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Abstract 

It is a critical issue in network dimensioning that the characterization of traffic at the call 
level should be accurate enough to provide the designer with reliable tools for dimensioning 
the transmission and switching capacities. Since in B-ISDN the nature of traffic is expected 
to be very different from traditional telephone traffic with much more complex features, 
therefore, new methods are needed to provide a satisfactory description. In this paper we 
present an approach that characterizes the traffic demand at the call level in a refined way, 
namely, by using a two-parameter description instead of the traditional one-parameter 
characterization. This approach contributes to the more accurate description of traffic 
demands at the call level, in order to provide the network designer and manager with 
precision tools to handle traffic demands and their consequences in dimensioning and 
related issues, while retaining simplicity, algorithmic feasibility and practical applicability. 

Keywords: AT?-.I, network dimensioning, traffic characterization, peaked ness, BPP pro­
cess, maximum entropy method. 

1. Introduction 

ATM net\vorks, the standardized carriers of the future B-ISDN provide 
a major challenge to many aspects of networking. Among them, a very 
important point is the methodology of network design and dimensioning 
that also influence the tools for efficient network management. 

For traditional telephone networks many methods have been devel­
oped, like this see e.g. (GIRARD, 1990). Quite a few of them can already 
be considered as classical. There are several reasons, however, that make 
the applicability of traditional methods very restricted in ATyl networks. 
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Let us list some of the arguments that call for a substantially upgraded 
methodology. 

The nature of B-ISD\, traffic is expected to be very different from 
plain telephone traffic for a number of reasons: 

1. the arrival of connection requests can change from service to 
serVIce: 

2. the holding time of calls are expected to deviate from the tra­
ditionally considered exponential distribution and the nature of 
this deviation depends on the service class: 

3. burstiness related properties play an essential role, for example, 
virtual LA\,s can also be configured on top of the physical AT?>.! 
network, generating a traffic pattern that is bursty on every time 
scale: 

4. the network carries multiclass traffic, where even the definition 
of very basic concepts, such as blocking probability, becomes a 
nontrivial problem, etc. 

Routing and related functions are expected to become more complex 
in a high speed AT\I network, because 

1. multiclass traffic has to be routed, where the different classes 
have different nature, while sharing the same infrastructure net­
work, using e.g. statistical multiplexing: 

2. network safety and reliability has increased importance, since 
the failure of a high capacity link or node effects many users: 

3. flexible reconfiguration capability, including re-routing of traffic. 
is essential in case of failures or changes in demand. etc, Clearly, 
the increased complexity of routing and related functionalities 
makes the statistical estimation of traffic descriptor quantities, 
such as link load. route load. various blocking measures, etc. 
substantially more complex. 

\' etwork design and dimensioning functions are much less separated 
from management functions than it has been in traditional telephone 
net\yorks. For example. flexible reconfiguration, controlled by the 
operator or in some cases by the customers. requires the capability of 
running design/ dimensioning type algorithms yery fast. 
\Yhen and which data should be collected to support network manage­
ment optimally'? This is a difficult question in an integrated net\york. 
Too much information implies excessive owrhead and longer reac­
tion time, while too little information may degrade safety and perfor­
mance. This also raises the problem what part of data should be col­
lected by measurement and what is the part that can already be com­
puted or estimated from the measured data, thus providing a trade­
off between transmission, measurement. and processing o\·erhead. 
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The above (extendable) list of problems calls clearly for a substan­
tially upgraded methodology to support efficient network design, dim en­
sioning and management in ATM carried B-ISDN. Such a collection of ne"w 
methods, of course, involves a longer and complex development process 
with continuous feedback from the practical applications. 

In the present paper we would like to contribute to this development 
process by considering a specific issue on dimensioning, namely what can 
be gained if the usual one parameter traffic demand estimation is enlarged 
to a two parameter estimation. The experience with telephone traffic is 
that the Poisson process which is described b:y a single parameter consti­
tutes a natural and accurate model for the arrival of call attempts, and its 
memoryless property ensures that the so-called insensitivity property, i.e. 
most quantities of interest depends on the distribution of the holding time 
only through the mean. 

It is highly unlikely that the Poisson property carries over to many 
other services in a B-ISDN context. The connection request process for 
some services may have a rather regular pattern while for other services it 
may come out very bursty. The first way to think of to solve this problem 
is to include in the traffic deIFland matrix a two parameter description, 
one parameter for the usual demand and a parameter characterizing the 
variability of the arrival of connection requests. 

The objective of the present paper is threefold. In section 2 a variabil­
ity parameter which is feasible to measure is suggested. In section 3, two 
approximate models are presented which from the traffic demand and the 
variability measure compute the occupancy distribution of a link to which 
this traffic is offered. Finally, in section 4 the results obtained for the sin­
gle link are used in a network model to find blocking probabilities on an 
end-to-end basis. To illustrate the potential gain which can be ob-tained 
from a two parameter dimensioning model, we consider a link partitioning 
example and a network partitioning example. 

2. Obtaining a Measurable Variability Measure 

From traditional telephone traffic, the issue of variability in the arrival 
process of connection requests has been investigated mostly for overflow 
traffic in systems with alternative routing (KOER~ER, 1987). 

Two measures have been intensively used. The most straightforward 
is the squared coefficient of variation of the interarrival time between two 
consecutive connection requests (Cox, 1962). In the case where the arrival 
process is well described by a renewal process this gives a complete second 
order characterization (Cox, 1962). However, in the general case, it only 
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gives one component in the characterization (Cox and LEWIS, 1966). An­
other important disadvantage comes from the fact that the blocking prob­
ability and the occupancy distribution also depends on the distribution 
and not only the mean of the holding time in the case without Poisson ar­
rivals. A more accurate variability measure is therefore needed. The gen­
eralized peakedness measure as defined by (ECKBERG, 1982) has the ad­
vantage that it is a complete second order characterization of the arrival 
process and furthermore also takes the holding time process into account. 
The disadvantage is that it is not as straightforward to understand. 

The definition is as follows: Assume that the arrival of connection 
requests are offered to a link with infinite capacity. Let L( t) be the amount 
of bandwidth occupied at time t. Then the generalized peakedness Z(t) is 
defined as: 

Z(t) 
Var{L(t)} 
E{L(t)} 

(1) 

On a route in a real network it is possible only to measure the actual occu­
pied bandwidth and here only accepted connections contribute. However, 
since also the amount of blocked connections needs to be monitored, it is 
possible by combining the occupancy distribution of carried call and the 
process of connection requests \vhich are blocked to obtain an estimate of 
the occupancy distribution in the infinite capacity case and thereby get a 
measured estimate of the peakedness of the connection request on the route. 

By characterizing both the arrival process and holding time the com­
putation of peakedness is also possible. In (ECKBERG, 1982) the peaked­
ness of the occupancy distribution has been studied assuming only that 
the arrival process is stationary. ECKBERG (1982) presents several differ­
ent formulations for the peakedness, but here we shall restrict ourselves to 
two different formulations. 

Let U (x) denote the renewal function of the process 5 that is: U (x) = 
E[N(a, a + x)] with N(a, b) denoting the number of arrivals in the interval 
(a, b], when an arrival occurred at time a. 

00 

Furthermore, define H2(x) = J (1 - H(u»(l- H(u - x»)du . (2) 

-00 

According to formula (3) in (ECKBERG, 1982) then the peakedness Z of 
the complementary holding time distribution 1 - H is 

00 

Z(H) = 1 + 2f.L J H2(X)dU(x) - : ' (3) 

0-



ATM NETWORK DIJfENSIONIA"G 41 

\'.'here m is the intensity of the arrival process and 1/ fl is the mean of the 
holding time. 

If the holding time is exponentially distributed the peakedness formula 
reduces to: 

Zexp(fl) = 1 + U*(fl) _ m 
fl 

in \vhich U* denotes the Laplace-Stieltjes Transform of U. 
Restricting the holding time distributions to be of the class which 

QC 

1- H(x) = J e-xta(t)dt for x> 0 
-;:x) 

(4) 

(5) 

and a is a generalized function, ECKBERG (1982) obtains the following 
relation between the peakedness of H and the peakedness of an exponential 
holding time distribution with mean 1/ fl. 

where 

;:x) 

Z[H] = 1 + 2fl J o:(y)(Zexp(y) - l)dy , 

0-

o:(y) = a(y) J a(x) dx . 
x+y 

(6) 

(7) 

In Appendix A it is shown how expressions (5), (6) and (7) are applied 
when the holding time distribution is Coxian and a closed form expression 
for the generalized peakedness has been derived. 

3. One Link Analysis 

In this section we consider two approximations based on matching the 
mean and the variance of the occupancy distribution in the infinite capacity 
case. Furthermore, blocking probabilities derived from the truncated occu­
pancy distribution are described and investigated (MOLN.~R and BL."-AB­
JERG, 1994). 

3.1 The BPP Approximation 
... 

The BPP arrival process is a state dependent Poisson process characterized 
by two parameters 0: and /3 such that the Poissonian arrival intensity when 
k servers are occupied is 0: + k,B. In the case j3 = 0 it reduces to the plain 
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Poisson process, for j3 < 0 it represents a process of less variability than 
Poisson (finite source model), and for ,8 > 0 it represents a process of higher 
variability than Poisson see (DELBROUCK, 1981). The mean and variance 
of the occupancy distribution turns out to be: 

Cl: 
.lv[ = --8' V 

f..l-, 

where 1/ f..l is the mean holding time. 

(8) 

With the mean 111 and variance V given (from e.g the Eckberg ap­
proach) we suggest to approximate the occupancy distribution with the 
BPP distribution with the same mean and variance. The BPP parameters 
Cl: and j3 then should be chosen as: 

,8 = 1 
1 
Z' 

111(1 - ,8) , 

assuming a mean holding time of l. 
As blocking probability we use the traffic congestion defined as: 

OT-CT 
TC= OT ' 

where OT and CT denote the offered and carried traffic, respectively. 

(9) 

(10) 

The offered' traffic is the mean number of occupied servers in the 
infinite system (mean holding time = 1), and the carried traffic is the mean 
of the distribution obtained by truncating the occupancy distribution in 
the infinite server case at C (the link capacity) and renormalizing it: 

OT = 111, (11) 

. h 0:+(i-1)8 f WIt Pi = Pi-1 i ' or i > 0, Pi = ° for ,8 < 0 and > iV, and 

Po = (1 - j3)F for (3 i= 0, Po e- a for j3 = o. 

3.2 The Maximum Entropy Approximation 

The concept of entropy appears in the mathematical theory of intercon­
necting networks and in the queueing theory (BENES, 1965, KOURVATSOS, 
1986). In queueing theory we only know of its existence in the 1-server case 
and usually it has been applied in a way where only average quantities like 
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mean queue length and utilization have been matched. Here we shall ap­
ply this technique on a many server loss system ,vhere also the variance is 
matched. 

The basic idea of the method is based on Bernoulli's principle of 
insufficient reason (HARRISON, 1992) which states that all events over a 
sample space should have the same probability unless there is evidence to 
the contrary. The entropy plays as a measure of the certainness of an event 
outcome. The more uncertain the value of a random variable the bigger 
the entropy is. In order to fulfil the Bernoullis principle the entropy has to 
be maximized under the constraints of the mean and the variance which 
we would like to be matched. 

Let's consider a stationary stochastic process X (t) in a discrete state 
space and let Pi be the probability of being in state i. The entropy of X(t) 
with stationary distribution {p;} is defined as: 

(12) 

The idea here is, as an approximation for the occupancy distribution, to 
take the one which maximizes the entropy under the constraints that 

it should be a proper probability distribution, i.e L~O Pi = 1 
- the mean should be correct, i.e L~o iPi = E(X) = 7f 
- and the second moment should be correct, i.e. 

cc ( ) 
.2 .? m. m Ll Pi = E(X-) = - Z(l- H) +-

i=O Il If 

In Chapter 8.4.1 of (HARRIso,,·, 1992) the following theorem is pre­
sented and proved. 
THEORE).l: The probability mass function {p;} ·which maximizes 

H(p) = - Li p;lnpi subject to L~o Pi = 1 and Li iJ(i)pi = fj for 

i ::; j ::; k (where {fj 1(1 ::; j ::; k)} are prescribed mean values of the func­

tions {fj}) is: 
m 

Pi = 9 IT x{j(i) 

j=l 

where 9 is the normalization constant. 

(13) 

If this result is applied to a single server queue and the mean queue 
length is matched, the queue length distribution which maximizes entropy 
is geometrical thus yielding the exact distribution for the queue length in 
the I'vfjJ/fj1 case. 
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When matching the first and second moment in the infinite server 
case, a straightforward application of the theorem shows that the occu­
pancy distribution which maximizes entropy is: 

(14) 

Thus the maximum entropy approach enforces a distribution which comes 
from sampling the normal density function at non-negative integer values. 
The 3 equations needed to match the mean, variance and obtain a proper 
distribution is: 

00 

L gixix~2 = E{X} , (15) 
i=O 

and we have only been able to solve them by heuristic methods. However, 
applying the corresponding continuous approach fitting a normal density 
function restricted to the positive line yields a system of equation which can 
be solved in an exact way as demonstrated in Appendix B. Our numerical 
results indicate that the difference between the continuous and the discrete 
results are very small. 

From the occupancy distribution (see Appendix B) 

for x > 0 
for x < 0 

a traffic congestion (10) can be derived with OT = }If and 

CT= 

-Q (i!> ( -Q ) 

2.6 y27i i!> (-2.j23C - _Q ))..L _1 (v (_0 ) - v (mc..L _0 )) . . y27i 'y27i' y27i . . 'y27i 

i!> (.j23C ..L _0 ) - <P (~. ) , y27i y27i 

(16) 

obtained by truncating the distribution at the link capacity (C) and renor­
malizing it. 1> is the standard normal distribution and :p is the correspond­
ing density function. 

3.3 Numerical Example 

Here we consider a simple numerical example which demonstrates the effect 
of using the variability measure. 



AT.\f NETlVORK DIMENSIONING 4-5 

Consider a 150 Mbit/s link which is loaded to 140 Mbit/s and car­
ries two different traffic types: Traffic type 1 is 2 Mbit/s circuit emulation 
\vith peakedness of 0.25, and the Traffic type 2 is 2 Mbit/s frame relay with 
peakedness of 15. Consider a situation where 60 Mbit/s traffic offered to 
the link from both traffic types and we would like to share the capacity of 
the link to the two traffic streams such that the total carried traffic will be 
maximum. If we do not use any variability measure we are restricted to 
share the capacity only based on the offered traffic and using e.g. Erlang 
formula to compute the blocking probabilities. This way we get the equally 
partition solution: 70-70 Mbit/s. By using the peakedness as a variability 
measure and computing the blocking probabilities based on the above de­
scribed methods by the BPP and the Maximum Entropy approximations 
and partition the capacity such that the total carried traffic is maximized 
we get the following results (Fig. 1): 

Erlang A: BPP, B: Max. Entropy 

70 Mbitls 

70 Mbitfs 
Traffic type 1 Traffic type 1 B:64 Mbitl 

'" / 

Fig. 1. Link partitioning 

From the result we can see that the bursty traffic (Traffic type 2) requires 
a bigger capacity and the smooth traffic (Traffic type 1) requires a smaller 
one compared to the equally partitioning case. Also we can conclude that 
the BPP and lVlaximum Entropy methods give practically the same results. 

The results clearly illustrate that in order to achieve the optimum 
capacity sharing related to the maximum total carried traffic we need to 
take into account the variability measure. 



46 S. MOLN.4R et al 

4. Applications to Network Partitioning 

In this section we demonstrate the effect of the variability measure in an 
ATM network configuration problem. 

Consider an ATM network with some given logical subnetworks and 
traffic demand for each route, where we want to find the partition of the 
physical capacities related to the subnetworks that maximizes the total 
carried traffic. For this problem a solution can be found in (FARAGo, 1994) 
which is based on the Erlang fixpoint method (KELLY, 1991). 

N o'v we consider an extension of this network dimensioning algorithm 
with using the variability measure. The main purpose of this extension is to 
improve the network dimensioning algorithm to fulfil the expected nature 
of the future AT::vl, where the call arrival process will differ significantly 
from the Poisson process and the holding time distribution will deviate 
from the exponential distribution. 

Fordimensioning purposes the traffic offered to each route is charac­
terized by the mean and the peakedness. Based on these two parameters 
we are using the proposed blocking measures (based on the BPP and ?vlaxi­
mum Entropy methods) to compute link blocking probabilities. To upgrade 
the dimensioning algorithm in (FARAGo, 1994) only the replacement of the 
Erlang formula to the suggested blocking measures B j = B(pj, 0-;, Cj) is 
needed (MOL:\' . .\R, 1994), ",-here the blocking probability for link j com­
puted from the proposed blocking measures with Pj aggregated offered traf­
fic, a} variance and Cj capacity. 

For the computation of the aggregated offered traffic on a link we use 
the same reduced load and link independence assumption as in (FARAGo, 
1994) and so: Pj = (1 - Bj)-l A.jrvr fl(l - Bi)A.ir where VI' is the 
average rate of the offered traffic to route r and a call on route T requires 
A.jr units of capacity on link j. For the calculation of the variance of 
the aggregated offered traffic ,Ye simply assume that the variance of the 
offered traffic is thinned b:y the same factor as the mean. It means that 
we keep the peakedness at the same value. Howewr, it should be noted 
that the changing of the peakedness of the traffic stream going through the 
network is affected by the congestions on each link and very dependent on 
the burstiness of the offered traffic. This effect is rather complex and we 
use this simple approach as a first approximation for the changing of the 
peakedness. Therefore the variance of the carried traffic can be computed 
by a} = (1 - Bj)-l Lr A.Jrcu; Di(l - B i ).4 ir where cu; is the variance of the 
offered calls number. 
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4.1 Numerical Example 

The algorithm is demonstrated in a small network example. A 4 node ring 
network carries two fully connected logical subnetworks with 3 nodes as 
shown in Fig. 2. 

Physical network Logical subnetwork 1 Logical subnetwork 2 

Fig. 2. A network example with two logical subnetworks 

Each physical link of the network has 45 Mbitjs capacity and each 
logical subnetwork carries two types of traffics: 

- Frame relay: effective bandwidth: 0.75 Mbitjs, mean holding time: 
60 s 
DS-1 circuit emulation: effective band"width: 1.5 Mbitjs, mean hold­
ing time: 480 s 
The arriving rate of the calls from different traffic types are set in a 

way that the load be equally shared among the traffic types on a link. The 
partitioning results from the original fixpoint method (which does not take 
into account any variability measure) and from the extended method (which 
uses the peakedness of the traffic as described in the previous section, and 
we used peakedness of 1 to the logical subnetwork 1 and peakedness of 15 
to the logical subnetwork 2) shown in Table 1. 

Table 1 
Capacity partitioning (Capacity to log. subnetw. 1 - Capacity to log. subnetw. 2) 

Link Fixpoint Fixpoint 
BPP 

1-2 22.5-22.5 15.8-29.2 
2-3 22.5-22 .. 5 13.8-31.2 
3-4 22.5-22.5 13.8-31.2 
4-1 22.5-22.5 15.8-29.2 
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The results show that the logical subnetwork 2, which carries rather bursty 
traffic, requires more capacities (and the logical subnetwork 1, which carries 
smooth traffic, requires smaller capacities) on the links compared to the 
case where the two subnetworks carry equally bursty traffics. The optimal 
partitioning corresponding to the maximum of the carried traffic can be 
obtained by the above link partitioning and indicates the importance of 
the variability measure. 

5. Conclusion 

In this paper we have presented a two-parameter traffic characterization 
consisting of the mean and the variability of the arrival of connection re­
quests. VVe have suggested the generalized peakedness as a variability mea­
sure by which an accurate description of traffic demands can be obtained. 
It has been demonstrated that the proposed characterization of traffic pro­
vides the network designer and manager with a precision tool to solve net­
\vork dimensioning problems retaining the algorithmic feasibility and prac­
tical applicability. Finally, the contribution of the paper can be summa­
rized as follows: 

1. proposal for a two-parameter traffic characterization using the concept 
of the generalized peakedness 

2. a new closed form expression for the generalized peakedness in case 
of Coxian holding time distributions 

3. a traffic congestion measure based on the Bernoulli-Poisson-Pascal 
(BPP) approximation and using the generalized peakedness 

4. a traffic congestion measure based on a new ?vlaximum Entropy met­
hod and using the generalized peakedness 

5. a new network dimensioning algorithm based on the fixpoint method 
and using the proposed traffic measures. 
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Appendix A: Deriving the Peakedness for Coxian Holding Time 

In this section \ve derive the peakedness formula for cases with Coxian 
holding time distributions. 

Consider a Coxian distribution represented by a weighted sum of gen­
eralized Erlang distributions as shown in Fig. Al. For simplicity reasons 
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Fig. Al. Coxian distribution represented as a weighted sum of generalized Erlang distri­
butions 

we assume that Ai ::f. Aj for i ::f. j but the general case can be included with 
only minor changes in the expressions. 

For the Coxian distributions a(t) in (5) can be written as a series of 
delta functions1 

a(t) (A.l) 

where Ai(Ai ::f. Aj for i ::f. j) and Pi, 1 ::; i ::; n, are the intensities and 
branch probabilities of an n-branch Coxian distribution, respectively. (See 
Fig. Al.) By applying (7) the result of the integral is 

(A.2) 

Multiplying by a(y) and substituting the obtained o:(y) into (6) we get the 
peakedness: 

n I (i-1 A ) 
Z = 1 + 2fL ~PI ~ }1 Aj ~ Ai 

1 When Ai of A j for some i and j, derivatives of delta functions appear in the 
expression for a(t). 
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where Zexp is given in (4). 
The importance of (A.3) should be realized. For any stationary arrival 

process for which the Laplace transform of the renewal function is avail­
able, including e.g. renewal processes, Markov renewal processes and dou­
bly stochastic processes, insertion offormula (4) in (A.3) provides a simple 
closed form expression for the peakedness of any Coxian holding time dis­
tribution. 

Appendix B: Matching Mean and Variance 

The truncated normal density function is given as: 

for 
for 

x> O} 
x<O 

and has moment generating function given by 

1'',11(8) 
00 0 

J sx -ax -/3 x2 d ~,(s-",)- ;J; (8 - 0:) e ge e x = g -e 4/3 '±" --

,8 ..j2fJ 
o 

(B.1) 

(B.2) 

Thereby the system of equations which needs to be solved to match mean 
and variance and still have a proper probability distribution is: 

~I ",2 (-0:) g -e 4/3 <p -- = 1 . 
,8 ..j2fJ , 

g~e~; {( - 2~8) <p (;;) + ~Y (;;)} E{X}, 

g ~e~; {(~ +~) <p (~) - _0: Y (~)} = E{X2}. (B.3) V (3 4(32 2/3 ..j2fJ (2(3)~ ..j2fJ 

Dividing the normalization equation up into the two moment equations, 
and multiplying the results with ..j2fJ and 2(3, respectively, yields: 

G( -x) - x = J2,8E{X} and x2 + 1 - xG( -x) = 2(3E{X2} , 

where x = fo and where G(x) = :~:~. Squaring the left hand equation 

and dividing the result into the right hand equation yields the following 
equation with x as the only unknown 

x 2 + 1- xG(-x) 
(G(-x)-x)2 
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The function x -+ x~~t~~~~):) is increasing with range ]1, 2[ which can be 

seen bv applving the inequalitv 1. - .l + .1- _ 15 < ct>( -x) < 1. _ .l + .1-
.J . .J .J x x 3 x, XI" - <p( x) - x x3 x, 

valid for x > O. 
This implies that for occupancy distributions with 0 < Z < E{X} a 

unique truncated normal distribution exists with same mean and variance. 
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