
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 39, NO. 1, PP. 73-83 (1995)

AN INTERESTING AND EFFECTIVE CODE FOR
ERROR-CORRECTING IN MASS-STORAGE

DEVICES l

Andras SZEPESSY

Department of Measurement and Instrument Engineering
Technical University of Budapest

Budapest, XI. Miiegyetem rkp. 9. Building R, I.113.
Postal Address: H-1521 Budapest, Hungary

E-Mail: Szepessy@mmt.bme.hu

Received: March 5, 1995

Abstract

We present an interesting version of error correcting codes that makes use of the idea of
multi-dimensional coding and is able to make very large data total error-free even if the
ratio of the number of erroneous characters to the total amount of characters is about
0.1 - 0.2. The encoding and decoding mechanisms are very simple to do. Because of these
properties it can be used when transferring very large data through a noisy channel or
storing in a shoddy memory-device even if the data is required to be transferred or stored
intactly, which means to obtain it after decoding total error-free. Noisy channels can be
e.g. phone lines transferring facsimile data (DoONG, 1992), and as a 'shoddy' memory­
device can be regarded any kind of standard-quality ones when counting on the worst case
in a system to accomplish the requirement of high-reliability (e.g. a stable storage device),
mainly when using cheaper kinds of mass storage devices (e.g. Hard Disks, Optical Disks).

Introduction

Let us suppose that a transient failure has broken a given part of the bits
of data stored in a memory, in a way that every bit (or character) broke
independent from each other (Random Errors) with a probability bit. The
ratio of the number of corrupted bits to the amount of every bit is called
Bit Error Ratio, or BER. Let us call BERo the Raw Bit Error Ratio and
BERoo the value of BER after passing the whole error-correcting method.
vVe can correct a very large data total error-free when using an error­
correcting code which decreases the value of BER to such a value that

Perror-free = (1 - BERoo)number of bits ~ 1 - BERoo . (number of bits),

IThis work was supported by Hungarian Scientific Foundation Grant OTKA T-760 and
supervised by Prof. Endre Seh~nyi.

74 A. SZEPESSY

that is, the probability of getting the data total error-free will have a value
very close to zero. The task of error-correcting becomes so very difficult.
A method offering a possible solution is considered in this paper.

A Solution - Multi-Dimensional Coding

Unfortunately, solutions using a great deal of codewords independent of
each other cannot be used if there is a need of correcting the whole data
error-free by a high value of the Bit Error Ratio of Random Errors. The
reason for this is that every bit is a member of exactly one codeword which
means if a bit is protected by a codeword that cannot be corrected there
is no way to correct it any more. A solution for that is to protect every bit
by more than one codeword, and possibly every codeword should protect
another group of bits than the other ones, which means that the members
of any pair of the codewords should contain maximum one common bit.
(Of course there are also kinds of codes whose characters consist of more
than one bit. By these the same is valid for characters as we mentioned
for bits.) This is called interleaving or multi-dimensional coding technique.
It is to say that now we focus on the area of Random Error Correcting
Ability, insipid of the fact that interleaving technique is generally used
against Burst-Errors occurring in the data.

Our code scheme makes use of the idea of a repetitive algorithm used
e.g. in CDROMs (KURTZ, 1987), (RAo, 1987). It has got a good deal of
versions, but there are two general ones related as follO\vs. One of these was
developed to correct erasures only. The other one corrects simple errors,
too. The basic idea in both versions was to use the possibly simplest kind of
error correcting codes, which means a code that need not be able to correct
more than one error per codewords, and to create a multi-dimensional code
with them. Another important question was of course to find the code
filling the above requirement and having a minimal value of redundancy.
So we have chosen the simple 'one parity bit per binary codewords' for
erasures correction, and the (n, n - 2) Reed-Solomon code for simple-error­
correction. The number of bits per one character in the latter case depends
on the upper bound of the miscorrections rate required to reach a great
error correction capability. (A miscorrection means the event when the
decoder observes an error in a codeword, then deciding to be able to correct
this error, it does try to do that. When done, it believes in the success of
correction, although the codeword has remained erroneous, or moreover,
it has become wronger than before. The miscorrection rate means the
probability of a miscorrection after observing an error, and it is a very
important parameter of a code.) (See Fig. 1).

AN INTERESTING AND EFFECTIVE CODE 75

Definition of the Erasure Correcting Version

The code is a Block Code, that is, it handles blocks of the data of (X . Y)
bits size. A Data Block can be imagined as a B matrix consisting Y rows
and X columns. While encoding it gets P extra columns containing the
parity bits of the block (B').

Redundancy

There are more possible ways to define redundancy of a code. Now we
define it as the ratio of amount of the redundant bits (in this version parity
bits) to that of the information bits. The redundancy defined in such a
way has a value of PIX.

The Encoding Procedure

Let us call B (y, x) the information bit existing in the yth row and xth col­
umn. After the encoding procedure every information bit will be contained
by exactly P codewords or, as we will say, every information bit will be en­
coded in P directions. Every codeword contains X information bits and a
parity bit. Let us call P(y, p) the parity bit standing in the yth row and
pth parity-column of the matrix B'. In the encoding procedure this P(y,p)
will be given a value as follows:

P(y,p) = B(y, 1) EB B(y + p, 2) EB ... EB B(y + (x - 1)· p, x), (1)

where the operator EB means a modulo 2 addition (Exclusive Or), and the
operator + a modulo Y addition. This latter one guarantees that the row­
index remains in the interval [0, Y - 1]. So is the encoding procedure fully­
defined.

We should add one more important rule to the above ones. It is
worth choosing an (X, Y, P) parameter-set that any two codewords contain
maximum one common bit.

Notice

The ctbove distribution of the bits among the codewords is very simple to
realise in practice, and it is also the simplest way to understand the logic
of this code. Nevertheless we suggest using another kind of distribution,
l.e. a stochastical one. It means that for every codeword it is drawn

76 A. SZEPESSY

X data
columns

0 0 0 0 0 p

0 0 0 0 0

0 0 0 0 x

0 0 0 0 0

0 0 0 x 0 :p

0 0 0 0 x

x 0 x x 0

x 0 x 0 0

x <81 x x x parity- bits

x 0 x 0 0

x 0 x x 0

0 0 0 0 x

0 0 0 x 0 p

0 0 0 0 0

0 0 0 0 x

0 0 0 0 0

0 0 0 0 0 p

Fig. 1. The x's mean the bits of that codewords which contain the bit marked with the
0. The p's mean the parity bits of these codewords. \Ve have placed every of
them onto the line of their own codeword

stochastically which bits it will contain. In this way there are three rules
to be accomplished:

I. Every codeword consists of X information bits and one parity bit.
Il. P(y,p) is the modulo 2 sum of the information bits of the codeword

called GW(y,p).
IlI. If pI p2, then GVV(yl,pl) and GW(y2,p2) contain no common bit,

otherwise they contain maximum one common bit.
Of course, we can use a pseudo-random distribution, too, and what

is more the same one for every block of the data. In this way we get
also a simple distribution procedure. We have no place here to explain its

AN INTERESTING AND EFFECTIVE CODE 77

reason, so we simply say that following this way, we get a code protected
much better against some kinds of errors. \Ve can also see that the non­
stochastical version defined before the stochastical one accomplishes the
rules I-Ill, too, so we can regard the non-stochastical version as a special
case of the other one.

The Decoding Procedure

In all of the P directions we pass the following step called a sweep:
\Ve correct every codeword of this direction p, if and only if it contains

exactly one error. Since we have supposed there are erasure-type errors
only, it can always be seen if a given codeword is correctable. Having
seen every code'word of the actual direction (or expressed more illustrated
having s"wept over all of them) we go ahead attempting correction in the
next direction. If \ye have swept over every codewords in every direction (or
otherwise expressed '.ye have passed a complete sweep over the block), we
begin this procedure \yith the first direction again. "\Ne stop the procedure
only if no error has been corrected in a complete sweep passed.

One could ask the question: 'Is it worth passing more than one com­
plete sweep over the block?' The answer: 'Certainly it is!' Let us suppose
there has been observed more than one erased bit in ClIV(y,pl) while the
nth complete sweeping over the block, so it could not be corrected. Then
there exists the possibility that all of these erased bits except exactly one
'.yill be corrected in the other directions. By the next attempt for correction
of C1IV(y,pl) we will find one erasure and we can already correct it. Let us
call BERn the value of BER after passing the nth sweep over the block.

Error Correcting Capability of the Above Code

_-\s in the abstract of this article we said the test results showed that even
very high values of the Bit Error Ratio (BERo was about 0.1 - 0.2) can
be decreased a lot. The tests were run by a program \vritten in Pascal
that generates errors in a data block and tries to correct them. Because
of the very small value of BER= we can get a valuable result only when
running the program on a very large block of data. This is quite a slow way.
Fortunately, it has become possible to create a relatiyely simple program
in order to simulate these tests, that is, to compute the values of BERn
theoretically. Unfortunately, we have no place to write down the algorithm
in these pages, but it is to say that the results computed by this program are
very close in value to those generated by the tests, particularly '.vhen using
the stochastical distribution of bits among codewords (see Table 1 later).

78 .4. SZEPESSY

If we have chosen a block large enough to be tested, we get a series of
the values of BERn decreasing monotonously and having a bottom bound
'while increasing the value of n to infinite. This bottom bound shows the
ratio of the number of uncorrectable bits to the total amount of bits existing
in the block. In other words it is equal to the probability of that event
when a given bit of a block is uncorrectably erased.

Since the value of this probability depends on the value of X and P
only, we can call it BER(X, P). Using this BER(X, P) we can compute
for every value of Y (which means for every possible size of a block) the
probability of the decoder being able to correct a given block completely.

Now here are some complete test results. Two of them have been made
with the same parameters (X = 16; P = 4). The only difference between
them is that one was made with a pseudo-random distribution of bits among
codewords \vhile the other one was made with the non-random distribution
related in Eg. (1). \rVe have also computed the results theoretically. These
computed ones are shown in the middle column of Table 1 between those
of the tests in order to compare them. It can be seen that, firstly, the
computed results are much closer to the results of the test using random
distribution than to those of the other one: secondly, even the value of
BERn(X, P) was decreasing faster when using a random distribution.

X = 16,

P = 4.

Y = 2.56.107
.

BERo = 0.1.

The third test '\"as made with another yalue of P. namely 8. which
means that every bit is encoded in eight directions. Unfortunately. we
have place here only for supplying the final result. This was BER(16.8) =
1.22.10-9.

It is worth noticing that by the most combinations of (X, P) tested
by us a very simple rule has been accomplished to compute the value of
BER(X,P).

BER(X, P) = BER~+l

where BERo means of course the Bit Error Ratio before the beginning of
the error correction procedure.

There are even more interesting facts to observe. First, the value of
BER(X, P) does not depend on that of X. Really, if X has not a too large
value (i.e. larger than a given bound), it has nearb· no effect on the value
of BER(X, P). (So it can be called BER(P).) ::\evertheless there are no
marvels on earth: it does have an effect on the speed of decreasing of BERn,

1st complete sweep:
1st direction:
2nd direction:
3rd direction:
4th direction:

2nd complete sweep:
1st direction:
2nd direction:
3rd direction:
4th direction:

3rd complete sweep:
1st direction:
2nd direction:
3rd direction:
4th direction:
4th complete sweep:
1st direction:
2nd direction:
3rd direction:
4th direction:

5th complete sweep:
1st direction:
2nd direction:
3rd direction:
4th direction:

AN INTERESTING AND EFFECTIIIE CODE

Table 1

Pseudo-random
distribution of bits
among codeviOrds

Computed results Non-random

8.146 E-02 8.147 E-02
6.096 E-02 6.098 E-02
3.962 E-02 3.962 E-02
2.027 E-02 2.017 E-02

9.679 E-03 9.462 E-03
3.496 E-03 3.241 E-03
9.736 E-04 8.232 E-04
2.492 E-04 1.966 E-04

6.811 E-05 5.500 E-05
2.555 E-05 2.207 E-05
1.461 E-05 1.362 E-05
1.166 E-05 1.137 E-05

1.091 E-05 1.079 E-05
1.069 E-05 1.063 E-05
1.062 E-05 1.059 E-05
1.060 E-05 1.058 E-05

1.059 E-05 1.058 E-05
1.059 E-05 1.057 E-05
1.059 E-05 1.057 E-05
1.059 E-05 1.057 E-05

distribution of bits
among codewords

8.148 E-02
6.098 E-02
3.985 E-02
2.103 E-02

1.083 E-02
4.787 E-03
1.912 E-03
7.268 E-04

2.661 E-04
1.014 E-04
4.322 E-05
2.302 E-05

1.543 E-05
1.228 E-05
1.134 E-05
1.093 E-05

1.080 E-05
1.075 E-05
1.073 E-05
1.073 E-05

79

and if it has a value greater than a given bound then the decreasing of
BERn (increasing n) will stop at a bound higher than BE R(P). Examining
this fact nearly the same results can be obtained using both methods testing
or computing.

Secondly, we should observe that the value of BER(X, P) decreases
exponentially while decreasing that of BERo. The reason for this expo­
nential behaviour is the following:

Let us imagine the simplest kind of uncorrectable error pattern, i.e.
an erased information bit having all of its parity bits erased, too (Fig. 2).

The probability of finding this pattern examined a given information
bit has·a value of exactly BERt+1

, because all the (P + 1) bits examined
must be found erased knowing that the event of an erasure of a bit has
been independent of that of the other ones. Of course, there are more

80 A. SZEPESSY

X data
columns

0 0 0 0 0 Cp

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 Cp

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 C 0 0 0 Cp P parity - bits

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 cp

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 cp

o non - corrupted infonnation bit

C corrupted information bit

cp corrupted parity bit

Fig. 2.

complicated uncorrectable error patterns, too, but the tests passed over
have shown the above one to determine the value of BER(X, P).

Error Escape Rate

Supposing that there are erasure-type errors only in the data the proba­
bility of the event that the decoder regards an erroneous-remained block is
equal to zero after the decoding as an error-free one.

AN INTERESTING AND EFFECTIFE CODE 81

Definition of the Simple Error Correcting Version

The structure of blocks and the encoding mechanism is nearly the same
as those in the erasure correcting version. The only differences are first
we encode on characters (which means groups of bits of a determined size
e.g. 8 or 16 bits) instead of single bits, secondly, as mentioned before, we
have chosen the (n, n - 2) Reed-Solomon code as an encoding-decoding
mechanism instead of the (n, n - 1) binary one. Therefore there exist two
check characters instead of one parity bit per codewords. Otherwise we use
the same encoding procedure (see Fig. 3).

The Decoding Procedure

The decoding procedure is almost the same as that of the erasure correcting
version except one big difference: Since the errors existing in the data are
simple errors (that is, not erasures) we cannot see if a given character
is erroneous or clear. Thus we have to try to correct every codeword of
the direction whose sweeping over the data we are passing. Attempting
correction of a codeword five kinds of outcome can occur.

- The codeword is error-free. It remains intact.
The codeword has one erroneous character. The decoder passes it over
the correcting mechanism of the code and so it becomes error-free.
The codeword has more than one erroneous characters in itself, but
the decoder believes that it is error-free. The codeword remains intact
(i.e. erroneous).
The codeword has more than one erroneous characters in itself, but
for the decoder it seems to have only one erroneous one in it. The
attempt at correction results in a miscorrection, thus the codeword
becomes as incorrect or even more incorrect than before.

- The same as the previous one, but the decoder recognizes that the
codeword cannot be corrected at this time, so it remains intact.
The possible events are the same as those by the erasure correcting

version except the third and the fourth ones. If the miscorrection rate of
the code has a value of zero, these both events could not happen. So when
choosing a code having a miscorrection rate small enough and supposing
that the check-character-pair of a codeword becomes erroneous with the
same pr-obability as anyone of its information characters, we can use the
same programs as before in order to get the values BERn. And of course
we get almost the same results. (BER means here of course the Character
Error Ratio.)

82 A. SZEPESSY

(0,0-1) binary cod<->(o,0-2) RS-codc

bits --+ characters

parity- bits--+ redundant character- pairs

X data

columns

aODaoce

o 0 0 0 0

o 0 0 0 x

o 0 0 0 0

oooxocc

o 0 0 0 I

I 0 I X 0

x 0 x 0 0

x 0 x 0 0

1: 0 X X 0

o 0 0 0 I

DoOtOce

o 0 0 0 0

o 0 0 0 I

o 0 0 0 0

aODaoce

redundant character- pairs

Fig. 3. The x's mean the bits of that codewords which contain the bit marked with the
0. The cc's mean the redundant chech-charcter pairs of these codewords

As mentioned before, the value of the miscorrection rate can be re­
duced when using a code with longer characters. (E.g. characters contain­
ing 16 bits instead of only 8.) Nevertheless it is not a catastrophe if we use
a code having a miscorrection rate not so close to zero. In this case the
value of BERn will be decreasing to that of BER(X, Y) a little slowlier,
and indeed, even the value of BER(X, Y) can grow. In spite of these facts
it is not an unusable solution.

AN INTERESTING AND EFFECTIVE CODE 83

Error Escape Rate

\Ve suggest that before encoding you should pass the data through a eRe
encoder. \Vhen having done so, the result of the decoding can be controlled,
and the error escape rate will be a function of the quality of the applicated
eRe code. In this way there will not be any connection between the error
escape rate of the block and the miscorrection rate of the Reed-Solomon
code used in it.

Conclusion

\Ve presented an interesting version of error correcting codes that makes
use of the idea of multi-dimensional coding and is able to make very large
data total error-free even if the ratio of the number of erroneous characters
to the total amount of characters is about 0.1 - 0.2. The encoding and
decoding mechanism is very simple to do. Because of these properties it
can be used when transferring very large data through a noisy channel or
storing in a shoddy memory even if the data is required to be transferred
or stored intactly, which means to obtain it after decoding total error­
free. \Ve have developed a method to compute the value of error correction
capability in many cases and also tested a lot of them.

References

1. h: e RTZ. C.: Development of a High-Capacity Performance Optical Storage System,
Dig. 8th IEEE Symposium on .Mass Storage Systems ()'Iay 1987), pp. 107-11l.

2. RAo, T. R. 1\. - FeJIWARA, E.: Error-Control Coding for Computer Systems, 6.2.3.
Prentice Hall International.

3. Doo:\G. - \YEIFA:\G, D. Hcrzlle, Le. HEDRICK, G. E.: Interleaving Technique
for Block Coding of Black-and-White Facsimile Data, Applied Computing: Techno­
logical Challenges of the 1990's. Froc 92 ACM SIGAFF Symp Appl Comput SAC
92. pp. 37-45, (1991).

