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Abstract 

This paper presents a model and a method for the allocation during the high level datapath 
synthesis of pipelined ASIC architectures starting with a behavioral description of the 
system consisting of theoretical operational units with arbitrary operation duration. As 
a part of the Scheduling and Allocation Method (SAM), a compatibility relation is used 
for determining the operations to be allocated in one processor element. 

The aim of the procedure is to reduce the number of processors that are necessary 
for the realization of the theoretical operational units. The method presented in this paper 
can provide a better solution to the resource allocation problem in many cases by handling 
the conditional branches. The constraints for the types of processors to be applied can be 
different depending upon the hardware resources. 

Keywords: high-level synthesis, behavioral description, scheduling, allocation, pipelining. 

1. Introduction 

The high level synthesis is a design method starting with a behavioral 
description derived from the problem to be solved by a digital system and 
yielding a register transfer- and processor level structure. The behavioral 
description of the datapath - usually represented by a graph or a high level 
language - is based on elementary operations. Two important steps of the 
high level synthesis are the scheduling of the datapath by a proper start 
control of the elementary operations and the allocation of the elementary 
operations into processors aimed at the optimal cost-speed trade-off. In 
this way, the number of necessary control steps and necessary number of 
different processors can be determined, leading to an increasing throughput 
of a behavioral datapath. In the case of pipelining, the throughput is 

IThe research work outlined in this paper was supported by the grant OTKA-776 of the 
Hungarian Academy of Sciences. 
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characterized by the restarting period (R) defined as the shortest time the 
datapath requires before accepting a new input data. 

The resource allocation is generally handled as a separate subtask 
of high level synthesis and usually it is only mentioned in papers which 
introduce effective scheduling algorithms. In most cases, the scheduling and 
allocating of pipelined systems require extra considerations and a desired 
restarting period cannot be given in advance [5,6,8,9,10]' the duration of 
the elementary operations are assumed to be uniform, as either a single 
clock cycle or a control step. 

The method presented in this paper is based on a compatibility rela
tion between concurrent operations, it can handle operations ... vith different 
arbitrary duration times and ensures a desired pipeline restarting period. 

A synchronized datapath is assumed and the duration of each opera
tion is considered to be the necessary number of the clock cycles for each. 
Control of the datapath is outside of the scope of this paper, but after hav
ing solved the scheduling and allocation, a simple centralized counter-like 
or distributed handshake control can easily be designed. 

2. The Graph Representation of the Datapath 

The behavioral description of a solution to a problem with an input vector 
X (Xl . .. Xn) and an output vector Y = (YI ... Ym) can be represented by 
a directed graph. The nodes of the graph are the elementary operations e(i) 
and the directed edges show the data connections between the operations. 
This graph is called Elementary Operation Graph (EOG). 

If the output of e( i) is connected to the one of the inputs of e(j) then 
e( i) and e(j) are data-connected and it is represented with e( i) ~ e(j). 
In this case, there is a directed edge from the node e( i) to the node e(j) 
in the EOG. Each elementary operation may receive data from more than 
one other operation, but it is assumed to have only a single output vector. 
If the output supplies several inputs then several edges can represent these 
connections from the output of e( i) to the inputs of the other operations. 

vVith assumptions on recursive and non-recursive loops the datapath 
can be considered as an assembly of independent sequences of operations 
called transfer sequences starting with an operation which receives input 
data, going through the directed edges and ending with an operation which 
produces the output data of the datapath. Thus, 5(i, k) denotes the k-th 
transfer sequence beginning \vith e( i). 

The duration time of an operation e(i) is t(i) if it requires tU) clock 
cycles from that time when all the inputs are available to the time when 
the result of the operation is stable on the output of e( i). In literature [4,7], 
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t( i) generally is interpreted as the number of the control steps required for 
the execution of the operation e(i). 

It is assumed that the datapath has a datafiow character, thus any 
operation: 

1. - requires its input during the whole duration time, 
2. - holds its actual output stable until the next start, 
3. may change its output during the whole duration time. 

A point of time b(i)(h) can be associated with each of the h-th inputs 
of each e(i) referring to the serial number of the clock cycle in which the 
first data arrives on this input. The first start of e(i) is initiated at 

b(i) = max(b(i)(h)) , (2.1) 

where b(i) is the beginning point of time of the duration of e(i). 
After the duration time t(i), the output data of e(i) is available for 

e(j) where e(i) -+ e(j) holds. This output must be stable for the duration 
of e(j). Therefore, e(i) may receive a new start with new data only after 
finishing the duration time of e(j). Thus, the restarting period of e(i) must 
be longer than t(i) + t(j) [1,3J. This limit is the length of the restarting 
period, called the transfer score q(i) of e( i): 

q(i) = t(i) + max(t(j)) , (2.2) 

where the max function is necessary if e( i) is connected to more than one 
e(j). 

The shortest restarting period \vhich can be achieved by the EOG 
must be greater than the longest transfer score: 

R >= max(q(i)) + 1 . (2.3) 

During the design process the designer usually \vants to achieve a given 
restarting period. If the restarting period is shorter than the R in Eq. (2.3) 
a procedure must be found for reducing the minimum restarting period of 
the EOG. 

3. Scheduling 

At first, two simple reducing algorithms are presented below as systematic 
interactions into the EOG to obtain the shortest latency specified in ad
vance. This is the first step of the scheduling. 
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3.1 Reducing the Shortest Latency of the EOG 

3.1.1 Inserting Buffer Registers 

Let e( i) -+ e(j) be held and let a buffer register e(p) be inserted between 
e( i) and e(j) with a duration of t(p) = 1 [1,2,3J. The new sequence is 
e( i) -+ e(p) -+ e(j). The new transfer scores can be calculated as 

q(i) = t(i) + 1 , 

q(p) 1 + t(j) . 

The new shortest restarting period is: 

R=max(q(i),q(p))+l. 

(3.1) 

(3.2) 

(3.3) 

This R is a smaller number than it was before if t( i) and t(j) are greater 
than 1. Thus if this e(i) was the bottleneck of the EOG then the smallest 
restarting period R of the EOG is reduced. 

In other words, for achieving the restarting period R, a buffer register 
must be placed after every operation which has a bigger transfer score than 
R-1. 

3.1.2 Reducing the Restarting Period Applying Multiple 
Functional Units 

From Eqs. (3.1), (3.2), (3.3), the minimum of the restarting period that 
can be achieved is 

R = max(t(i)) + 2 . (3.4) 

If a smaller value is desired then more copies of e( i) have to be connected 
in parallel. Let e( i) be applied in e( i) copies connected in parallel and let 
e(i) -+ e(j) be assumed [1,2,3J. The first copy of e(i) (e(i,O)) starts func
tioning at b(i,O) = O. Its duration is t(i) and it must hold the output dur
ing t(j) for the next e(j). The second copy e(i, 1) is initialized at b(i, 1) = R 
and the (n + l)-th copy e(i, n) begins to compute at b(i, n) = n X R. The 
first copy starts again at b(i, 0) = e(i) x R with the e(i) + 1-th data where 
e(i) is the number of the same operations which were connected parallel. 
The eei) + 1-th data cannot arrive earlier than t(i) + t(j) + 1. Formally: 

e( i) x R ?:: q( i) + 1 . (3.5) 
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From (3.5): 
c(i) ~ (q(i) + 1)/ R , (3.6) 

where R > 0 always holds. Thus, for achieving a value of R we must apply 
c( i) copies of e( i), where c( i) is interpreted as the nearest integer which 
is greater than the result of the previous division. A buffer register must 
be inserted before each copy of e(i, n) because the input data must hold 
during t( i) for each copy. 

The combined algorithm is introduced as follows: 

for all e( i) in EOG do 
if q( i) + 1 > R then 

insert a buffer after e( i) 
if t(i) + 2 > R then 
c(i) (t(i) + 1 + R) div R 

insert c(i) buffers and c(i) copies of e(i) in the EOG 

\Vith this algorithm, the shortest latency of a transfer sequence without 
recursive loops can be reduced to 3 [2]. 

4. Allocation 

The allocation is the part of the high level synthesis when the processing 
units are formed from elementary operations. A processor is the real unit 
which must be realized. The constraints for forming the processor units 
and covering the elementary operations with these processor units and the 
savings of resources depend strongly on the groups of elementary operations 
realizable in one unit, the structure of the connections, the limits on the 
number of processing units, etc. [4,7]. 

A very simple approach to the allocation is to consider the processing 
units as real resources, \vith the notion that each of them can realise one 
or more elementary operations which are never busy simultaneously. The 
busy state of the operation is not only the duration time but it lasts until 
the end of its data hold period as well, this time can be determined by the 
transfer score. Let the operations be called concurrent operations if their 
busy states are overlapped in time. The maximal sets of non concurrent 
elementary operations can represent and specify the real processing units 
involving the structural description of the system [2,4]. 

If two elementary operations e( i) and e(j) are non-concurrent then 
these operations can be allocated in a processor {e( i), e(j)} and an e( i) 
operation can always be allocated in a processor with itself: {e( i), e( i)}. 
This relation ({}) is a compatibility relation as shown: 
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1. Reflective: {e(i),e(i)} is always true. 
2. Symmetric: If {e(i),e(j)} is true then {e(j),e(i)} is true. 
3. Non transitive: if {e(i), e(j)} and {e(j), e(k)} are true then 

{e(i),e(k)} is not necessarily true. 

4.1 Concurrent Operations 

Busy state of e(i,n) Possible situations for eU,m) in overlapping 

time 

Fig. 4.1. 

Fig. 4.1 shows all possible variations of the busy state overlapping for 
two operations (e(i,n),e(j,m)), where b(i,n) and b(j,m) stand for the 
beginning and f(i, n) and f(j, m) for the finishing points of time of the 
busy state for e(i, n) and e(j, m), respectively. 

From the definitions of the transfer score and start time, q(i), q(j) 
and b(i,n), b(j,m), respectively, the finishing points of time f(i,n) and 
f(j, m) of the busy states of e(i, n) and e(j, m) can be found as follows: 

b(i, n) + q(i) = f(i, n) , 

b(j, m) + q(j) = f(j, m) . 

(4.1) 

( 4.2) 
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According to Fig. 4.1 e(i, n) and e(j, m) are concurrent operations if any 
of the following inequalities is satisfied: 

b(i,n) ::; b(j,m) < f(j,m) ::; f(i,n) , 

b(i,n)::; b(j,m)::; f(i,n)::; f(j,m) , 

b(j,m)::; b(i,n) < f(i,n) ::; f(j,m) , 

b(j,m)::; b(i,n)::; f(j,m)::; f(i,n) . 

(4.3) 

( 4.4) 

( 4.5) 

( 4.6) 

The inequalities (4.3) and (4.4) cover the same situations when the e(j,m) 
busy state starts at the same time or during the busy state of e(i, n). Also 
the inequalities (4.5) and (4.6) cover similar situations when the e(i,n) 
busy state starts at the same time or during the busy state of e(j, m). As 
Eqs. (4.1) and (4.2) shO\\' , the followings are always true: 

b(i, n) < f(i, n) , 

b (j, m) < f (j, m) . 

(4.7) 

(4.8) 

From the previous inequalities (4.1-4.8) it can be concluded that the e(i,n) 
and e(j, m) are concurrent if and only if either of the following two inequal
ities is true: 

b(i, n) ::; b(j, m) ::; b(i, n) + q(i) , 

b(j,m)::; b(i,n) ::; b(j,m) + q(j) . 

(4.9) 

(4.10) 

In a pipeline mode, if the beginning point of time of e(i, O)'s and e(j,O)'s 
busy state are b(i) = b(i, 0) and b(j) = b(j, 0), respectively, then 

b(i, n) = b(i) + (n + k(i, n) X c(i)) x R , 

b(j, m) = b(j) + (m + k(j, m) X c(j)) X R , 

(4.11) 

( 4.12) 

where k(i, n) and k(j, m) are arbitrary non negative integers and (n + 
k(i, n) X c(i)) and (m + k(j, m) X c(j)) are the serial number of the input 
vector (X) received by the EOG and processed by e(i, n) and e(j, m). 

Substituting Eqs. (4.11) and (4.12) into (4.9) and (4.10): 

b(i) + (n + k(i, n) X c(i)) x R ::; b(j) + (m + k(j, m) X c(j)) X R ::; 

b(i) + (n + k(i, n) X c(i)) X R + q(i) , (4.13) 

b(j) + (m + k(j, m) X c(j)) X R ::; b(i) + (n + k(i, n) X c(i)) X R ::; 

b(j) + (m + k(j, m) X c(j)) X R + q(j) . (4.14) 
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From the previous two formulas it can be written: 

b(i) - bU):::; [(m + kU,m) x c(j)) - (n + k(i,n) x c(i))] x R:::; 

b(i)-bU)+q(i) (4.15) 

b(i) - bU) 2: [(m + k(j, m) x cU)) - (n + k(i, n) x c(i))] x R 2: 
b(i) - b(j) - q(j) . (4.16) 

The left sides of the inequalities are identical, therefore: 

b(i) - b(j) - q(j) :::; l{ x R :::; b(i) - b(j) + q(i) , (4.17) 

l{ = [m + k(j,rn) x c(j)] [n + k(i,n) x c(i)] . (4.18) 

Thus, e(i, n) and e(j, m) are concurrent if and only if at least one integer l{ 

and non negative integers: k(i,n) and k(j,m) can be found which satisfy 
the inequality (4.17) and (4.18) Diophantos equation. 

4.1.1 Solutions in the Case of Number of Copies 

Substituting Eqs. (4.18) back into (4.17): 

b(i) bU) - q(j) :::; ([m + k(j, m) X c(j)]-

- [n + k(i,n) X c(i)]} X R (4.19) 

and 

b(i) - bU) + q(i) 2: ([m + k(j,m) x c(j)]-

[n + k(i,n) x c(i)]} x R . (4.20) 

From the previous two formulas it can be written: 

b(i) - b(j) - m X R+ 

(n + k(i, n) x c(i)) x R - q(j) :::; k(j, m) x c(j) X R (4.21) 

and 

b(i) - b(j) - m X R+ 

(n + k(i, n) X c(i)) X R + q(i) 2: k(j, m) x c(j) x R . ( 4.22) 

Introducing the notation: 

A = b(i) - b(j) - m X R + (n + k(i,n) x c(i)) x R (4.23) 
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and rewriting the inequalities (4.21) and (4.22) in one, because the right 
sides are identical: 

A. - q(j) ::; k(j, m) X e(j) X R::; A. + q(i) , ( 4.24) 

\vhere e(i) is the number of the copies of e(i), thus e(i) > 0 is always true, 
also by definition, the restarting period R is ahvays greater than 0 and from 
the definition in Eq. (4.12) k(j,m) must be a non negative integer, thus: 

A. - q(j) 2: 0 , 

which involves from Eq. (4.23): 

k(i, n) 2: [b(j) b(i) + R X (m - n) + q(j)]/[e(i) X R] . 

The inequality (4.24) involves an interval for k(j, m) X [e(j) X R]: 

1= q(i) + q(j) . 

( 4.25) 

( 4.26) 

( 4.27) 

If this I interval is greater than or equal to [e(j) X R] then a non neg
ative integer k(j,m) can always be found for any k(i,n) which satisfies 
Eq. (4.26). These two non negative integers denote that e(i,n) and e(j,m) 
are concurrent. 

From the definition of e(j): 

e(j) 2: (q(j) + 1)/ R , ( 4.28) 

a lower and an upper bound can be given for e(j) as: 

q(j) + 1 ::; e(j) X R ::; q(j) + R . ( 4.29) 

It can be proven, as is shown in Eq. (4.30), that even the upper bound 
of e(j) X R is smaller than the I interval in Eq. (4.27), because if e(i) is 
greater than 1, then q(j) 2: R holds: 

q(j) + R ::; q(i) + q(j) = I . ( 4.30) 

In this case e(i,n) and e(j,m) are concurrent because the I interval from 
Eq. (4.24) is always greater than the upper bound of e(j) x R. The steps 
from Eq. (4.21) to Eq. (4.30) are symmetric in e(i,n) and e(j,m) so if 

R::; q(i) (4.31) 

or 

R ::; q(j) , ( 4.32) 

then e(i,n) and e(j,m) are concurrent, because the solution for Eq. (4.17) 
and Eq. (4.18) can always be found. In other words if an e(i) is multiplied 
(because q(i) 2: R) then any e(i, n) copy of this e(i) is concurrent with any 
other e(j) in the EGG. 
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4.1.2 Concurrence of Non Multiplied Operations 

If c(i) = cU) = 1 (non multiplied operations), then n = m 
makes Egs. (4.17) and (4.18) much simpler: 

o which 

b(i) - bU) - gU) ::; K x R ::; b(i) - b(j) + g(i) , 

K = kU) - k(i) . 

( 4.33) 

( 4.34) 

If K exists Eg. (4.34) always has a solution (any integer can be written as 
a difference of two non negative positive integers). Thus, if e(i) and e(j) 
are not multiplied operations, then they are concurrent if and only if at 
least one integer I{ can be found which satisfies Eg. (4.33). 

The paragraph following the Eg. (4.27) proves: 

If g(i) + g(j) 2:: R , (4.35) 

then e(i) and eU) are concurrent. A simple algorithm can be set up: 

for all e( i) in EOG do 
if c(i) = 1 then 

for all eU) where j > i do 
if cU) = 1 and g(i) + g(j) < R then 

A = [b(i) - bU) - gU)]! R Ix realization of 4.33 xl 
B = [b(i) - bU) + g(i)]1 R 
if lint (A) = int (B) and sign (A) = sign(B) and 

int (A)! = A and int(B)! = B] then 
e(i) and eU) are not concurrent 

The complexity of this algorithm is O(n x n12) if the EOG has n operations 
before the multiplication. 

Another algorithm can be found if the busy state of the elementary 
operations is kept folding into one restarting period with a modulo division 
by R. In this case Eg. (4.35) has a descriptive meaning as both elementary 
operations must fit into one restarting period. Let the starting and the 
finishing points of time of the busy state be modified: 

b' (i) = b(i) mod R , 

f'U) = f(i) mod R , 

b' (j) = bU) mod R , 

f' U) f(j) mod R , 

( 4.36) 

( 4.37) 

( 4.38) 

( 4.39) 
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Fig. 4.2. 

where b' (i) and b' (j) shmv the beginning points and f' (i) and f' (j) show the 
ending points of time for the busy states of e( i) and e(j) in one restarting 
period. Fig. 4.2 shmvs the possible situations when e(i) and e(j) are not 
overlapped. In this case: 

f' (i) < b' (j) , 

f'(j) > b'(j) or t(j) < b'(j) . 

( 4.40) 

( 4.41) 

If the original beginning and ending points of time are written back from 
Eqs. (4.36) - (4.39) into Eqs. (4.40) (4.41) then: 
if 

[b(i) + q(i)] mod R < b(j) mod R , ( 4.42) 

then 
[b(j) + q(j)] mod R > b(j) mod R ( 4.43) 

or 
[b(j) + q(j)] mod R < b(i) mod R . ( 4.44) 

4.2 Handling the Conditional Branches 

The conditional checking operation can be interpreted in the EOG by com
pleting it with special elementary operations, called case operations, which 
select only one single transfer sequence from the possible transfer sequences 
(following the operation) in each period of the pipeline mode. In the 
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next period, according to the pipeline mode, again only one single trans
fer sequence is selected, which may be the same as or different from the 
previous one. 

In formula (4.18) the integer K represents the difference of the serial 
numbers of the input vector (X) received by the EOG and processing by 
e(i, n) and eU, m). The behaviour of the case operation defined in the 
previous paragraph denotes in Eq. (4.18) that: 

Kto, ( 4.45) 

holds for e(i, n) and eU, m) being in different conditional branches belong
ing to the same case operation in the EOG. It means that a formal solution 
K = ° of the inequality (4.17) does not denote the concurrence of e(i, n) and 
e(j, m) being in different conditional branches of the same case operation. 

Let all solutions K be written as: 

K ... ki''!\, k/\, 0, k', kif ... ( 4.46) 

This series has at least two elements if either of c(i) and c(j) is greater 
than 2 or both of them are greater than 1, then the interval I = q(i) + q(j) 
in Eq. (4.27) is always greater or equal to 2R. Let c( i) 2: 2 be assumed 
then q(i) 2: 2R and q(j) > 0, so I = q(i) + q(j) 2: 2R. If c(i) 2: 1 and 
c(j) 2: 1 then q(i) 2: Rand q(j) 2: R, so I = q(i) + q(j) 2: 2R. These 
constraints for c(i) and c(j) can be written as c(i) + c(j) > 3, because both 
of them are always greater than ° (by definition). Thus if Ii' = ° exists and 
c(i)+c(j) > 3 then I q(i)+q(j) 2: 2R which denotes that at least K = k/\, ° or K 0, k' always exists, too. In this case if K ° is excluded then: 

° < K x R ::; b(i) - b(j) + q(i) ( 4.47) 

or 
b(i) - b(j) q(j)::; K x R < 0 , ( 4.48) 

is always true. Let Eq. (4.47) be assumed (the same process can be done 
with Eq. (4.48), too). From Eq. (4.47) 

bU) < b(i) + q(i) , ( 4.49) 

which denotes that e(j) starts its busy state earlier than e( i). Thus if 
b(j)+qU) 2: b(i) then e(i, n) and eU, m) are concurrent. The opposite case: 

b(j) + q(j) < b(i) ( 4.50) 
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must be assumed for non-concurrency. From Eq. (4.47) as it was made in 
chapter 4.1.1 

m x c(j) x R + (n + k(i, n) x c(i)) x R::; k(j, m) x c(j) x R (4.51) 

and 

b(i) -b(j) -m x c(j) x R+ (n+k(i, n) x c(i)) x R+q(i) 2:: k(j, m) x c(j) x R. 
( 4.52) 

Introducing the notation: 

B = m x c(j) x R + (n + k(i, n) x c(i)) x R ( 4.53) 

and rewriting the inequalities (4.51) and (4.52) into one because the rights 
sides are identical: 

B ::; k(j, m) x c(j) x R ::; B + b(i) - b(j) + q(i) . (4.54) 

The inequality (4.54) involves an interval J for k(j, m) x [c(j) x R]: 

J = b(i) - b(j) + q(i) . ( 4.55) 

If this interval J is greater or equal to [c(j) x R] then k(j, m) can always 
be found for any k(i,n) in Eq. (4.53) which denotes that e(i,n) and e(j,m) 
are concurrent. From a rewritten form of Eq. (4.50): 

q(j) < b(i) -"b(j) ( 4.56) 

a smaller number for b(i) - b(j) can be substituted into (4.55), because if 
this J' (smaller than J) is greater than [c(j) x RJ, then k(j, m) can always 
be found, too. 

J' q(j) + q(i) . ( 4.57) 

Since Eq. (4.57) is similar to (4.27), the same steps to Eqs. (4.27)-(4.32) 
can be executed. In other words, if c( i) + c(j) > 3, then e( i, n) and e(j, m) 
are always concurrent even if they are in different conditional branches of 
a case operation. If c(i) + c(j) ::; 3 the Eqs. (4.17) and (4.18) must be 
calculated to decide the concurrence of e(i,n) and e(j,m). 
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4.2.1 Embedded Case Operations 

Fig. 4.3 shows a situation in which e(i,n) and e(j,m) belong to the same 
case operation, but there is another case operation between the first case 
operation and e(j, m). The worst case (the most frequent use of e(j, m)) in
volves that the second case operation activates only the conditional branch 
containing e(j, m). In this case, the other branches of the second case 
operation can be ignored considering the concurrence between e(i, n) and 
e(j, m). Thus, the former constraints are unchanged. It is obvious that the 
conditional branches of the second case operation must be examined sepa
rately from the first one as shown in the previous section. This procedure 
can be applied for arbitrary number of case operations nested hierarchi
cally according to Fig. 4.3. 

Fig. 4.3. 
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The algorithm, given in 4.1.2 section can handle the conditional branches 
with a simple modification: 

for all e(i) in EOG do 
for all e(j) where j > i do 

if c(j) + c( i) ::; 3 then 
A = [b(i) - b(j) q(j)lI R 
B = [b(i) - b(j) + q(i)Jj R 
if [e( i) and e(j) are in a different transfer 

sequence of a case operation and 
int(A) = int(B) = OJ 

or 
[int(A) = int(B) and sign(A) = sign(B) and 
int(A)! = A and int(B)! = BJ 

then 
e(i) and e(j) are not concurrent 

The complexity of this algorithm is Q( n x nj2) if the EOG has n operations 
before the multiplication. 

5. Results 

The program \VinSam implements the method described in this paper. 
The input graphs of the FFT and the FIR filter [11J are sho-wn in Fig. 5.1 
and Fig. 5.2 as benchmarks. The results are summarized in Table 5.1 and 
Table 5.2. The duration times are assumed 6 for a multiplier (x), and 3 
for an adder (+) and 1 for a buffer. 

The third example in Fig. 5.3 is designed to explain the advantage 
of handling the case operations as described in this paper. Table 5.3 con
tains the results obtained by handling the operation named 'case' as a real 
conditional checking and not as an ordinary elementary operation. In this 
case, two processors can be saved for each R. (The duration times of the 
operations are shown in Fig. 5.3.) 

Table 5.1 
FFT 

R 9 11 13 15 
processors 36 34 29 28 

buffers 46 46 46 25 
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Fig. 5.1. FFT 

Table 5.2 
FIR filter 

R 9 11 13 1.J 

processors 23 22 22 22 

bllffers 16 R 0 0 

Fig. 5.2. FIR filter 



A COMPABILITY BASED ALLOCATION METHOD 101 

Table 5.3 
Example with case operation 

R 9 11 13 10 1i 
processors (without case feature) 11 10 9 8 7 

processors (with case feature) 9 8 7 6 5 

Fig. 5.3. Example with case operation 
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