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Abstract 

Texture analysis has a fundamental importance in image processing and it is widely ap­
plied for different fields, e.g. industrial quality control, biomedical imagery, etc. For each 
texture classification/segmentation problem feature extraction is a crucial task. In this 
paper we review several methods of feature extraction, such as statistical approaches, 
transform-based methods and pixel-based structural descriptions. Beside of their princi­
ples, advantages and disadvantages occurring during their applications are also described. 
Theoretical and experimental investigations showed that multichannel texture analysis is 
an efficient tool and has several advantages with respect to the traditional feature extrac­
tion methods. Pixel-based structural features are also presented, which attempt to bridge 
the gap between statistical and structural feature extraction methods. 

Keywords: texture, texture analysis, feature extraction, segmentation, classification, qual­
ity contro!' 

1. Introduction 

Texture analysis plays an important role in computer vision and pattern 
recognition as well as in image processing and it is widely applied to many 
areas, e.g. analysis of satellite images, industrial quality control, biomedical 
imagery, remote sensing, etc. 

The process of texture discrimination can be divided into three phases, 
such as feature extraction, feature selection and classification/ segmenta­
tion. Extraction of texture features deals with the computation of features 
from the image data, which completely embody information on the spa­
tial distribution of gray level variation in the texture. Generally, a set of 
features is used for texture discrimination, however, no definite conclusion 
which set of features has the best overall performance. 

The subject of feature selection in texture analysis is concerned with 
mathematical tools to create the optimal feature set characterising suffi­
ciently the distinguishing properties of the different texture classes. 



116 cs. I. KISS et al. 

In this paper we will focus on the feature extraction, that is to com­
pute the features from a textured image. Most existing texture features 
and the texture analysis itself can be divided into two categories, namely 
structural and statistical ones. The former approach is based on the view 
that textures are made up of primitives appearing in more or less regular 
repetitive spatial arrangements. They are appropriate for periodic textures 
with low noise, however, those are seldom encountered in real-applications. 
The use of statistical features is motivated by the human discrimination of 
textures [1], that human beings are sensitive to the second-order statistics. 
The statistical feature extraction techniques are mainly of three types: spa­
tial gray level dependence methods [2-4], stochastic model-based features 
[3-5], and transform/filtering methods [6, 14,34]. 

First, feature extraction based on statistical methods will be discussed 
in Section 2. In Section 3 the transform-based methods, such as Gabor fil­
tering and wavelet decomposition applied for texture analysis are presented. 
Several pixel-based structural features, e.g. texture regularity, anisotropy 
and symmetry are discussed in Section 4. Finally, a conclusion and main 
topics of the future research will be given. 

2. Spatial Gray Level Dependence Methods 

The most popular spatial gray level dependence methods [5] are based on 
the co occurrence, run length and statistical feature matrices, which ·will be 
discussed below. Suppose the area to be analysed for texture is rectangular 
and has Ne pixels in the horizontal direction, 1\,,. pixels ill the vertical 
direction, and the gray tone of each pixel is quautized to .Yg levels. 

2.1 COoccuTTence lvIairix 

The gray tone co occurrence can be specified in a matrix of relative frequen­
cies Pij with which two pixels separated by distance cl and orientation t.p oc­
curs on the image, one "\vith gray tonei and the other with gray tone j [5]. 

The co occurrence matrices are symmetric and they are functions of 
the angular relationship between neighbouring pixels as well as functions 
of the distance between them. Consider Fig. 1, which represents a 4 x 4 
image with four gray tones ranging from 0 to 3. 

In this example the operator P(i, j) denotes the number of pairs (i, j), 
cl = 1 and t.p = 0°,45°,90°,135°. 

From the co occurrence matrices several features can be calculated for 
texture discrimination purposes. Fig. 2 shows the most commonly used 
features [5]. 



ON FEATURE EXTRACTION 

Gray Tone 

001 1 
Gray 

P(O,O) P(O,1) P(O,2) P(O,3) 
001 1 P(l,O) P(l,l) P(1,2) P(1,3) 
o 2 2 2 Tone P(2,O) P(2,1) P(2,2) P(2,3) 
2 233 P(3,O) P(3,1) P(3,2) P(3,3) 

Image Cooccurrence Matrix 

q>= 00 

C1V 
0 

CoV q>= 45 

p= 240 0 p= 1 220 
106 1 o 2 4 1 

H 001 
RD 001 

q>= 900 (602 U q>= 1350 

C3

u p= 042 0 p= 121 0 
222 2 3 1 0 2 

V 002 
LD 002 

Fig. 1. The spatial cooccurrence calculation [5] 

Uniformity or Energy 

Entropy 

Contrast 

Inverse difference moment 

Correlation 

i,j 

F2= "" P . ·logP . L..J l,j J,j 

i,j 

F3= 2: P;,j ·Ii - jl 
i,j 

F4= 2: P;,j 
i,j li-l 

k 

F5= 2:(i - u)(j - u) p;,! 
i,j (f 

Fig. 2. Common features computed from the cooccurrence matrix 

117 

For a homogeneous texture the uniformity has relatively large values, 
because there are few dominant gray tone transitions in the image. How-
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ever, the value of the contrast is large when the texture is a nonhomoge­
neous one. The correlation feature is a measure of gray tone linear depen­
dencies in the image. Thus, this value will be considerably larger for such 
textures than for other cases. 

2.2 Run Length Matrix 

A gray level run is a set of consecutive, coHinear picture points having the 
same gray level value. The length of the run is the number of pixels in the 
run. 

For a given picture, a gray level run length matrix is computed for 
runs having any predefined direction. The matrix element (i,j) specifies 
the number of times that the picture contains a run of length j consisting 
of points having gray level i, in the given direction. Hence i can vary from 
zero to {Ng - I} and j can go from one to the maximum of {Ne or Nr}. 

Gray level runs can be characterised by the gray tone, the length 
and the direction of the run. GALLOWAY [3] used four main directions: 
0°,45°,90°,135 0

, and for each direction she computed the joint probability 
of gray tone of run and the run length. 

The example of Fig. 3 shows a 4 x 4 picture having four gray lev­
els (0,1,2,3), and the resulting run length matrices for the four principal 
directions. 

To obtain numerical texture measures from the matrices, we can com­
pute functions analogous to cooccurrence matrices. Let N, be the number 
of different run length occur and Fig. 4 shows five main features. 

In the first feature the run length values are divided by the square of 
the length of the run j2, thus it emphasises short runs. The second feature 
is similar to the first one, but it characterises the long runs by multiplying 
each run length yalue by /. 

The gray leyel nonuniformity squares the number of the run lengths 
for each gray leyel. In the texture 'where runs are equally distributed 
throughout the gray leyels, this measure takes on its lowest yalue. If the 
runs are equally distributed throughout the length, the run length nonuni­
formity will haye a lm\' value. Run percentage should haye its lowest yalue 
for textures with the most linear structure. 

2.3 Statistical Feature Matrix 

\Vu and CHEN [4] have proposed a new texture feature extraction tech­
nique using statistical feature matrices (SFM). The most commonly used 
second-order statistical features in the spatial gray level dependence meth-
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ods are contrast, covariance and dissimilarity. The statistical feature ma­
trices evaluate directly these three statistical features for several intersam­
pIes spacing distances from the image instead of indirectly estimating them 
e.g. from co occurrence or run length matrices. 

Let S = {x, y} be the spatial coordinates of an Ly x Lx array of pixels 
and lex, y) be the intensity at a pixel. Definitions of these features are: 
6 Contrast CON(6) == E{[l(x,y) - l(x + :6.x,y + :6.y)]2} 
6 Covariance COV(6) == E{[l(x, y) -1]][l(x + :6.x, y + :6.y) -7]]} 

6 Dissimilarity DSS(6) == E{[l(x,y) - l(x + :6.x,y + :6.y)]} 

where: E {.} denotes the expectation operation; 
6 (:6.x, :6.y) represents the intersample spacing distance vector; 
7] is the average gray level of an image. 
Other 6 statistical features may also be defined in the same way. 
On the basis of the previous definitions, the statistical feature matrix 

can be defined as follows. 
SFM (Statistical Feature Matrix) is an (Lr + 1) x (2Le + 1) matrix 

whose (i,j) element is the d statistical feature of an image. The d = 
(j - Le, i) is an intersample spacing distance vector for i = 0,1, ... , L r, 
j = 0, 1, ... , 2Le and Lr, Le are the constants that determine the maximum 
intersample spacing distance. Examples are the contrast matrix (MeDn ), 

covariance matrix (MeDv ), and dissimilarity matrix (Mdss) of the image 
that can be defined as the matrices whose (i, j) elements are the d contrast, 
d covariance, d dissimilarity, respectively. 

Fig. 5 sho\\'s an example for SFM. Let Lr = Le = 2, so SFM is a 
3 x 5 matrix, where F[d(x, y)] is a particular feature computed for a given 
image \vith the intersample sampling vector d. 

Various values of Lr and Le were chosen for different applications. 
They can be set to be Lx and L y, respectively, for visual perceptual feature 
extraction, while small values are assigned to them for texture classification 
(Lr, Le < 10) [4]. 

3. Transform-Based Feature Extraction 

Conventional feature extraction methods for texture analysis mainly focus 
on extracting gray level dependencies between image pixels on a single 
resolution. Probably the main difficulty of traditional texture analysis is 
the lack of appropriate tools to characterise effectively different resolutions 
of textures. 

This problem can be overcome by multiresolution image analysis ba­
sed on wavelet transform. First, as an introduction to wavelet theory, 
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we will discuss the Gabor transform, which 1S well-localised and well­
concentrated in both time and frequency. 

3.1 Gabor Transform 

Time-frequency signal analysis can be carried out by expansion of the 
signal into a weighted sum of Gabor functions. The Gabor expansion of a 
ID continuous signal f(t) is defined as 

+x +x 

f(t) = I: 
m=-xn=-cc 

( ) ( T) jn~2t g(t) __ e-r.(t/T)2 • gm,n t = g .t - In . e . , . 

where gm,n(t) is called Gabor functions, which are the Gaussian-type func­
tions, Gm,n are the Gabor coefficients [10] and T and D represent the time 
and frequency sampling intervals, respectively. 

Motivation of this decomposition mainly is due to the fact that Ga­
bor functions have optimal localisation in the time and frequency as ,veIl. 
Unfortunately, there is no simple direct method for computing Gabor coef­
ficients because the transform is not orthogonal. Furthermore, the numer­
ical computations of the coefficients are very expensive and inefficient. 

ORR [36] has proposed another method for computing Gabor coeffi­
cients based on Zak transform. Unfortunately, these algorithms could also 
lead to numerically troublesome expansions characterised by the fact that 
Gabor coefficients are not square summable. 
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In the two dimensional case, if the Gabor elementary functions are 
separable [37] similar results to the ID case can be obtained. Since the 
energy in natural images is spread more or less uniformly vvithin octave 
frequency bands and due to the 'octave-band division' feature of the human 
visual system, recursive pyramidal Gabor expansion was proposed in [37]. 

3.2 Wavelet Decomposition 

Fourier transform has been the most useful technique for the frequency 
analysis of signals for long time. Due to the fact that sinusoids have an in­
finite support, such an approach has undesirable effects if one deals with 
signals which are localised in time and/or space. In the wavelet represen­
tation the basic functions can be generated from a single function by op­
erations of dilation a and. translation b: 

a-1j2W (x - bj . 
a / 

The function W (x) may be chosen depending on the application. 
The wavelet representation 

:x:; :x:; 

f(x) = L L c~ . Wm,n(X) , 
m=On=O 

where 
Wm,n(X) = 2-mj2 W(2- mx - n) 

has some important applications in image processing. 
To construct function W, we first determine a scaling function <l? (x) 

which satisfies 
<l?(x) = J2. L hk<l?(2x - k) . 

k 

Then, function w(x) will be 

where 

W(x) = J2. L gk<l?(2x - k) , 
k 

k 
gk 1) h1-k . 

The forms of <l?( x) and W (x) are not required to perform the wavelet trans­
form, which depends only on hk. A J level decomposition 

J 

f(x) = L[CJ+l,k<l?J+l,k(X) + L dj,kWj+l,k(X)] 
k j=O 
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can be given recursively. The coefficients Co,k are given and for coefficients 
Cj+l,n and dj+l,n the following relations hold: 

Cj+l,n = L Cj,k . hk-2n , 

k 

dj+l,n = L Cj,k . gk-2n 
k 

The numbers hk can be found in [8]. 
This multiresolution wavelet transform results in a 'compact' nonre­

dundant image representation in contrast to the traditional methods, such 
as lmv-pass filtering and Laplace pyramid transform [7]. 

For example, image decomposition by a 2D wavelet transform can 
be done as follows. The image is split into a low resolution part and the 
difference signal which describes the difference between the low resolution 
image and the actual one. Due to the correlation existing in the original 
image, the difference signal will have a histogram which is peaked around 
zero. The low resolution image still contains spatial correlations. Therefore, 
this decomposition can be repeated several times, so that a pyramidal image 
decomposition is created. 

The size of a low level image is a quarter of the size of the original 
image. Hence, the number of coefficients needed to describe the difference 
is three times larger than the number of coefficients needed to describe the 
low resolution image. There are three different signals: d(l), d(2) and d(3). 

d(I) indicates scale variations in the x-direction, and its high value 
indicates the presence of a vertical edge. Large values of d(2) and d(3) 

indicate the presence of a horizontal edge and a corner point, respectively 
(See Fig. 6). 

ALDROUBI and UNSER [13] proposed a construction method of 
smooth wavelets, which tend to a Gabor function. 

3.2.1. Feature Extmction Based on Wavelet Decomposition 

Feature extraction based on wavelet transform has been studied by several 
authors. For texture analysis MALLAT [6] proposed a texture discrimination 
scheme based on discrete wavelet decomposition of textured images in order 
to obtain the fractal dimension of the particular textures. However, it is 
well known that the single fractal dimension is not sufficient to unique 
classification of different textures. 

Another approach to feature extraction was developed by KUNDU 
et al. [12]. In this algorithm QMF filter bank was used to decompose 
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the texture into several subbands, and special features e.g. 'zero-crossing' 
features were calculated for the high-subbands. 

Recently, CHANG and Kuo proposed a quite efficient method [14]. Its 
main principle will be presented below: The idea of this approach leads to 
a new type of \vavelet decomposition called tree-structured wavelet trans­
form. The conventional multiresolution image representation based on 
wavelet transform decomposes subimages of the low' frequency channels re­
cursively. However, this decomposition is not very useful for a large class 
of natural textures because their most significant information appears in 
the middle frequency channels. For illustration, Fig. 6 shows a traditional 
wavelet decomposition of texture 'French Canvas'. 

Fig. 6. Traditional wavelet decomposition of texture 'French Canvas' 

The key difference bet'ween this algorithm and the traditional pyramid 
wavelet representation is that the decomposition is no longer applied to the 
low frequency subsignals recursively. Instead, it can be applied to the differ­
ent signals of each pyramid level. At first, a given texture image is decom­
posed into 4 subimages by a 2D wavelet transform. For all subimages an 
energy measure is calculated and compared with each other, If the energy 
of a subimage is significantly smaller than the others, we stop the decoIltpo­
sition in this region since it contains less information. The subimage con­
taining higher energy will be decomposed further, This recursive and adap­
tive procedure can be represented by a quadtree structure or energy map. 

For texture classification the feature set will be chosen from the energy 
map as the most dominant channel-energy values. It is worthwhile to 
note that the tree-structured wavelet transform is effective for textures 
which have dominant middle frequency channels. The application of the 
algorithm for different (nonperiodic, etc.) textures can be considered as a 
topic of future research. 
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4. High Level Texture Features 

Statistical approaches apply a set of scalar features describing the distri­
bution of intensities or local features. These methods usually pay less at­
tention to the spatial interdependence in the image. The strength of sta­
tistical methods is in their robustness, relative simplicity and lmv compu­
tational cost. 

Structural approaches concentrate on the spatial interaction of ele­
mentary regions, local features, or intensities. Next, several pixel-based 
structural approaches, such as regularity, anisotropy and symmetry, will 
be discussed. 

4.1 Texture Regularity 

The pixel-based structural approaches are often aimed at computing the 
dimensions of the periodicity parallelogram of a regular pattern. (See, 
for example, CO;'\l\ERS and HARLOW [20] or ZUCKER and TERZOPOULOS 
[32].) unfortunately, most of these methods fail to provide a meaningful 
description of both regular and random textures in the framework of a 
conceptually uniform model. Such a description should contain a measure 
of regularity ·which is interpretable in terms of global geometry (spatial 
arrangement), local geometry (shape and orientation oflocal features), and 
painting function (region intensity). 

CONNERS and HARLOW [20] applied features computed on cooccur­
rence matrices (CPM), as a function of interpixel distance, to detect struc­
ture in natural textures. The entries of the co occurrence matrix entries are 
the estimated probabilities of going from gray level i to gray level j given 
that the spacing is d. The moments are commonly used for texture descrip­
tion and classification. A regular pattern exhibits its periodicity through 
the moments plotted as a function of the spacing. Conners and Harlow ap­
plied periodicity analysis to the second moment of the CPM. 

ZUCKER and TERzOPouLos [32] applied the chi square test to cooc­
currence matrices to find interpixel distances "\vhich yield matrices that cap­
ture maxim ally the regularity in a texture. The chi square approach was 
criticised by PARKKINEN et al. [30] who used another statistic. However, 
neither of the studies made an attempt to compare the regularity values of 
different textures. 

MODESTINO et al. [29] considered a mosaic model for texture based on 
a rectangular partition of the plane by two mutually independent stationary 
renewal processes. The randomness parameter of the model provides a 
theoretical possibility of control of the mosaic randomness. However, this 
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parameter is omitted when a simplified version of the model is used to 
estimate the parameters of real-world textures. 

Recently, ZHUANG and DUNN [31J have proposed the amplitude vary­
ing rate statistical approach for texture classification. Their method is 
based on the Amplitude Varying Rate Matrix. The elements of the 
AVRM are the frequencies of distances d occurring in a given direction 
between two pixels whose gray level is G. 

Calculating AVRM amounts to computing the signed rate of change 
of intensity profiles for different values of the threshold (baseline). The 
value of the matrix depends on the neighbour relation between the baseline 
crossings. ZHUANG and DUNN [31] present an algorithm that computes an 
AVRM when neighbouring points are the nearest baseline crossings in a 
row. 

The authors conclude that such a matrix contains information about 
the size of the texture primitives. To extract information on the place­
ment of the primitives, the second nearest neighbour is taken. ZHt.:ANG 
and DUNN [31] use the AVRM to compute a set of features for texture 
classification. 

One of the features is introduced to indicate the degree of texture 
regularity. CHETVERIKOV [27] reports on an initial study that attempts to 
bridge the gap between random and regular texture analysers. A new ap­
proach is formulated based on a simple, well-parameterized one-dimensional 
stochastic process which enables one to generate the contrast curves of reg­
ular and random textures in a uniform way. 

The generated curves are fitted to the experimental ones and three 
combinations of the parameters are defined 'which measure texture regular­
ity. The proposed regularity measures are compared to the one introduced 
by ZHUANG and Dt.:NN [31]. Experiments indicate that the regularity fea­
ture introduced by ZHUANG and Dt.:NN [31] does not seem to be suitable 
for regularity analysis of natural textures. 

However, it should be mentioned that the feature has been originally 
designed and used for texture classification rather than for regularity anal­
ysis. The contrast-based features proposed by Chetverikov were shown to 
measure regularity. An open question is whether they are useful for classi­
fication as well. 

4.2 Texture A.nisotropy and Symmetry 

Since the publication of the recent stimulating paper by KASS and \VITKIN 
[15] there has been growing interest in the investigation of oriented patterns 
such as texture images originating from flmv-like processes. Directionality 
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has become a popular topic of texture research. (See e.g. [16-19].) Direc­
tionality can be viewed as local anisotropy that stems from dominating ori­
entation of elongated texture elements. Computer analysis of this textu­
ral property usually involves orientation-sensitive filtering followed by local 
orientation coherence evaluation [15,16]. This can be done at variable scale. 

JULESZ's pioneering work on preattentive (spontaneous) human tex­
ture perception (e.g. [33]) convinced the image analysis community that 
the second order statistics of texture images play a dominant role in spon­
taneous texture discrimination. This conjecture was supported by the im­
pressive performance of the co occurrence features in the computer analysis 
of texture patterns [30]. In many cases, similar features based on a sim­
plified and faster version of the cooccurrence probability matrix (CPM) -
the gray level difference histogram (GLDH) were found [9,12] to yield 
as good results as the co occurrence-based features. 

Later the Julesz's conjecture was criticised as being applicable to lim­
ited classes of patterns. The interest of the researches has started to shift 
gradually towards attentive perception ..,vhich is responsible for evaluation 
of fundamental properties as texture symmetry, directionality, regularity 
and structural complexity. In a recent paper [18], RAO and LOHsE reported 
on the results of a study of human texture perception aimed at identify­
ing those high level texture features that account for most of the attentive 
texture discrimination capability of the human vision system. 

They conclude that directionality and regularity are among the very 
few high level texture features that guide the process of perceptual grouping 
(taxonomy) of textural patterns. 

Directionality is a special although perceptually important case of 
anisotropy. "\Yhile this special case receiyed considerable attention, aniso­
tropy ·was studied in general in just a few early ·works on texture analy­
sis. DAVIS [22] introduced the notion of co occurrence-based polarogram. 
CHETVERIKOV used a more general term of anisotropy indicatrix (direc­
tional polar diagram) [9] and studied texture anisotropy via indicatrices 
depicting linear edge density and edge orientation distribution of texture 
edge map. Later, the anisotropy features introduced in [9] were success­
fully applied to rotation-invariant texture discrimination [11]. 

As it \vas pointed out in [9], the relevance of anisotropy analysis is 
to a large extent related to the crucial role played by symmetry in natural 
sciences in general and in human and computer vision in particular. Ba­
sic conservation laws of physics follow from the symmetry properties of the 
space-time. Analysis of a physical phenomenon (flow, field, etc.) is con­
siderably simplified if a proper coordinate system is selected that complies 
with the symmetry (and anisotropy) of the phenomenon. 
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The same observation applies to texture patterns as well. JULESZ [33] 
concluded that the presence of symmetry facilitates human perception of 
texture. (For a recent short survey on the role of symmetry in vision, see 
[23].) KASS and WITKIN [15] emphasise correctly that directionality eval­
uation of oriented patterns is indispensable to properly set up the coordi­
nate system for further detailed analysis. 

Unfortunately, in many works on texture the patterns studied are 
manually pre-oriented so as to simplify the task in question. A more real­
istic case of arbitrary orientation and the problem of orientation sensitiv­
ity (compare to edge detection !) are rarely addressed. To approach these 
problems, one has to define axes of anisotropy (or, locally, axes of prevail­
ing directionality [15]). 

The increasing number of studies on symmetry of planar and 3D 
shapes and local gray-value patterns (see e.g. [24,25]) indicate the recogni­
tion of the role of symmetry in vision. Recently, a local symmetry operator 
has been applied to texture discrimination [26]. Motivated by this recogni­
tion as \vell as by the discover}" of the importance of directionality for high 
level texture perception, CHETVERIKOV [27] reconsidered his previous re­
search on anisotropy [11,12] in an attempt to use co occurrence for detailed 
anisotropy analysis. He introduces the notion of extended GLDH and de­
fines the GLDH features used to indicate anisotropy. In [12], examples of 
GLDH-based anisotropy indicatrices for random and regular textures are 
demonstrated and their stability under rotation shown. 

Symmetry analysis of texture is done via anisotropy indicatrix and 
anisotropy axes are defined. Also, it is experimentally sho\vn how indica­
trices of a regular pattern vary with spacing magnitude. Finally, image 
resolution aspects of anisotropy are discussed. 

5. Conclusions and Future Research 

In this paper we revie\y the methods of feature extraction, such as statis­
tical approaches, transform-based methods and pixel-based structural de­
scriptions for texture analysis. In the statistical feature extraction the prin­
ciples of co occurrence, run length and statistical feature matrix were out­
lined. In the transform-based approach Gabor filtering and the wavelet 
transform applied for feature extraction were discussed. Recent publica­
tions of this field show, that multichannel texture analysis is an efficient 
tool and has several advantages with respect to the traditional feature ex­
traction methods. Several pixel-based structural features were also pre­
sented, which attempt to bridge the gap between statistical and structural 
feature extraction methods. 
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In future work we will focus on investigation of the wavelet transform 
in texture analysis more thoroughly, theoretically as well as experimentally. 
Furthermore, applications of other types of multiresolution approaches 
(biorthogonal \vavelets, Gabor wavelets, etc.) for feature extraction are also 
planned. Design of complete texture classification/segmentation schemes 
for specific applications, e.g. for industrial quality control and biomedical 
imagery is also topic of our future research. 
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