
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 39, NO. 1, PP. 27-36 (1995)

CONTROL FLOW CHECKING IN MULTITASKING
SYSTEMS

Istvan MAJZIK and Andras PATARICZA

Department of Measurement and Instrument Engineering
Technical University of Budapest

H-1521 Budapest, Miiegyetem rkp. 9, Hungary
Phone: +36-1-463-2057

E-mail: majzik@mmt.bme.hu

Received: November, 1994

Abstract

The control flow checking technique presented in our paper is based on the new watchdog­
processor method SEIS 1 (Signature Encoded Instruction Stream). This method is in­
tended to check the still uncovered area of state-of-the-art microprocessors using on-chip
caches or instruction pipelines, since the processor instruction bus needs not be monitored.
The control flow is checked using assigned actual signatures and embedded reference sig­
natures. Since the actual and reference signatures are embedded in the checked program,
the usual reference database and the time-consuming search/ compare engine in the watch­
dog can be omitted. The evaluation of the actual signature is a simple combinatorial task
allowing high speed and thus the sharing of the watchdog between different tasks and
processors. The checking method has been extended to higher levels of the application
like simultaneous check of different processes and their synchronization in multitasking
systems.

Keyw07'ds: fault tolerant computing, concurrent error detection. control flow checking,
watchdog processors.

1. Introduction

Multiprocessing systems that run computing intensive applications require
a high level of fault tolerance, thus the early error detection is a key de­
sign factor. The majority of failures is caused by transient faults. Experi­
ences and fault injection based simulations had shown that up to 70 % of
the transient faults result in the disturbance of the program control flow
(CZECK and SIEWIOREK, 1990). One of the widely used methods for the
concurrent checking of the program control flow is the application of watch­
dog processors CWP (lVlAHMOOD and MCCLUSEEY, 1988)).

lThis research is part of the Hungarian-German Joint Scientific Research Project
#70 with additional support from: SFB 182 (DFG), OTKA-760, T-4494 and F7414 (Hun­
garian NSF).

28 1. MA JZIK and A. PATARICZA

A watchdog processor is a relatively simple coprocessor which mon­
itors the control flow of the checked processor using its state parameters.
The run-time processor state and the reference control flow are represented
by signatures. Two types of watchdog processors are distinguished on the
basis of the generation of the run-time signatures: V/Ps working with as­
signed or derived signatures.

The derived signatures (e.g. in \VILKEN and SHEN, 1988) are gener­
ated directly by the \VP which monitors the address and instruction bus
of the checked processor and compacts the values of the signals as binary
vectors (e.g. using linear feedback shift registers). The reference signatures
are computed or compacted before the program run in the same way.

In order to generate the derived signatures, the processor instruction
bus needs to be monitored. In the case of up-to-date microprocessors using
built-in instruction cache and prefetch queue this approach cannot be used.
The only way to identify the processor state is to assign signatures to some
states of the program. The high level program text is preprocessed before
the compilation and signature transfer instructions are inserted. In run­
time, these instructions transfer the signatures to the \YP. The checked
processor and the \VP are running simultaneously, the \YP compares the
run-time signatures with the reference ones downloaded before the program
start.

The until nO\v developed assigned signature based \VP methods (in
the following referred to as AS methods) use either a simple watchdog refer­
ence program (Lu, 1982) or a reference database (MrcHEL and HOHL, 1991).
The \vatchdog program contains the control structures of the checked pro­
gram with the modification that the computations are replaced by signa­
ture receive and check instructions. The referellce database is the adja­
cency matrix of the control flow graph of the checked program stored ill
some sparse matrix format. The disadvantage of both approaches is that
due to the complicated evaluation of the run-time signatures (execution of
the watchdog program or search in a large-scale database) the harcl\vare
implementation of the \\'P ueeds all independent microprocessor. On the
other hand, the usefulness of these methods ill multitasking systems is lim­
ited, because the size of the reference becomes large if the number of run­
ning processes illcreases.

One of the cooperation projects of the Department of :Vleasurement
and Instrument Eugilleering (Technical U lliversity of Budapest) and the
Department of Computer Structures (University of Erlangen) is the devel­
opment of a high-speed watchdog processor. The goals alld guidelines of
the project were as follows:

CONTROL FLOW CHECKING 29

Development of a \VP working with assigned signatures (according to
the type of the checked system) and being able to check multitasking
systems as well;
Reducing the size of the reference database to an acceptable level
(even if the number of running processes is high);

- Assuring a fast signature evaluation which is executable by a simple
sequential circuit (without the need of an independent microproces­
sor).

In the following first the basics of the signature assignment are dis­
cussed, then the SEIS algorithm for computing of the signatures is outlined
(Section 3). The checking of the procedure calls and the synchronization of
cooperating processes are presented in the next two sections. The support
of error recovery and the hardware architecture of the WP are covered by
Section 6 and Section 7. At the end, measurement results and conclusions
are presented.

2. Signature Assignment Basics

The control fiow of a (high-level) program is the execution sequence of the
statements. The set of all possible fault-free executions of a program is as­
sociated \vith a control-flow gmph (CFG), where the vertices represent the
statements (or given statement sequences) of the program, the edges repre­
sent the admissible control operations between them, independently of the
data dependencies. In procedural programming languages each procedure
can be associated with a control-fio\'\' graph.

According to the basic AS scheme, signatures are assigned to the ver­
tices of the CFG. which is often referred to as the encoding of the CFG.
The \VP monitors the signature fiow by checking whether an edge exists
between the vertices associated with the actual and the previously received
signatures. At a higher level. the change between the CFGs of different
processes and processors can be examined. if the CFG identification infor­
mation is embedded in the rUB-time signatures as well. In this way the
procedure calling mechanism, the scheduling. the synchronization of coop­
erating processes can be checked ill the \VP.

The main goal of our new algorithm called Signature Encoded In­
struction Stream (SEIS (PATARICZA et aI, 1993)) is the reduction or elimi­
nation of the large-scale reference database and the complicated \VP pro­
gram used in the former methods. The run-time signatures should contain
all the information which is needed in order to evaluate them. In SEIS, an
assigned signature not only identifies the current state of the program but

30 I. MA JZIK and A. PATARICZA

also contains information of the possible successor states (i.e. signatures).
In this way each signature can be validated on the basis of its predeces­
sor in the signature flow, the possible successors of each signature need not
be stored explicitly in the WP. The state of the checking in a given CFG
is represented by a single reference signature which is regularly replaced
by the actually evaluated and fault-free one. The switching between the
checked CFGs is simple, since only the actual reference signature has to be
saved and replaced with the reference of the new CFG (returning to the
checking of the actual CFG, the saved reference is used again).

Since each signature should contain information of the identification
of the possible successor ones, the limited signature size in real computer
systems and the desired high signature transfer rate need the limitation of
the number of successors. It is (more or less) possible since in control struc­
tures of commonly used programming languages the number of successors
of a statement is limited by the syntax (in most cases it is 2 or less; in as­
sembly languages only simple two-way branches and loops can be used).
However, there are control structures in which the number of successors (or
predecessors) of a given statement is not limited (e.g. the case branches in
a switch structure). To encode the CFG of such 'irregular' control struc­
tures, the encoding algorithm has to be carefully defined. The SEIS pre­
processor (for programs in C language) assures that each signature has the
same size, independently of the number of successors to be identified.

3. Encoding and Checking of the Control Flow Graph

The input of the SEIS preprocessor is the original high-level program
source, the output is the modified program text which contains the inserted
statements which transfer the run-time signatures to the \\lP. The prepro­
cessed program can be compiled by the original compiler of the language
and it can be executed without further modifications.

The steps of the SEIS encoding algorithm are informally presented as
follows ((MAJZIK, 1994) is a more formal description):

1. The control flow graph of the program is extracted. The basic control
structures are assigned elem.entury control subgraphs 'which can be
composed hierarchically. The subgraphs are defined in such a way
that they satisfy the requirements of the encoding: the number of
successors of the vertices should be limited.

2. The edges of the CFG are collected into an edge list (since the base
of the encoding and checking is the existence of edges in the graph).
The listing of the edges can be reduced to the well-known problem of
the E'uleriun ciTe'uit generation. Inserting additional edges, the CFG

CONTROL FLOW CHECKING 31

can be transformed into an Euler graph in which the Eulerian circuit
can be generated using simple linear algorithms. This circuit contains
all edges once and only once.

3. The vertices listed in the Eulerian circuit are encoded. A cyclic order­
ing of the possible code values is defined. Subsequent vertices in the
circuit which are connected by normal edges of the CFG are assigned
subsequent codes; if they are connected by additional edges then they
are separated skipping a code value. In the Eulerian circuit, each ver­
tex is listed several times (the number of occurrences of a vertex is
equal to the maximum number of its input and output edges). The
signature of a vertex is generated concatenating the code values as­
signed to the multiple occurrences of it (called in the following sub­
labels). This encoding method defines the checking rule as well: A
signature is a valid successor of a reference one if and only if one of
its sublabels is successor (in the used cyclic ordering of the sublabel
codes) of one of the sublabels of the reference signature.

4. In some vertices, the number of sublabels is reduced. The vertices of
irregular control structures, which can have an unlimited number of
successors (predecessors), are marked as multiple output (multiple in­
put, respectively) vertices in the control-flow graph extraction step.
(These types of vertices, their predecessors or successors can be iden­
tified on the basis of the syntax of the language.) The number of sub­
labels of the multiple input (multiple output) vertices have to be re­
duced. The base of the reduction is that the sublabels referring to the
same successor (predecessor) vertex may have the same code if they
have no predecessor (successor) sublabels. In this way the output (in­
put) edges of the multiple output (input) vertices can be connected
to the same sublabel reducing the number of sublabels. These special
vertices are defined in such a way that the reduction is always possible.

The SEIS graph extraction and encoding algorithm assures that if
programs in C language are preprocessed then the number of sublabels
of each vertex is limited to 3. The edges which are encoded using less
than 3 sublabels are completed appending one of the existing sublabels to
the signature once again. The fact that each signature consists of a fixed
number of sublabels enables a simple implementation of the \VP hardware.
The base of the signature evaluation is the rule described in Step 3.

32 I. MAJZIK and A. PATARICZA

As an example let's consider the following procedure:

int test_procedure() {
for(f=O; f<9; f++) {

if (a<b) a=b+f;
else c=a-f;
}

}

The preprocessed version of this procedure is as follows:
int test_procedure() {

}

SEND_SIG(SOP,1,10,1); {
for(f=O; f<9; f++) {

}}

SEND_SIG(NRM,2,5,2); {
if (a<b) {SEND_SIG(NRM,3,3,3); a=b+f;}
else {SEND_SIG(NRM,6,6,6); c=a-f;}
SEND_SIG(NRM,4,7,4); }

SEND_SIG(EOP,8,11,8);

The SEND_SIG macro transfers the signature to the watchdog, its im­
plementation depends on the hardware interface between the checked pro­
cessor and the watchdog. The parameters of the macro are the signature
type (see later) and the sublabel codes. The signatures belonging to ad­
jacent statements contain subsequent sublabel codes, in this example the
successor function is the one which increases the code by one.

4. Checking of the Procedure Calls

There are two ways to check the procedure calls. First, intermediate sig­
natures can be inserted before and after the procedure calls connecting the
first and last signature of the called procedure to the reference of the caller
environment. In this way the caller and the called procedures have a sin­
gle common CFG.

The second method allows the use of independent CFGs of the called
procedures. In the WP, similarly to the checked program, a signature
stack is implemented which stores the reference signatures of the embedded
procedure calls. The initial and final vertices of the procedures are marked
by Start of Procedure (SOP) and End of Procedure (EOP) flags. Receiving
a SOP signature the watchdog stores the actual reference signature on the
stack (signature push), the first reference of the new CFG is the actual

CONTROL FLOW CHECKING 33

and unchecked SOP signature. In the case of an EOP signature the most
recently saved reference is restored from the stack (signature pop operation)
and checking of the CFG of the caller procedure resumes.

5. Checking the Synchronization of Processes

The synchronization of processes is performed by the scheduleI' and by the
synchronous communication. If a process identifier is appended to each
signature then the scheduleI' can easily be checked. Changing the running
process the scheduler transfers the ID of the actual process to the watchdog.
The \i\TP stores it internally and compares with the identifiers embedded in
the run-time signatures. Only the signatures of the actual running process
are valid.

The communication can be checked by using guard signatures. They
are transferred to the WP in the same way as the normal signatures, but
their effect and evaluation are different. Two types of guards are used: start
guard, inserted before a communication statement, and checker guard, in­
serted after it. The processes beginning a synchronous communication ini­
tialise their communication registers in the WP by the start guard signa­
tures. Receiving a checker guard signature, it is evaluated in the WP fault­
free if all the processes which are partners in the communication have al­
ready updated their communication registers by sending the initialisation
guard. (Le. a process is enabled to continue to run if its partners have
already begun the communication, too.) If only two-way communications
are enabled then the structure of the guard signatures and their evaluation
are simple.

6. Support of Error Recovery

If an error of a checked process is detected then the system is interrupted
and a status word is available in the VVP which contains the detailed de­
scription of the error. The system can restart the execution of the erro­
neous process using a previously saved state of it, which is called check­
point state (rollback recovery).

The prototype of the SEIS WP supports the rollback recovery of the
checked system. When the main processor stores a checkpoint then the
state of the actual process is saved simultaneously internally in the WP
(initiated- by a special command similar to the guard signatures). The WP­
internal state of a process is represented by its signature stack, so it has
to be stored as checkpoint. If a roll back recovery is performed then the
checkpoint stack space replaces the actual one, in this way the execution

34 I. MAJZIJ·; and A. PATARICZA

as well as the checking of the process can continue from the fault-free pre­
vious state.

7. The Checker Hardware

The signatures assigned to the processes of a multitasking application con­
sist of 5 parts: the 3 sublabels, the procedure and the process identifica­
tion numbers (the use of procedure ID is optional; in multiprocessor sys­
tems processor ID can be used as well). These parts are evaluated by au­
tonomous modules of the \VP hardware:

1. The statement level module checks the actually received signature on
the basis of the reference one. The possible sublabel pairs are exam­
ined by 9 comparators and a combinatorial sublabel successor func­
tion. The time needed to evaluate a signature is the delay of the com­
parators. After the evaluation, the reference signature is updated.

2. The procedure level module checks the switching between the CFGs
using the signature stack. The SOP and EOP signatures initiate a
push or pop operation updating the stack pointer and the reference
signature.

3. In the process level module, the process ID is compared with the ref­
erence ID of the running process which was transferred by the sched­
uler. The guard signatures initialize and check the communication
registers. The signature transfer is monitored by a timer which de­
tects when a process fails to send signatures.

The WP was built using standard programmable logic devices (MACH
series of AMD). The procedure stack was implemented in a 256K RAM
which was shared dynamically between the processes (this stack proved to
be oversized if no recursive procedure calls ,vere checked). The \VP can
check multiple processors in a time-sharing manner as a coprocessor on the
32 bit VME bus. The transfer and evaluation of a signature takes about
500 ns.

8. Measurement Results

The first measurements (in IvLA..JZlI< et aI, 1994) have shown that there
is a strong dependence between the fault coverage of this error detection
method and the number of signatures sent to the VVP (the time and memory
overhead of the preprocessed program).

The memory overhead is acceptable even for programs in the MB
range (in average up to 30 %). However, the time overhead is a critical fac-

CONTROL FLOW CHECKING 35

tor. If the signature transfer needs more time than the fetch and execution
of a processor instruction, then the overhead can exceed 100 %, especially
in applications consisting of small iteration loops, since in each step a sig­
nature has to be transferred additionally. In order to reduce the time over­
head, two types of reduction algorithms were elaborated. The first one, the
static Teduction, reduces the number of signatures eliminating some ver­
tices in the CFG. The second one, called dynamic Teduction, decreases the
overhead caused by the overtested short loops containing the transfer of a
single signature in their body; these signatures are not transferred in each
execution of the loop, only at a given rate which is controlled by a dynamic
reduction factor. These t'NO reduction techniques are implemented in the
preprocessor.

The fault injection experiments were executed defining different static
and dynamic reduction factors. \Vithout any reduction, the \\iP is able to
detect up to 50-60 % of the errors not detected by the standard error de­
tection mechanisms of the system (e.g. access to non-existent or unused
memory, segmentation fault, illegal instruction). Using static reduction,
the fault coverage decreases rapidly, as the time between subsequent signa­
hues increases (especially in high-level programs where the statements can
cover complex instruction sequences at the assembly level). The dynamic
reduction of small factors has no such effects; while reducing the time over­
head, the fault coverage remains the same as without the reduction.

9. Conclusions

On the basis of the measurements. the following applicability conditions of
the SEIS method (and, ill general. of the AS methods) can be derived:

The SEIS met hod performs the fastest signature evaluation known
alllollg the different AS methods. The signature checker hardware
needed by it is extremely simple. the checks can be extended to higher
levels of the application using additional checker raod ules.
The preprocessor approach assures a portable and compiler-independ­
ent signature assignment. However, just like for all AS methods,
existing programs, which cannot be recompiled, cannot be checked.
If there are standard error-detection mechanisms in the system (seg­
mentation checks. examination of the memory access rights) then this
method does not increase drastically the error detection capability.
If the sigllature transfer is slow (compared with the memory access cy­
cle in the system) theu the time overhead of the preprocessed program
is u11Clcceptably high (eve11 if the sig11ature evaluation is fast). If the
mCliu processor uses speed-up mechanisms. like instruction prefetch

36 1. MA JZIK and A. PATARICZA

queue or cache, a slow signature transfer becomes a performance bot­
tleneck in the checked system. (However, the SEIS and the other
AS methods are intended to be used even in this type of micropro­
cessor systems, in which the instruction bus of the processor is not
observable).

References

1. CZECK, E.W. - SIEWIOREK, D.P.: Effects of Transient Gate-Level Faults on Program
Behaviour. In Proc. FTCS-20, pp. 236-243, 1990.

2. Lu, D.J.: Watchdog Processors and Structural Integrity Checking. IEEE Trans. on
Comp., 37(7) pp. 681-685, 1982.

3. MAJZIK, I.: SEIS: A Program Control Flow Graph Encoding Algorithm for Control
Flow Checking. Technical Report TU-TR-94-EE-I4, TU Budapest, (pp. 66), 1994.

4. MICHEL, E. HOHL, W.: Concurrent Error Detection Using \Vatchdog Processors in
the Multiprocessor System MEMSY. In Fault Tolerant Computing Systems, Infor­
matik Fachberichte 283, pp. 54-64, Springer, Berlin, 1991.

5. MAHMOOD, A. MCCLUSKEY, E.J.: Concurrent Error Detection Using Watchdog
Processors - A Survey. IEEE Trans. on Comp., 37(2) pp. 160-174, 1988.

6. MAJZIK, I. - PATARICZA, A. DAL CIN, M. HOHL, W. - SIEH, V.: Hierarchical
Checking of Multiprocessors Using Watchdog Processors. In Proc. EDCC-I, LNCS
852, pp. 386-403, Springer, Berlin, 1994.

7. PATARICZA, A. - MAJZIK, 1. - HOHL, W. - HOENIG, J.: Watchdog Processors in
Parallel Systems. Microprocessing and Microprogramming, (39) pp. 69-74, 1993.

8. WILKEN, K. - SH EN, J. P.: Continuous Signature Monitoring: Efficient Concurrent
Detection of Processor Control Errors. In Proceedings of the 1988 Int. Test Conf.,
pp. 914-925, 1988.

