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Abstract 

\Vith the advanced spread of Expert Systems (ES) more and more emphasis has been 
put on efficient knowledge representation. Constraints, a fast developing field in Artifi­
cial Intelligence (AI), try to cope with the new requirements imposed on the knowledge 
representation tools in practical applications. Efficient algorithms operating on constraint 
networks have been developed [4, 7, 10], and recently some constraint systems have been 
constructed [3], which are capable of solving relatively complicated problems stated in a 
declarative way. However, these systems put emphasis mainly on finding a feasible solu­
tion, they do not rank the different solutions. In some cases this will not suffice. \Vhen 
optimum criteria is meaningful to define, an optimal solution can be of importance. 

The present paper gives a brief overview of constraints, emphasizes the importance 
of searching for an optimal solution; and gives an application area where the optimal 
solution would highly improve the performance of the embedding system. 

Keywords: knowledge representation, constraints, Constraint Optimisation Problem 
(COP). 

1. Introduction 

In the last few decades great efforts have been invested in AI research and 
as a result quite a few ESs have been developed and put into use. The 
first approach to represent kno'wledge in such systems was the rule-based 
description of the available information. HO"wever, it became shortly ob­
vious that in more complex systems the knowledge involved is too diverse 
to encapsulate it in a single formal approach; and there have been strong 
demands for knowledge representation tools capable of expressing informa­
tion in a declarative \\·ay. In the late 60's constraints entered the stage of 
AI and offered solution for the above problem. Recently, the field is dynam­
ically expanding, new efficient algorithms operating on the constraint net­
work have been presented, and the Constraint Satisfaction Problem (CSP) 
has been mathematically founded. Some constraint systems have been pre­
sented in the literature [3], which are capable of solving relatively compli-



64 GY. ROMAN and T. P. DOBROWIECKI 

cated tasks that are introduced to the system in a declarative way. These 
systems mainly concentrated on finding a feasible solution, no matter of the 
quality. In some of the cases ·when optimum criteria of some kind are mean­
ingful to define the performance of the system can be improved by adding 
these optimum criteria to the system and searching for an optimal solution. 

The following parts give a brief overview of the CSPs and deal with 
optimum problems in CSPs. 

2. The Constraint Satisfaction Problem - A Survey 

A constraint satisfaction problem involves a set of variables Xl, ... ,Xn : 

all variables are associated with their domains D I , ... ,Dn containing the 
allowed values RI, ... , Rn; and a set of constraints C. The constraint 
Ci(Xil, ... ,Xij) is a subset of the Cartesian product Rn x Rij, which 
specifies which values of the variables are compatible with each other. (Ci 
is a k-ary constraint if it is imposed on k variables.) A solution is an 
assignment of values to the variables so that all the constraints are satisfied, 
that is, the constraint network is globally consistent [8]. A number of 
methods has been developed utilising this concept, some of them are more 
general, some exploit specific properties of the net [4,7,10]. 

There are two major classes based upon the type of variables present 
in the system: 

(1) discrete (finite or countable set of possible values), and 
(2) continuous (domains are subsets of the continuum). 

The goal of the Constraint Satisfaction is usually set as: 
(1) to determine whether a solution exists at all, 
(2) to find a single solution, 
(3) to find all solutions, or 
(4) to find an optimal solution of some kind. 

The most time consuming worst case is faced when there is no solution 
at all. To have a simple method then to determine the existence or rather 
the lack of a solution might come handy. In cases when cost criteria are 
meaningful to define, an optimal variable setting might be of importance. 
The situation seems simpler, than it really is. Developed systems imple­
ment either discrete or continuous variables and most of them use incom­
plete inference techniques. Problems arise when constraints are applied to 
model real-life situations. Here typically both types of variables are present 
and mixed methods capable of handling them are needed. A description 
of such implementation can be found in [3]. Another problem is that con­
straints are often implicit and the overall system could be underdefined. In 
such cases heuristic decisions have to be made that lack required basics to 
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be surely correct. In addition, methods are also needed to handle the incor­
rect choices and to make the overall method complete, i.e. to guarantee a 
solution if one exists, and to declare the non-existence of it if there is none. 

Although the main emphasis is on finding a solution, resources re­
quired for that action cannot be neglected. MONTANARI showed that the 
general CSP is NP complete [16]. It follows then that time complexity of 
finding a solution in the worst case is exponential in the number of vari­
ables. This phenomenon is also met in the field of AI and in graph theory, 
in connection with graph traversing, and is often referred to as combinato­
rial explosion. Many researchers dealt with methods which under special 
conditions decrease the complexity of finding the solution [9,5]. For effi­
ciency reasons fast local propagation techniques are often used. The price 
of speed is, however, incompleteness, and these methods not always can 
produce a solution or determine that system of constraints is unsolvable. 
Such techniques should be augmented with a kind of backtracking search, 
which however costly, can guarantee a solution. Efforts are made to make 
the search backtrack-free. The rationale is that generating exact solution 
by backtrack-free search is linear (with respect to the number of variables) 
[12], which draws attention to various pre-processing techniques, minimis­
ing backtracking, or to intelligent backtracking methods [6,13,14,15]. 

Recently significant interest has been shown in Constraint Logic Pro­
gramming (CLP) languages. Many implementations can be found in the 
literature (see e.g. [1,2] for a survey). They incorporate some kind of local 
propagation technique based on backtracking method already present in 
Prolog. Also recently a system was presented, which utilised the power of 
Nondeterministic Lisp [3]. It allows for both discrete and continuous vari­
ables and incorporates functions to handle the underdefined constraints. 
The constraint network is built incrementally, always checked for consis­
tency. That way the recognition of inconsistency is faster, since it is grasped 
exactly in the moment it is introduced to the system. 

Despite considerable difficulties indicated above constraints constitute 
knowledge-representation very useful in numerous practical applications 
[17]. Constraints are advantageous due to: 

(1) good representational efficiency, constraints: 

- support hierarchical description, 

make it possible to integrate details modelled at different levels 
of abstraction into a single body, 

- are easy to integrate with other knowledge representation 
schemes, e. g. object oriented tools, semantic nets, frames, etc., 

support inference making, 
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give good representation for 'deep' models, considering that a 
part of physical laws and systemic descriptions are just con­
straints on state variables, 

(2) good degradation under time limitations, furthermore constraints: 
(3) are well suited for incremental system development, 
(4) achieve global consistency through local computations. 

3. Optimisation in Constraint Networks 

Constraint networks have so far been applied to the task of finding feasible 
solutions, because in many AI applications preferences play only a minor 
role and finding a feasible solution suffices. However, in some of the prac­
tical applications meaningful optimum criteria do exist, and the optimal­
ity, the quality of the solution has very strong influence, far reaching effect 
on the performance of the overall system. In such cases the optimal or at 
least a sub-optimal solution has to be sought for. 

Different possible approaches exist to find the optimum: 
(1) to search for all the solutions and to choose the best at the end; 
(2) to integrate the optimum criteria into the constraint network; 
(3) to tune a feasible solution towards the optimum. 

The first approach seems the easiest, though there are certain difficul­
ties. The system has to guarantee that it finds all the solutions and has to 
keep track of the process not to find the same solution several times. The 
unnecessary computations might measurably decrease efficiency. 

On the other hand, the optimisation task does not require an exhaus­
tive search among all consistent solutions but rather can be incorporated 
naturally into the process of finding consistent solutions. In many problem 
instances the interaction between the optimum criteria and the constraints 
does not add any computational complexity to the task of finding a con­
sistent solution, and when it does, the extra complexity can be estimated 
beforehand, so the system can decide whether to use an exact or a heuris­
tic approach to optimisation [11]. 

In some of the cases, when the criteria are simple, they can be incor­
porated into the constraint network. The main problem with this approach 
is that it is difficult to formalise minimum and maximum conditions in a 
constraint network; it might need significant efforts to tailor the tools han­
dling the network to the minimum conditions. 

3.1 Solution Tuning 

The process of the solution tuning is as follows: 
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1. Find a feasible solution 
2. Evaluate the cost function 
3. Choose a variable to tune (based on the weight of the variable in the 

cost function) 
4. Alter its value 
5. Repeat till there is improvement 

The concept underlying solution tuning is that a feasible solution is 
sought first, neglecting the optimum criteria, and this solution is modified 
- tuned - to find the optimum. The main advantage of this approach is 
that at every step of the process a solution is available, so if the process is 
interrupted due to resource limitations, the task is still partly accomplished. 

3.2 Problems with the Approach 

Though the above approach seems promising there are some problems to 
face. The most crucial is when the problem-space is partitioned. In this 
case there are independent sets of solutions, and it is not possible to step 
from one set into another one by tuning. (Usually singularities break up 
some of the variables, and it is not possible to continuously tune those 
variables without violating some of the constraints.) Due to this property 
the system might find a local minimum of the cost function instead of the 
global one. Fig. 1 demonstrates this problem. If a feasible solution is found 
in which VI is instantiated tou I, then minI is reached though the global 
minimum of the cost function is min2. If the starting point had been U2, 

the global minimum would have been found. This draws attention to the 
importance of finding the partition containing the global minimum. 

On the other hand, it is also a delicate question which variable to 
tune and how to tune it. The speed of convergence of driving the solution 
into the optimum strongly depends on the above t"\yo selections. If only 
polynomial cost functions are allowed then a good idea can be to tune the 
variables in the order of their exponents; the higher exponent represents 
greater weight in the cost function. However, great care must be taken, 
because the ,yeights and the values of the variables also have to be taken 
into account. (E. g. a variable VI has an exponent of 10 but its value is 
smalL 0.1, and another variable V2 has a smaller exponent of 2, but its 
value is large, 10, then the second variable has greater weight in the cost 
function, so its value has to be tuned first.) 
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Fig. 1. Partitioned problem-space with local minimum 

4. Preferences - The User's Subjective Goals 

It occurs very often that in addition to the above optimum criteria the 
user \vants to integrate his subjective goal into the system. These goals 
have to be respected, though these are weaker conditions than the con­
straints themselves; no constraint can be sacrificed to achieve the subjec­
tive goal, but if there are more solutions satisfying the constraints, the so­
lution has to be chosen that matches the subjective goal better. To ex­
press these subjective goals preferences are proposed. The original domain 
of the variables can be organised into hierarchies, increasing levels repre­
senting loss in quality. The sub-domains at the top of the hierarchy are the 
tightest, those at the bottom are the ·widest, they are the same as the orig­
inal ones. The constraint solver tries to instantiate the variables from the 
sub-domains at the top and it drops a level only if some of the constraints 
are violated, and they cannot be satisfied with values from the actual level. 
Fig. 2 shows the hierarchical structure belonging to the variables with pref­
erences. There are two variables; in case of A the original domain is [0, 301 
and the higher values are preferred; while in the case of B the original do­
main is [15, 451 and the 10\ver values are preferred. An ordering is present 
between the variables in a form of a constraint: A < B. The different levels 
represent different quality instantiations. With increasing level the quality 
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decreases. So if Bl is assigned to B (from Level 1, best quality), no value 
can be selected for A from Level 1, a level has to be dropped. However,-if 
B is instantiated to B2, the constraint can be satisfied with assigning value 
to A from Level 1, thus providing a better quality solution. 

Level I 

Level 2 

Level 3 

Level I 

Level 2 

Level 3 

Values from this area always 
satisfy the given constraint 

o 10 15 20, 25 30 
13, 13, 

35 

Decreasing 
quality 

The domain of variable 1\ 

The domain of variable 13 

Constraint: 

A<13 

45 

Fig. 2. The preferential treatment of the \'ariables 

5. Place of Optimisation in CSPs - An Example 

In several practical applications the optimum criteria can naturally be de­
rived from the problem itself. Measurement technical applications consti­
tute an important application area where optimisation has great signifi­
cance. 'When designing an ES to solve measurement technical problems, 
some parts of the system can be efficiently described with constraints (e.g. 
the parameter setting of an optimal set-up can be naturally mapped onto 
a Constraint Optimisation Problem). In this case the optimum criteria in­
volves certain parameters of the set-up. Fig. 3 shows a simple set-up for 
system identification. Several parameters are associated to all of the blocks 
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Fig. 3. A simple set-up for system identification 
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in the set-up. The constraints of an optimal set-up are imposed on these 
variables and the cost function is composed of a subset of these variables. 

Conclusion 

Most of the problems have several solutions and a significant part of these 
problems is sensitive to the quality of the solution. In such cases it is very 
important to find the optimal or a sub-optimal solution based on the opti­
mum criteria associated with the task. In addition to the optimum criteria 
preferences can be associated to the variables present in the constraints, 
which differ in nature from the optimum criteria, but express important 
aspects of the task. If the constraint network is augmented with optimum 
criteria and with the preferential treatment of the variables, a wide class of 
new problems becomes solvable and can be handled with the help of con­
straints. Though the optimisation might increase the required computa­
tions, the gain in performance balances this extra resource requirement. 
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