
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 39, NO. 1, PP. 63-71 (1995)

OPTIMUM PROBLEMS IN CONSTRAINT
SATISFACTION

Gyula ROMAN and Tadeusz P. DOBROWIECKI

Department of Measurement and Instrument Engineering
Technical University of Budapest

H-1521 Budapest, Hungary

Received: March 5, 1995

Abstract

\Vith the advanced spread of Expert Systems (ES) more and more emphasis has been
put on efficient knowledge representation. Constraints, a fast developing field in Artifi­
cial Intelligence (AI), try to cope with the new requirements imposed on the knowledge
representation tools in practical applications. Efficient algorithms operating on constraint
networks have been developed [4, 7, 10], and recently some constraint systems have been
constructed [3], which are capable of solving relatively complicated problems stated in a
declarative way. However, these systems put emphasis mainly on finding a feasible solu­
tion, they do not rank the different solutions. In some cases this will not suffice. \Vhen
optimum criteria is meaningful to define, an optimal solution can be of importance.

The present paper gives a brief overview of constraints, emphasizes the importance
of searching for an optimal solution; and gives an application area where the optimal
solution would highly improve the performance of the embedding system.

Keywords: knowledge representation, constraints, Constraint Optimisation Problem
(COP).

1. Introduction

In the last few decades great efforts have been invested in AI research and
as a result quite a few ESs have been developed and put into use. The
first approach to represent kno'wledge in such systems was the rule-based
description of the available information. HO"wever, it became shortly ob­
vious that in more complex systems the knowledge involved is too diverse
to encapsulate it in a single formal approach; and there have been strong
demands for knowledge representation tools capable of expressing informa­
tion in a declarative \\·ay. In the late 60's constraints entered the stage of
AI and offered solution for the above problem. Recently, the field is dynam­
ically expanding, new efficient algorithms operating on the constraint net­
work have been presented, and the Constraint Satisfaction Problem (CSP)
has been mathematically founded. Some constraint systems have been pre­
sented in the literature [3], which are capable of solving relatively compli-

64 GY. ROMAN and T. P. DOBROWIECKI

cated tasks that are introduced to the system in a declarative way. These
systems mainly concentrated on finding a feasible solution, no matter of the
quality. In some of the cases ·when optimum criteria of some kind are mean­
ingful to define the performance of the system can be improved by adding
these optimum criteria to the system and searching for an optimal solution.

The following parts give a brief overview of the CSPs and deal with
optimum problems in CSPs.

2. The Constraint Satisfaction Problem - A Survey

A constraint satisfaction problem involves a set of variables Xl, ... ,Xn :

all variables are associated with their domains D I , ... ,Dn containing the
allowed values RI, ... , Rn; and a set of constraints C. The constraint
Ci(Xil, ... ,Xij) is a subset of the Cartesian product Rn x Rij, which
specifies which values of the variables are compatible with each other. (Ci
is a k-ary constraint if it is imposed on k variables.) A solution is an
assignment of values to the variables so that all the constraints are satisfied,
that is, the constraint network is globally consistent [8]. A number of
methods has been developed utilising this concept, some of them are more
general, some exploit specific properties of the net [4,7,10].

There are two major classes based upon the type of variables present
in the system:

(1) discrete (finite or countable set of possible values), and
(2) continuous (domains are subsets of the continuum).

The goal of the Constraint Satisfaction is usually set as:
(1) to determine whether a solution exists at all,
(2) to find a single solution,
(3) to find all solutions, or
(4) to find an optimal solution of some kind.

The most time consuming worst case is faced when there is no solution
at all. To have a simple method then to determine the existence or rather
the lack of a solution might come handy. In cases when cost criteria are
meaningful to define, an optimal variable setting might be of importance.
The situation seems simpler, than it really is. Developed systems imple­
ment either discrete or continuous variables and most of them use incom­
plete inference techniques. Problems arise when constraints are applied to
model real-life situations. Here typically both types of variables are present
and mixed methods capable of handling them are needed. A description
of such implementation can be found in [3]. Another problem is that con­
straints are often implicit and the overall system could be underdefined. In
such cases heuristic decisions have to be made that lack required basics to

OPTIMUM PROBLEMS 65

be surely correct. In addition, methods are also needed to handle the incor­
rect choices and to make the overall method complete, i.e. to guarantee a
solution if one exists, and to declare the non-existence of it if there is none.

Although the main emphasis is on finding a solution, resources re­
quired for that action cannot be neglected. MONTANARI showed that the
general CSP is NP complete [16]. It follows then that time complexity of
finding a solution in the worst case is exponential in the number of vari­
ables. This phenomenon is also met in the field of AI and in graph theory,
in connection with graph traversing, and is often referred to as combinato­
rial explosion. Many researchers dealt with methods which under special
conditions decrease the complexity of finding the solution [9,5]. For effi­
ciency reasons fast local propagation techniques are often used. The price
of speed is, however, incompleteness, and these methods not always can
produce a solution or determine that system of constraints is unsolvable.
Such techniques should be augmented with a kind of backtracking search,
which however costly, can guarantee a solution. Efforts are made to make
the search backtrack-free. The rationale is that generating exact solution
by backtrack-free search is linear (with respect to the number of variables)
[12], which draws attention to various pre-processing techniques, minimis­
ing backtracking, or to intelligent backtracking methods [6,13,14,15].

Recently significant interest has been shown in Constraint Logic Pro­
gramming (CLP) languages. Many implementations can be found in the
literature (see e.g. [1,2] for a survey). They incorporate some kind of local
propagation technique based on backtracking method already present in
Prolog. Also recently a system was presented, which utilised the power of
Nondeterministic Lisp [3]. It allows for both discrete and continuous vari­
ables and incorporates functions to handle the underdefined constraints.
The constraint network is built incrementally, always checked for consis­
tency. That way the recognition of inconsistency is faster, since it is grasped
exactly in the moment it is introduced to the system.

Despite considerable difficulties indicated above constraints constitute
knowledge-representation very useful in numerous practical applications
[17]. Constraints are advantageous due to:

(1) good representational efficiency, constraints:

- support hierarchical description,

make it possible to integrate details modelled at different levels
of abstraction into a single body,

- are easy to integrate with other knowledge representation
schemes, e. g. object oriented tools, semantic nets, frames, etc.,

support inference making,

66 GY. ROMAN and T. P. DOBROWIECKI

give good representation for 'deep' models, considering that a
part of physical laws and systemic descriptions are just con­
straints on state variables,

(2) good degradation under time limitations, furthermore constraints:
(3) are well suited for incremental system development,
(4) achieve global consistency through local computations.

3. Optimisation in Constraint Networks

Constraint networks have so far been applied to the task of finding feasible
solutions, because in many AI applications preferences play only a minor
role and finding a feasible solution suffices. However, in some of the prac­
tical applications meaningful optimum criteria do exist, and the optimal­
ity, the quality of the solution has very strong influence, far reaching effect
on the performance of the overall system. In such cases the optimal or at
least a sub-optimal solution has to be sought for.

Different possible approaches exist to find the optimum:
(1) to search for all the solutions and to choose the best at the end;
(2) to integrate the optimum criteria into the constraint network;
(3) to tune a feasible solution towards the optimum.

The first approach seems the easiest, though there are certain difficul­
ties. The system has to guarantee that it finds all the solutions and has to
keep track of the process not to find the same solution several times. The
unnecessary computations might measurably decrease efficiency.

On the other hand, the optimisation task does not require an exhaus­
tive search among all consistent solutions but rather can be incorporated
naturally into the process of finding consistent solutions. In many problem
instances the interaction between the optimum criteria and the constraints
does not add any computational complexity to the task of finding a con­
sistent solution, and when it does, the extra complexity can be estimated
beforehand, so the system can decide whether to use an exact or a heuris­
tic approach to optimisation [11].

In some of the cases, when the criteria are simple, they can be incor­
porated into the constraint network. The main problem with this approach
is that it is difficult to formalise minimum and maximum conditions in a
constraint network; it might need significant efforts to tailor the tools han­
dling the network to the minimum conditions.

3.1 Solution Tuning

The process of the solution tuning is as follows:

OPTIMUM PROBLEMS 67

1. Find a feasible solution
2. Evaluate the cost function
3. Choose a variable to tune (based on the weight of the variable in the

cost function)
4. Alter its value
5. Repeat till there is improvement

The concept underlying solution tuning is that a feasible solution is
sought first, neglecting the optimum criteria, and this solution is modified
- tuned - to find the optimum. The main advantage of this approach is
that at every step of the process a solution is available, so if the process is
interrupted due to resource limitations, the task is still partly accomplished.

3.2 Problems with the Approach

Though the above approach seems promising there are some problems to
face. The most crucial is when the problem-space is partitioned. In this
case there are independent sets of solutions, and it is not possible to step
from one set into another one by tuning. (Usually singularities break up
some of the variables, and it is not possible to continuously tune those
variables without violating some of the constraints.) Due to this property
the system might find a local minimum of the cost function instead of the
global one. Fig. 1 demonstrates this problem. If a feasible solution is found
in which VI is instantiated tou I, then minI is reached though the global
minimum of the cost function is min2. If the starting point had been U2,

the global minimum would have been found. This draws attention to the
importance of finding the partition containing the global minimum.

On the other hand, it is also a delicate question which variable to
tune and how to tune it. The speed of convergence of driving the solution
into the optimum strongly depends on the above t"\yo selections. If only
polynomial cost functions are allowed then a good idea can be to tune the
variables in the order of their exponents; the higher exponent represents
greater weight in the cost function. However, great care must be taken,
because the ,yeights and the values of the variables also have to be taken
into account. (E. g. a variable VI has an exponent of 10 but its value is
smalL 0.1, and another variable V2 has a smaller exponent of 2, but its
value is large, 10, then the second variable has greater weight in the cost
function, so its value has to be tuned first.)

68 ·GY. ROl,fAN and T. P. DOBROWIECKI

v,

V12mill

Fig. 1. Partitioned problem-space with local minimum

4. Preferences - The User's Subjective Goals

It occurs very often that in addition to the above optimum criteria the
user \vants to integrate his subjective goal into the system. These goals
have to be respected, though these are weaker conditions than the con­
straints themselves; no constraint can be sacrificed to achieve the subjec­
tive goal, but if there are more solutions satisfying the constraints, the so­
lution has to be chosen that matches the subjective goal better. To ex­
press these subjective goals preferences are proposed. The original domain
of the variables can be organised into hierarchies, increasing levels repre­
senting loss in quality. The sub-domains at the top of the hierarchy are the
tightest, those at the bottom are the ·widest, they are the same as the orig­
inal ones. The constraint solver tries to instantiate the variables from the
sub-domains at the top and it drops a level only if some of the constraints
are violated, and they cannot be satisfied with values from the actual level.
Fig. 2 shows the hierarchical structure belonging to the variables with pref­
erences. There are two variables; in case of A the original domain is [0, 301
and the higher values are preferred; while in the case of B the original do­
main is [15, 451 and the 10\ver values are preferred. An ordering is present
between the variables in a form of a constraint: A < B. The different levels
represent different quality instantiations. With increasing level the quality

OPTIMUM PROBLEMS 69

decreases. So if Bl is assigned to B (from Level 1, best quality), no value
can be selected for A from Level 1, a level has to be dropped. However,-if
B is instantiated to B2, the constraint can be satisfied with assigning value
to A from Level 1, thus providing a better quality solution.

Level I

Level 2

Level 3

Level I

Level 2

Level 3

Values from this area always
satisfy the given constraint

o 10 15 20, 25 30
13, 13,

35

Decreasing
quality

The domain of variable 1\

The domain of variable 13

Constraint:

A<13

45

Fig. 2. The preferential treatment of the \'ariables

5. Place of Optimisation in CSPs - An Example

In several practical applications the optimum criteria can naturally be de­
rived from the problem itself. Measurement technical applications consti­
tute an important application area where optimisation has great signifi­
cance. 'When designing an ES to solve measurement technical problems,
some parts of the system can be efficiently described with constraints (e.g.
the parameter setting of an optimal set-up can be naturally mapped onto
a Constraint Optimisation Problem). In this case the optimum criteria in­
volves certain parameters of the set-up. Fig. 3 shows a simple set-up for
system identification. Several parameters are associated to all of the blocks

70 GY. ROMAN and T. P. DOBROWJECKJ

Control lines

Ji~~ti:t GEN - \ (. ACQ
:-------r-----! r-

I DUT~ \r.- I
f"'1\lil

I

j------+-----­

fm,A,··
SNR

I . ~ ,
...

N d, Dd
fd~Ad

I :

I f2' A2 I:

Fig. 3. A simple set-up for system identification

-f,., Am,
Ain2

in the set-up. The constraints of an optimal set-up are imposed on these
variables and the cost function is composed of a subset of these variables.

Conclusion

Most of the problems have several solutions and a significant part of these
problems is sensitive to the quality of the solution. In such cases it is very
important to find the optimal or a sub-optimal solution based on the opti­
mum criteria associated with the task. In addition to the optimum criteria
preferences can be associated to the variables present in the constraints,
which differ in nature from the optimum criteria, but express important
aspects of the task. If the constraint network is augmented with optimum
criteria and with the preferential treatment of the variables, a wide class of
new problems becomes solvable and can be handled with the help of con­
straints. Though the optimisation might increase the required computa­
tions, the gain in performance balances this extra resource requirement.

OPTIMUM PROBLEMS 71

References

1. JAFFAR. - LASSEZ, J.: Constraint Logic Programming. Proc. of the 14th ACM Sym­
posium on the Principles of Programming Languages, 1987, pp. 111-119.

2. VAN HENTENRYCK, P.: Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, 1989.

3. SISKIND, J. M., McALLESTER, D. A.: Nondeterministic Lisp as a Substrate for
Constraint Logic Programming, Proc. of the 11th National Conference on Artificial
Intelligence, AAAI-93, 1993.

4. DECHTER, A., - DECHTER, R.: Removing Redundancies in Constraint Networks, Proc.
AAAI-B7, pp. 105-109.

5. DECHTER, R., PEARL, J.: Directed Constraint Networks: A Relational Framework
for Causal Modelling, Proc. IJCAI-91, pp. 1164-1170.

6. DECHTER, R., - MEIRI, 1.: Experimental Evaluation of Prepro-Cessing Techniques in
Constraint Satisfaction Problems, Proc. IJCAI-B9, pp. 271-277.

7. DECHTER, R., - PEARL, J.: The Anatomy of Easy Problems: A Constraint Satisfaction
Formulation, Proc. IJCAI-B5, pp. 1066-1072.

8. DECHTER, R., - PEARL, J.: Tree-Clustering Schemes for Constraint Processing, Proc.
AAAI-BB, pp. 150-154.

9. FREuDER, E. C.: A Sufficient Condition of Backtrack-Free Search, J. ACM 29Vo!' (1),
1982, pp. 24-32.

10. FREuDER, E. C.: Partial Constraint Satisfaction, Proc. of the 11th IJCAI, 1989,
pp. 278-283.

11. DECHTER, R., DECHTER, A., - PEARL, J.: Influence Diagrams, Belief Nets and
Decision Analisis, John Wiley & Sons Ltd. 1990, Chapter 18.

12. HYVNEN, E.: Constraint Reasoning with Incomplete Knowledge. The Tolerance Prop­
agation Approach, Technical Research Center of Finland, Publications 72, VTT,
ESPOO 1991.

13. MACKWORTH, A. K.: Consistency in Networks of Relations. Artificial Intelligence 8,
1977 pp. 99-118.

14. MACKWORTH, A. K., - FREUDER, E. C.: The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Artificial
Intelligence, Vo!. 25, 1985, pp. 65-74.

15. MOHR, R., HENDERSOt\, C.: Arc and Path Consistency Revisited, Artificial Intel-
ligence, Vo!. 28, 1986, pp. 225-233.

16. MONTAN ARI, 1).: Ketworks of Constraints: Fundamental Properties and Application
to Picture Processing, Inf. Sci. Vo!. 7, 1974, pp. 95-132.

17. RICH, E., Kt\IGHT, K.: Artificial Intelligence, McGraw-Hil!, 1992.

