Nets and Performance Models, Madison, WI, USA, Au­
gust 1987. IEEE Computer Society Press, 1987.

MARSAN, M. A. (1990): Stochastic Petri Nets: An Elementary Introduction. Advances
in Petri Nets 1989, LNCS 424, Springer, 1990.

MOLLOY, M. K. (1981): On the Integration of Delay and Throughput Measures in Dis­
tributed Processing Systems. Ph.D. Thesis, UCLA, Los Angeles, CA, 1981.

PARSYTEC (1991): The Parsytec GC Technical Summary, Version l.0. Parsytec Computer
GmbH, Aachen (Germany), 1991.

PARSYTEC (1994): Parsytec GC/PP System Information, Report 1.1.4, Esprit Project
6731, Parsytec Computer GmbH, Aachen (Germany), 1994.

SCHWETMAN, H. (1986): CSIM: A C-Based, Process-Oriented Simulation Language.
Proc. of the 1986 Winter Simulation Conference (WSC' 86), Washington, D.C.,
1986.

SCHWETMAN, H. (1992): CSIlvI User's Guide, Rev. 2. MCC Technical Report, :\Iicro­
electronics and Computer Technology Corporation, July 1992.

SA:-lDERS, W. H. ET AL. (1991): Performability :vIodelling with UltraSAN. IEEE Software,
8, September 1991.

SANDERS, W. H. - OBAL Il, W. D. (1993): Dependability Evaluation using UltraSAN.
Proc. of the FTCS-23, Toulouse, France, 1993, IEEE Computer Society Press, 1993.

TRIVEDI, K. S. SAHNER, R. A. (1987): Reliability Modeling Using SHARPE. IEEE
Transactions on Reliability, Vo!. R-36, No. 2, June 1987.

TRIVEDI, K. S., - CIARDO, G. - MUPPALA, J. (1990): SPNP: Stochastic Petri Net
Package. Proc. of the Third International Workshop on Petri Nets and Performance
Models, Kyoto, 1989. IEEE Computer Society Press, 1990.

