
PERIODIC.4 POLYTECHNICA SER. EL. ENG. VOL. 39, NO. 2, PP. 85-102 (1995)

A COMPABILITY BASED ALLOCATION METHOD IN
HIGH LEVEL SYNTHESIS 1

Peter ARATO and Istvan BERES

Department of Process Control
Technical University of Budapest

H-1521 Budapest, Hungary
XL, Miiegyetem rkp. 9

email: arato@seeger.fsz.bme.hu.beres@seeger.fsz.bme.hu
tel: (36-1)463-2196, fax: (36-1)463-2204

Received: June 30, 1995

Abstract

This paper presents a model and a method for the allocation during the high level datapath
synthesis of pipelined ASIC architectures starting with a behavioral description of the
system consisting of theoretical operational units with arbitrary operation duration. As
a part of the Scheduling and Allocation Method (SAM), a compatibility relation is used
for determining the operations to be allocated in one processor element.

The aim of the procedure is to reduce the number of processors that are necessary
for the realization of the theoretical operational units. The method presented in this paper
can provide a better solution to the resource allocation problem in many cases by handling
the conditional branches. The constraints for the types of processors to be applied can be
different depending upon the hardware resources.

Keywords: high-level synthesis, behavioral description, scheduling, allocation, pipelining.

1. Introduction

The high level synthesis is a design method starting with a behavioral
description derived from the problem to be solved by a digital system and
yielding a register transfer- and processor level structure. The behavioral
description of the datapath - usually represented by a graph or a high level
language - is based on elementary operations. Two important steps of the
high level synthesis are the scheduling of the datapath by a proper start
control of the elementary operations and the allocation of the elementary
operations into processors aimed at the optimal cost-speed trade-off. In
this way, the number of necessary control steps and necessary number of
different processors can be determined, leading to an increasing throughput
of a behavioral datapath. In the case of pipelining, the throughput is

IThe research work outlined in this paper was supported by the grant OTKA-776 of the
Hungarian Academy of Sciences.

86 P. ARATO and I. BERES

characterized by the restarting period (R) defined as the shortest time the
datapath requires before accepting a new input data.

The resource allocation is generally handled as a separate subtask
of high level synthesis and usually it is only mentioned in papers which
introduce effective scheduling algorithms. In most cases, the scheduling and
allocating of pipelined systems require extra considerations and a desired
restarting period cannot be given in advance [5,6,8,9,10]' the duration of
the elementary operations are assumed to be uniform, as either a single
clock cycle or a control step.

The method presented in this paper is based on a compatibility rela
tion between concurrent operations, it can handle operations ... vith different
arbitrary duration times and ensures a desired pipeline restarting period.

A synchronized datapath is assumed and the duration of each opera
tion is considered to be the necessary number of the clock cycles for each.
Control of the datapath is outside of the scope of this paper, but after hav
ing solved the scheduling and allocation, a simple centralized counter-like
or distributed handshake control can easily be designed.

2. The Graph Representation of the Datapath

The behavioral description of a solution to a problem with an input vector
X (Xl . .. Xn) and an output vector Y = (YI ... Ym) can be represented by
a directed graph. The nodes of the graph are the elementary operations e(i)
and the directed edges show the data connections between the operations.
This graph is called Elementary Operation Graph (EOG).

If the output of e(i) is connected to the one of the inputs of e(j) then
e(i) and e(j) are data-connected and it is represented with e(i) ~ e(j).
In this case, there is a directed edge from the node e(i) to the node e(j)
in the EOG. Each elementary operation may receive data from more than
one other operation, but it is assumed to have only a single output vector.
If the output supplies several inputs then several edges can represent these
connections from the output of e(i) to the inputs of the other operations.

vVith assumptions on recursive and non-recursive loops the datapath
can be considered as an assembly of independent sequences of operations
called transfer sequences starting with an operation which receives input
data, going through the directed edges and ending with an operation which
produces the output data of the datapath. Thus, 5(i, k) denotes the k-th
transfer sequence beginning \vith e(i).

The duration time of an operation e(i) is t(i) if it requires tU) clock
cycles from that time when all the inputs are available to the time when
the result of the operation is stable on the output of e(i). In literature [4,7],

A COMPABILITY BASED ALLOCATION METHOD 87

t(i) generally is interpreted as the number of the control steps required for
the execution of the operation e(i).

It is assumed that the datapath has a datafiow character, thus any
operation:

1. - requires its input during the whole duration time,
2. - holds its actual output stable until the next start,
3. may change its output during the whole duration time.

A point of time b(i)(h) can be associated with each of the h-th inputs
of each e(i) referring to the serial number of the clock cycle in which the
first data arrives on this input. The first start of e(i) is initiated at

b(i) = max(b(i)(h)) , (2.1)

where b(i) is the beginning point of time of the duration of e(i).
After the duration time t(i), the output data of e(i) is available for

e(j) where e(i) -+ e(j) holds. This output must be stable for the duration
of e(j). Therefore, e(i) may receive a new start with new data only after
finishing the duration time of e(j). Thus, the restarting period of e(i) must
be longer than t(i) + t(j) [1,3J. This limit is the length of the restarting
period, called the transfer score q(i) of e(i):

q(i) = t(i) + max(t(j)) , (2.2)

where the max function is necessary if e(i) is connected to more than one
e(j).

The shortest restarting period \vhich can be achieved by the EOG
must be greater than the longest transfer score:

R >= max(q(i)) + 1 . (2.3)

During the design process the designer usually \vants to achieve a given
restarting period. If the restarting period is shorter than the R in Eq. (2.3)
a procedure must be found for reducing the minimum restarting period of
the EOG.

3. Scheduling

At first, two simple reducing algorithms are presented below as systematic
interactions into the EOG to obtain the shortest latency specified in ad
vance. This is the first step of the scheduling.

88 P. ARATO and I. BERES

3.1 Reducing the Shortest Latency of the EOG

3.1.1 Inserting Buffer Registers

Let e(i) -+ e(j) be held and let a buffer register e(p) be inserted between
e(i) and e(j) with a duration of t(p) = 1 [1,2,3J. The new sequence is
e(i) -+ e(p) -+ e(j). The new transfer scores can be calculated as

q(i) = t(i) + 1 ,

q(p) 1 + t(j) .

The new shortest restarting period is:

R=max(q(i),q(p))+l.

(3.1)

(3.2)

(3.3)

This R is a smaller number than it was before if t(i) and t(j) are greater
than 1. Thus if this e(i) was the bottleneck of the EOG then the smallest
restarting period R of the EOG is reduced.

In other words, for achieving the restarting period R, a buffer register
must be placed after every operation which has a bigger transfer score than
R-1.

3.1.2 Reducing the Restarting Period Applying Multiple
Functional Units

From Eqs. (3.1), (3.2), (3.3), the minimum of the restarting period that
can be achieved is

R = max(t(i)) + 2 . (3.4)

If a smaller value is desired then more copies of e(i) have to be connected
in parallel. Let e(i) be applied in e(i) copies connected in parallel and let
e(i) -+ e(j) be assumed [1,2,3J. The first copy of e(i) (e(i,O)) starts func
tioning at b(i,O) = O. Its duration is t(i) and it must hold the output dur
ing t(j) for the next e(j). The second copy e(i, 1) is initialized at b(i, 1) = R
and the (n + l)-th copy e(i, n) begins to compute at b(i, n) = n X R. The
first copy starts again at b(i, 0) = e(i) x R with the e(i) + 1-th data where
e(i) is the number of the same operations which were connected parallel.
The eei) + 1-th data cannot arrive earlier than t(i) + t(j) + 1. Formally:

e(i) x R ?:: q(i) + 1 . (3.5)

A COMPABILITY BASED ALLOCATION METHOD 89

From (3.5):
c(i) ~ (q(i) + 1)/ R , (3.6)

where R > 0 always holds. Thus, for achieving a value of R we must apply
c(i) copies of e(i), where c(i) is interpreted as the nearest integer which
is greater than the result of the previous division. A buffer register must
be inserted before each copy of e(i, n) because the input data must hold
during t(i) for each copy.

The combined algorithm is introduced as follows:

for all e(i) in EOG do
if q(i) + 1 > R then

insert a buffer after e(i)
if t(i) + 2 > R then
c(i) (t(i) + 1 + R) div R

insert c(i) buffers and c(i) copies of e(i) in the EOG

\Vith this algorithm, the shortest latency of a transfer sequence without
recursive loops can be reduced to 3 [2].

4. Allocation

The allocation is the part of the high level synthesis when the processing
units are formed from elementary operations. A processor is the real unit
which must be realized. The constraints for forming the processor units
and covering the elementary operations with these processor units and the
savings of resources depend strongly on the groups of elementary operations
realizable in one unit, the structure of the connections, the limits on the
number of processing units, etc. [4,7].

A very simple approach to the allocation is to consider the processing
units as real resources, \vith the notion that each of them can realise one
or more elementary operations which are never busy simultaneously. The
busy state of the operation is not only the duration time but it lasts until
the end of its data hold period as well, this time can be determined by the
transfer score. Let the operations be called concurrent operations if their
busy states are overlapped in time. The maximal sets of non concurrent
elementary operations can represent and specify the real processing units
involving the structural description of the system [2,4].

If two elementary operations e(i) and e(j) are non-concurrent then
these operations can be allocated in a processor {e(i), e(j)} and an e(i)
operation can always be allocated in a processor with itself: {e(i), e(i)}.
This relation ({}) is a compatibility relation as shown:

90 P. ARATO and I. BERES

1. Reflective: {e(i),e(i)} is always true.
2. Symmetric: If {e(i),e(j)} is true then {e(j),e(i)} is true.
3. Non transitive: if {e(i), e(j)} and {e(j), e(k)} are true then

{e(i),e(k)} is not necessarily true.

4.1 Concurrent Operations

Busy state of e(i,n) Possible situations for eU,m) in overlapping

time

Fig. 4.1.

Fig. 4.1 shows all possible variations of the busy state overlapping for
two operations (e(i,n),e(j,m)), where b(i,n) and b(j,m) stand for the
beginning and f(i, n) and f(j, m) for the finishing points of time of the
busy state for e(i, n) and e(j, m), respectively.

From the definitions of the transfer score and start time, q(i), q(j)
and b(i,n), b(j,m), respectively, the finishing points of time f(i,n) and
f(j, m) of the busy states of e(i, n) and e(j, m) can be found as follows:

b(i, n) + q(i) = f(i, n) ,

b(j, m) + q(j) = f(j, m) .

(4.1)

(4.2)

A COMPABILITY BASED ALLOCATION METHOD 91

According to Fig. 4.1 e(i, n) and e(j, m) are concurrent operations if any
of the following inequalities is satisfied:

b(i,n) ::; b(j,m) < f(j,m) ::; f(i,n) ,

b(i,n)::; b(j,m)::; f(i,n)::; f(j,m) ,

b(j,m)::; b(i,n) < f(i,n) ::; f(j,m) ,

b(j,m)::; b(i,n)::; f(j,m)::; f(i,n) .

(4.3)

(4.4)

(4.5)

(4.6)

The inequalities (4.3) and (4.4) cover the same situations when the e(j,m)
busy state starts at the same time or during the busy state of e(i, n). Also
the inequalities (4.5) and (4.6) cover similar situations when the e(i,n)
busy state starts at the same time or during the busy state of e(j, m). As
Eqs. (4.1) and (4.2) shO\\' , the followings are always true:

b(i, n) < f(i, n) ,

b (j, m) < f (j, m) .

(4.7)

(4.8)

From the previous inequalities (4.1-4.8) it can be concluded that the e(i,n)
and e(j, m) are concurrent if and only if either of the following two inequal
ities is true:

b(i, n) ::; b(j, m) ::; b(i, n) + q(i) ,

b(j,m)::; b(i,n) ::; b(j,m) + q(j) .

(4.9)

(4.10)

In a pipeline mode, if the beginning point of time of e(i, O)'s and e(j,O)'s
busy state are b(i) = b(i, 0) and b(j) = b(j, 0), respectively, then

b(i, n) = b(i) + (n + k(i, n) X c(i)) x R ,

b(j, m) = b(j) + (m + k(j, m) X c(j)) X R ,

(4.11)

(4.12)

where k(i, n) and k(j, m) are arbitrary non negative integers and (n +
k(i, n) X c(i)) and (m + k(j, m) X c(j)) are the serial number of the input
vector (X) received by the EOG and processed by e(i, n) and e(j, m).

Substituting Eqs. (4.11) and (4.12) into (4.9) and (4.10):

b(i) + (n + k(i, n) X c(i)) x R ::; b(j) + (m + k(j, m) X c(j)) X R ::;

b(i) + (n + k(i, n) X c(i)) X R + q(i) , (4.13)

b(j) + (m + k(j, m) X c(j)) X R ::; b(i) + (n + k(i, n) X c(i)) X R ::;

b(j) + (m + k(j, m) X c(j)) X R + q(j) . (4.14)

92 P. ARATO and I. BERES

From the previous two formulas it can be written:

b(i) - bU):::; [(m + kU,m) x c(j)) - (n + k(i,n) x c(i))] x R:::;

b(i)-bU)+q(i) (4.15)

b(i) - bU) 2: [(m + k(j, m) x cU)) - (n + k(i, n) x c(i))] x R 2:
b(i) - b(j) - q(j) . (4.16)

The left sides of the inequalities are identical, therefore:

b(i) - b(j) - q(j) :::; l{ x R :::; b(i) - b(j) + q(i) , (4.17)

l{ = [m + k(j,rn) x c(j)] [n + k(i,n) x c(i)] . (4.18)

Thus, e(i, n) and e(j, m) are concurrent if and only if at least one integer l{

and non negative integers: k(i,n) and k(j,m) can be found which satisfy
the inequality (4.17) and (4.18) Diophantos equation.

4.1.1 Solutions in the Case of Number of Copies

Substituting Eqs. (4.18) back into (4.17):

b(i) bU) - q(j) :::; ([m + k(j, m) X c(j)]-

- [n + k(i,n) X c(i)]} X R (4.19)

and

b(i) - bU) + q(i) 2: ([m + k(j,m) x c(j)]-

[n + k(i,n) x c(i)]} x R . (4.20)

From the previous two formulas it can be written:

b(i) - b(j) - m X R+

(n + k(i, n) x c(i)) x R - q(j) :::; k(j, m) x c(j) X R (4.21)

and

b(i) - b(j) - m X R+

(n + k(i, n) X c(i)) X R + q(i) 2: k(j, m) x c(j) x R . (4.22)

Introducing the notation:

A = b(i) - b(j) - m X R + (n + k(i,n) x c(i)) x R (4.23)

A COl,,[PABILITY BASED ALLOCATION METHOD 93

and rewriting the inequalities (4.21) and (4.22) in one, because the right
sides are identical:

A. - q(j) ::; k(j, m) X e(j) X R::; A. + q(i) , (4.24)

\vhere e(i) is the number of the copies of e(i), thus e(i) > 0 is always true,
also by definition, the restarting period R is ahvays greater than 0 and from
the definition in Eq. (4.12) k(j,m) must be a non negative integer, thus:

A. - q(j) 2: 0 ,

which involves from Eq. (4.23):

k(i, n) 2: [b(j) b(i) + R X (m - n) + q(j)]/[e(i) X R] .

The inequality (4.24) involves an interval for k(j, m) X [e(j) X R]:

1= q(i) + q(j) .

(4.25)

(4.26)

(4.27)

If this I interval is greater than or equal to [e(j) X R] then a non neg
ative integer k(j,m) can always be found for any k(i,n) which satisfies
Eq. (4.26). These two non negative integers denote that e(i,n) and e(j,m)
are concurrent.

From the definition of e(j):

e(j) 2: (q(j) + 1)/ R , (4.28)

a lower and an upper bound can be given for e(j) as:

q(j) + 1 ::; e(j) X R ::; q(j) + R . (4.29)

It can be proven, as is shown in Eq. (4.30), that even the upper bound
of e(j) X R is smaller than the I interval in Eq. (4.27), because if e(i) is
greater than 1, then q(j) 2: R holds:

q(j) + R ::; q(i) + q(j) = I . (4.30)

In this case e(i,n) and e(j,m) are concurrent because the I interval from
Eq. (4.24) is always greater than the upper bound of e(j) x R. The steps
from Eq. (4.21) to Eq. (4.30) are symmetric in e(i,n) and e(j,m) so if

R::; q(i) (4.31)

or

R ::; q(j) , (4.32)

then e(i,n) and e(j,m) are concurrent, because the solution for Eq. (4.17)
and Eq. (4.18) can always be found. In other words if an e(i) is multiplied
(because q(i) 2: R) then any e(i, n) copy of this e(i) is concurrent with any
other e(j) in the EGG.

94 P. ARATO and I. BERES

4.1.2 Concurrence of Non Multiplied Operations

If c(i) = cU) = 1 (non multiplied operations), then n = m
makes Egs. (4.17) and (4.18) much simpler:

o which

b(i) - bU) - gU) ::; K x R ::; b(i) - b(j) + g(i) ,

K = kU) - k(i) .

(4.33)

(4.34)

If K exists Eg. (4.34) always has a solution (any integer can be written as
a difference of two non negative positive integers). Thus, if e(i) and e(j)
are not multiplied operations, then they are concurrent if and only if at
least one integer I{ can be found which satisfies Eg. (4.33).

The paragraph following the Eg. (4.27) proves:

If g(i) + g(j) 2:: R , (4.35)

then e(i) and eU) are concurrent. A simple algorithm can be set up:

for all e(i) in EOG do
if c(i) = 1 then

for all eU) where j > i do
if cU) = 1 and g(i) + g(j) < R then

A = [b(i) - bU) - gU)]! R Ix realization of 4.33 xl
B = [b(i) - bU) + g(i)]1 R
if lint (A) = int (B) and sign (A) = sign(B) and

int (A)! = A and int(B)! = B] then
e(i) and eU) are not concurrent

The complexity of this algorithm is O(n x n12) if the EOG has n operations
before the multiplication.

Another algorithm can be found if the busy state of the elementary
operations is kept folding into one restarting period with a modulo division
by R. In this case Eg. (4.35) has a descriptive meaning as both elementary
operations must fit into one restarting period. Let the starting and the
finishing points of time of the busy state be modified:

b' (i) = b(i) mod R ,

f'U) = f(i) mod R ,

b' (j) = bU) mod R ,

f' U) f(j) mod R ,

(4.36)

(4.37)

(4.38)

(4.39)

.4 CO}.JPABILITY BASED .4LLOCATION AfETHOD 95

,. I
b'('ll
f(i)

b'WI b.ml 1 v rm
end of ~brtiJ:lg period

Fig. 4.2.

where b' (i) and b' (j) shmv the beginning points and f' (i) and f' (j) show the
ending points of time for the busy states of e(i) and e(j) in one restarting
period. Fig. 4.2 shmvs the possible situations when e(i) and e(j) are not
overlapped. In this case:

f' (i) < b' (j) ,

f'(j) > b'(j) or t(j) < b'(j) .

(4.40)

(4.41)

If the original beginning and ending points of time are written back from
Eqs. (4.36) - (4.39) into Eqs. (4.40) (4.41) then:
if

[b(i) + q(i)] mod R < b(j) mod R , (4.42)

then
[b(j) + q(j)] mod R > b(j) mod R (4.43)

or
[b(j) + q(j)] mod R < b(i) mod R . (4.44)

4.2 Handling the Conditional Branches

The conditional checking operation can be interpreted in the EOG by com
pleting it with special elementary operations, called case operations, which
select only one single transfer sequence from the possible transfer sequences
(following the operation) in each period of the pipeline mode. In the

96 P. AR.4TO and I. BERES

next period, according to the pipeline mode, again only one single trans
fer sequence is selected, which may be the same as or different from the
previous one.

In formula (4.18) the integer K represents the difference of the serial
numbers of the input vector (X) received by the EOG and processing by
e(i, n) and eU, m). The behaviour of the case operation defined in the
previous paragraph denotes in Eq. (4.18) that:

Kto, (4.45)

holds for e(i, n) and eU, m) being in different conditional branches belong
ing to the same case operation in the EOG. It means that a formal solution
K = ° of the inequality (4.17) does not denote the concurrence of e(i, n) and
e(j, m) being in different conditional branches of the same case operation.

Let all solutions K be written as:

K ... ki''!\, k/\, 0, k', kif ... (4.46)

This series has at least two elements if either of c(i) and c(j) is greater
than 2 or both of them are greater than 1, then the interval I = q(i) + q(j)
in Eq. (4.27) is always greater or equal to 2R. Let c(i) 2: 2 be assumed
then q(i) 2: 2R and q(j) > 0, so I = q(i) + q(j) 2: 2R. If c(i) 2: 1 and
c(j) 2: 1 then q(i) 2: Rand q(j) 2: R, so I = q(i) + q(j) 2: 2R. These
constraints for c(i) and c(j) can be written as c(i) + c(j) > 3, because both
of them are always greater than ° (by definition). Thus if Ii' = ° exists and
c(i)+c(j) > 3 then I q(i)+q(j) 2: 2R which denotes that at least K = k/\, ° or K 0, k' always exists, too. In this case if K ° is excluded then:

° < K x R ::; b(i) - b(j) + q(i) (4.47)

or
b(i) - b(j) q(j)::; K x R < 0 , (4.48)

is always true. Let Eq. (4.47) be assumed (the same process can be done
with Eq. (4.48), too). From Eq. (4.47)

bU) < b(i) + q(i) , (4.49)

which denotes that e(j) starts its busy state earlier than e(i). Thus if
b(j)+qU) 2: b(i) then e(i, n) and eU, m) are concurrent. The opposite case:

b(j) + q(j) < b(i) (4.50)

A COMPA.BILITY BASED ALLOCATION METHOD 97

must be assumed for non-concurrency. From Eq. (4.47) as it was made in
chapter 4.1.1

m x c(j) x R + (n + k(i, n) x c(i)) x R::; k(j, m) x c(j) x R (4.51)

and

b(i) -b(j) -m x c(j) x R+ (n+k(i, n) x c(i)) x R+q(i) 2:: k(j, m) x c(j) x R.
(4.52)

Introducing the notation:

B = m x c(j) x R + (n + k(i, n) x c(i)) x R (4.53)

and rewriting the inequalities (4.51) and (4.52) into one because the rights
sides are identical:

B ::; k(j, m) x c(j) x R ::; B + b(i) - b(j) + q(i) . (4.54)

The inequality (4.54) involves an interval J for k(j, m) x [c(j) x R]:

J = b(i) - b(j) + q(i) . (4.55)

If this interval J is greater or equal to [c(j) x R] then k(j, m) can always
be found for any k(i,n) in Eq. (4.53) which denotes that e(i,n) and e(j,m)
are concurrent. From a rewritten form of Eq. (4.50):

q(j) < b(i) -"b(j) (4.56)

a smaller number for b(i) - b(j) can be substituted into (4.55), because if
this J' (smaller than J) is greater than [c(j) x RJ, then k(j, m) can always
be found, too.

J' q(j) + q(i) . (4.57)

Since Eq. (4.57) is similar to (4.27), the same steps to Eqs. (4.27)-(4.32)
can be executed. In other words, if c(i) + c(j) > 3, then e(i, n) and e(j, m)
are always concurrent even if they are in different conditional branches of
a case operation. If c(i) + c(j) ::; 3 the Eqs. (4.17) and (4.18) must be
calculated to decide the concurrence of e(i,n) and e(j,m).

98 P. ARATO and I. BERES

4.2.1 Embedded Case Operations

Fig. 4.3 shows a situation in which e(i,n) and e(j,m) belong to the same
case operation, but there is another case operation between the first case
operation and e(j, m). The worst case (the most frequent use of e(j, m)) in
volves that the second case operation activates only the conditional branch
containing e(j, m). In this case, the other branches of the second case
operation can be ignored considering the concurrence between e(i, n) and
e(j, m). Thus, the former constraints are unchanged. It is obvious that the
conditional branches of the second case operation must be examined sepa
rately from the first one as shown in the previous section. This procedure
can be applied for arbitrary number of case operations nested hierarchi
cally according to Fig. 4.3.

Fig. 4.3.

A COMPABILITY BASED ALLOCATIOlv' METHOD 99

The algorithm, given in 4.1.2 section can handle the conditional branches
with a simple modification:

for all e(i) in EOG do
for all e(j) where j > i do

if c(j) + c(i) ::; 3 then
A = [b(i) - b(j) q(j)lI R
B = [b(i) - b(j) + q(i)Jj R
if [e(i) and e(j) are in a different transfer

sequence of a case operation and
int(A) = int(B) = OJ

or
[int(A) = int(B) and sign(A) = sign(B) and
int(A)! = A and int(B)! = BJ

then
e(i) and e(j) are not concurrent

The complexity of this algorithm is Q(n x nj2) if the EOG has n operations
before the multiplication.

5. Results

The program \VinSam implements the method described in this paper.
The input graphs of the FFT and the FIR filter [11J are sho-wn in Fig. 5.1
and Fig. 5.2 as benchmarks. The results are summarized in Table 5.1 and
Table 5.2. The duration times are assumed 6 for a multiplier (x), and 3
for an adder (+) and 1 for a buffer.

The third example in Fig. 5.3 is designed to explain the advantage
of handling the case operations as described in this paper. Table 5.3 con
tains the results obtained by handling the operation named 'case' as a real
conditional checking and not as an ordinary elementary operation. In this
case, two processors can be saved for each R. (The duration times of the
operations are shown in Fig. 5.3.)

Table 5.1
FFT

R 9 11 13 15
processors 36 34 29 28

buffers 46 46 46 25

100 P. ARATO and I. BERES

Fig. 5.1. FFT

Table 5.2
FIR filter

R 9 11 13 1.J

processors 23 22 22 22

bllffers 16 R 0 0

Fig. 5.2. FIR filter

A COMPABILITY BASED ALLOCATION METHOD 101

Table 5.3
Example with case operation

R 9 11 13 10 1i
processors (without case feature) 11 10 9 8 7

processors (with case feature) 9 8 7 6 5

Fig. 5.3. Example with case operation

References

1. AR.UO, P.: Logic Synthesis of VLS1 Structures Based on a Pipelined Dataflow "lodel,
Department of Process Control, Technical University of Budapest, Hungary.

2. AR.UO, P. BERES, 1. - RGCIKSKI, A. D .. WIS, R. - TORBERT, R.: A High-
Level Datapath Synthesis "lethod for Pipelined Structures, Microelectronics Jour
nal, Vol. 25, No. 3, 1995.

3. BEREs, 1.: Design :Method for ASIC Signal Processing Units, Diploma Thesis at the
Department of Process Control, Technical University of Budapest, Hungary, 1992
(in Hungarian).

4. CAMPOSANO, R.: From Behaviour to Structure: High-Level Synthesis, IEEE Design
and Test of Computers, Vol. 10, pp. 8-19, 1990.

5. DEVADAS, S. - NEWTON, A. R.: Data Path Synthesis from Behavioural Descrip
tions: An Algorithmic Approach, Int'l Symposium on Oircuits and Systems, Vol. 2,
pp. 768-781, 1989.

6. DEVADAS, S. - NEWTOK, A. R.: Algorithms for Hardware Allocation in Data Path
Synthesis, IEEE Transactions on Computer Aided Design, Vol. 7, pp. 171-180, 1989.

i. DUTT, N. D. GAJSKI DAKIEL, D.: Design Synthesis and Silicon Compilation, in
IEEE Design and Test of Computers, pp. 8-23, December 1990.

102 P. ARATO and I. BERES

8. HWANG, C.-T. - LEE, J.-H. - Hsu, Y.-C.: A Formal Approach to the Scheduling
Problem in High Level Synthesis, in IEEE Transactions on Computer-Aided Design,
Vo!. 10, No. 4, pp. 464-475, April 1991.

9. PARK, N. - PARKER, A.: SEHWA: A Program for Synthesis of Pipelines, Proc. 23rd.
Design Automation Conference, 1986, pp. 454-460.

10. PAULIN, P. G. - KNIGHT, J. P.: Force-Directed Scheduling for the Behavioural
Synthesis of ASIC's, IEEE Transactions on Computer Aided Design, Vo!. 6, pp. 661-
679, 1989.

11. High-Level VLSI Synthesis, Edited by Raul Camposano, Wayne Wolf, Kulwer Aca
demic Publisher, 1991.

