ON THE COMPUTATION OF TM AND TE MODE ELECTROMAGNETIC FIELDS

István VÁGó
Attila u. 23 1013 Budapest, Hungary

Received: June 3, 1994

Abstract

The TM and TE mode fields can be derived either from the magnetic vector potential \mathbf{A} or from the electric vector potential \mathbf{F}. \mathbf{A} and \mathbf{F} will be defined with the aid of two scalar quantities each. The relationship between the vector potentials \mathbf{A} and \mathbf{F} describing the same electromagnetic field will be stated. The sum of the TM and TE mode fields is the general solution of the Maxwell equations.

Keywords: electromagnetic field, TM and TE modes, magnetic vector potential, electric vector potential.

Introduction

The solution of electromagnetic field problems is known to be obtainable from a magnetic vector potential \mathbf{A} and an electric vector potential \mathbb{F} both of which have a longitudinal component only. Then the field derived from A is of TM mode while that obtained from \mathbf{F} is of TE mode.

It is shown in what follows how both the TM and the TE mode fields can be derived from either the magnetic potential \mathbf{A} or from the electric potential F. In the discussion the vector potentials A and F will be defined with the aid of two scalar quantities each. The relationship between the vector potentials \mathbf{A} and \mathbf{F} describing the same electromagnetic field will be stated.

Computation of the Electromagnetic Field from a Magnetic and an Electric Vector Potential

The magnetic vector potential \mathbf{A} is defined by the relationship

$$
\begin{equation*}
\mathbf{B}=\operatorname{curl} \mathbf{A}, \tag{1}
\end{equation*}
$$

where \mathbf{B} is the vector of magnetic flux density. A can be shown to satisfy the wave equation

$$
\begin{equation*}
\Delta \mathbf{A}-\mu \sigma \frac{\partial \mathbf{A}}{\partial t}-\mu \varepsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=0 \tag{2}
\end{equation*}
$$

where μ is the permeability, ε the permittivity and σ is the conductivity of the medium.

The relationship between the electric field intensity \mathbf{E} and the vector potential \mathbf{A} can be written as

$$
\begin{equation*}
\mu \sigma \mathbf{E}+\mu \varepsilon \frac{\partial \mathbf{E}}{\partial t}=\operatorname{curl} \operatorname{curl} \mathbf{A} \tag{3}
\end{equation*}
$$

hence making use of the above wave equation:

$$
\begin{equation*}
\mu \sigma \mathbf{E}+\mu \varepsilon \frac{\partial \mathbf{E}}{\partial t}=-\left(\mu \sigma \frac{\partial \mathbf{A}}{\partial t}+\mu \varepsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)+\operatorname{grad} \operatorname{div} \mathbf{A} \tag{4}
\end{equation*}
$$

In current-free regions, \mathbf{E} can be explicitly written with the aid of \mathbf{A} as

$$
\begin{equation*}
\frac{\partial \mathbf{E}}{\partial t}=\frac{1}{\mu \varepsilon} \operatorname{curl} \operatorname{curl} \mathbf{A} . \tag{5}
\end{equation*}
$$

The electromagnetic field can also be derived from the electric vector potential \mathbf{F} defined by the relationship

$$
\begin{equation*}
\mathrm{D}=\operatorname{curl} \mathbf{F} \tag{6}
\end{equation*}
$$

where D is the vector of displacement. F also satisfies the wave equation:

$$
\begin{equation*}
\Delta \mathrm{F}-\mu \sigma \frac{\partial \mathbb{F}}{\partial t}-\mu \varepsilon \frac{\partial^{2} \mathbf{F}}{\partial t^{2}}=0 \tag{7}
\end{equation*}
$$

The expression

$$
\begin{equation*}
\frac{\partial \mathbf{H}}{\partial t}=-\frac{1}{\mu \varepsilon} \operatorname{curl} \operatorname{curl} \mathbf{F} \tag{8}
\end{equation*}
$$

yields the magnetic field intensity \mathbf{H}.
If the only nonzero component of the vector potential is one pointing in a special direction (in case of wave propagation, the direction of the propagation), then the vector potential is of logitudinal direction and it can be written as

$$
\begin{equation*}
\mathbf{A}=A_{l} \mathbf{e}_{l} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{F}=F_{l} \mathbf{e}_{l} \tag{10}
\end{equation*}
$$

where \mathbf{e}_{l} is the unit vector in the longitudinal direction. In the electromagnetic field derived from such an \mathbf{A}, the magnetic field is of a direction perpendicular to it, i.e. of transversal direction. The solution is of TM mode:

$$
\begin{equation*}
\mathbf{B}_{\mathrm{TM}}=\operatorname{curl}\left(A_{l} \mathbf{e}_{l}\right)=\operatorname{grad} A_{l} \times \mathbf{e}_{l} \tag{11}
\end{equation*}
$$

The electric field computed from \mathbf{F} defined in (10) is of transversal direction. A solution of TE mode can be hence derived:

$$
\begin{equation*}
\mathbf{D}_{\mathrm{TE}}=\operatorname{grad} F_{l} \times \mathbf{e}_{l} \tag{12}
\end{equation*}
$$

The superposition of the TM and TE mode fields is the general solution, i.e. the general solution can be derived from two scalar quantities: from A_{l} and F_{l}.

In the following, it will be examined how a TE mode solution can be obtained from the vector potential \mathbf{A} and a TM mode one from \mathbf{F}. To this end, the vector potential \mathbf{A} is decomposed into a transversal part \mathbf{A}_{τ} and a longitudinal part \mathbf{A}_{l};

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}_{\tau}+\mathbf{A}_{l} . \tag{13}
\end{equation*}
$$

According to (11), a TM mode solution is obtained from $\mathrm{A}_{!} \mathbf{A}_{\tau}$ will be selected to yield a TE mode field. In view of (4), this is ensured if

$$
\begin{equation*}
\operatorname{div} \mathbb{A}_{\tau}=0 \tag{14}
\end{equation*}
$$

Such a choice constitutes no limitation since, according to (1) and (5), the same feld can be obtained with different choices of div A_{τ}. So, in view of (4):

$$
\begin{equation*}
\mathbb{Z}_{\mathrm{TE}}+\frac{\varepsilon}{\sigma} \frac{\partial \mathbf{E}_{\mathrm{TE}}}{\partial t}=-\frac{\partial \mathbf{A}_{\tau}}{\partial t}-\frac{\varepsilon}{\sigma} \frac{\partial^{2} \mathbf{A}_{\tau}}{\partial t^{2}} \tag{15}
\end{equation*}
$$

Since relationships between quantities varying in time are investigated, the part constant in time is zero. \mathbf{A}_{τ} is of transversal direction, so its timederivative is transversal, too, i.e. the field obtained is of TE mode.

According to (14)

$$
\begin{equation*}
\mathbf{A}_{\tau}=\operatorname{curl} \mathbf{V} \tag{16}
\end{equation*}
$$

can be written. This is ensured in view of (16), if V is longitudinal, i.e.

$$
\begin{equation*}
\mathbf{V}=V \mathbf{e}_{l} . \tag{17}
\end{equation*}
$$

Indeed, in this case:

$$
\begin{equation*}
\mathbf{A}_{\tau}=\operatorname{curl}\left(V \mathbf{e}_{l}\right)=\operatorname{grad} V \times \mathbf{e}_{l} \tag{18}
\end{equation*}
$$

(17) imposes no limitation on generality, V can be obtained by integration from (18) if \mathbf{A}_{τ} is known and it satisfies (14).

According to (18), the TE mode field can be obtained from the scalar quantity V. The magnetic flux density is given by

$$
\begin{equation*}
\mathbf{B}_{\mathrm{TE}}=\operatorname{curl} \operatorname{curl}\left(V \mathbf{e}_{l}\right)=\operatorname{curl}\left(\operatorname{grad} V \times \mathbf{e}_{l}\right) \tag{19}
\end{equation*}
$$

The above discussion justifies the following statement. The vector potential can be decomposed into two parts without limiting the general case:

$$
\begin{equation*}
\mathbf{A}=\operatorname{grad} V \times \mathbf{e}_{l}+A_{l} \mathbf{e}_{l} \tag{20}
\end{equation*}
$$

The field yielded by the first term on the right-hand side is of TE mode, the one derived from the second term is of TM mode. As a result, the entire field can be obtained from two scalar quantities: V and A_{l}.

Similarly, it will be shown that \mathbf{F} may yield not only TE but also TM mode fields. To this end \mathbf{F} is written as the sum of a transversal \mathbf{F}_{τ} and a longitudinal \mathbf{F}_{l} :

$$
\begin{equation*}
\mathbf{F}=\mathbf{F}_{\tau}+\mathbf{F}_{l} \tag{21}
\end{equation*}
$$

The TE mode solution can be obtained from \mathbb{F}_{l}. A TM mode field can be derived from \boldsymbol{F}_{τ} if

$$
\begin{equation*}
\operatorname{div} \mathbf{F}_{\tau}=0 \tag{22}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\mathbf{H}_{\mathrm{TM}}=\frac{\sigma}{\varepsilon} \mathbb{F}_{\tau}+\frac{\partial \mathbf{F}_{\tau}}{\partial t} \tag{23}
\end{equation*}
$$

In view of (22)

$$
\begin{equation*}
\mathbf{F}_{\tau}=\operatorname{curl} \mathbf{W} \tag{24}
\end{equation*}
$$

can be written where

$$
\begin{equation*}
\mathbf{W}=W \mathbf{e}_{l} \tag{25}
\end{equation*}
$$

So

$$
\begin{equation*}
\mathbf{F}=\operatorname{grad} W \times \mathbf{e}_{l}+F_{l} \mathbf{e}_{l} \tag{26}
\end{equation*}
$$

i.e. F can be defined with the aid of two scalar quantities: W and $F_{l} A$. TM mode solution can be obtained from W and a TE mode one from F_{l}.

Conditions of Two Solutions Coinciding

It will now be investigated what relationship should be maintained between \mathbf{A} and \mathbf{F} so that both yield the same electromagnetic field.

The TE mode solution obtained from the two potentials is identical if

$$
\begin{equation*}
\frac{1}{\varepsilon} F_{l}=-\frac{\partial V}{\partial t} \tag{27}
\end{equation*}
$$

and the TM mode one if

$$
\begin{equation*}
\frac{1}{\mu} A_{l}=\frac{\partial W}{\partial t} . \tag{28}
\end{equation*}
$$

The expression of the TE mode electric field intensity is, according to (15),(16),(17):

$$
\begin{equation*}
\mathbf{E}_{\mathrm{TE}}=-\frac{\partial}{\partial t} \operatorname{grad} V \times \mathbf{e}_{l}=-\operatorname{grad} \frac{\partial V}{\partial t} \times \mathbf{e}_{l} \tag{29}
\end{equation*}
$$

and, according to (6) and (26):

$$
\begin{equation*}
\mathbf{E}_{\mathrm{TE}}=\frac{1}{\varepsilon} \operatorname{grad} F_{l} \times \mathbf{e}_{l} \tag{30}
\end{equation*}
$$

i.e. the satisfaction of (27) implies the equality of (29) and (30). Similarly, the expression of the magnetic field intensity is, according to (19):

$$
\begin{equation*}
\mathbf{H}_{\mathrm{TE}}=\frac{1}{\mu} \operatorname{curl}\left(\operatorname{grad} V \times \mathrm{e}_{i}\right) \tag{31}
\end{equation*}
$$

and, according to (8) and (26):

$$
\begin{equation*}
\frac{\partial \mathbf{H}_{\mathrm{TE}}}{\partial t}=-\frac{1}{\mu \varepsilon} \operatorname{curl}\left(\operatorname{grad} F_{l} \times \mathbf{e}_{l}\right) . \tag{32}
\end{equation*}
$$

From (31) follows that

$$
\begin{equation*}
\frac{\partial \mathbf{H}_{\mathrm{TE}}}{\partial t}=\frac{1}{\mu} \operatorname{curl}\left(\operatorname{grad} \frac{\partial V}{\partial t} \times \mathbf{e}_{\mathrm{I}}\right), \tag{33}
\end{equation*}
$$

i.e. (32) and (33) are equal if (27) is satisfied.

It can be similarly verified that the satisfaction of (28) implies the equality of the TM mode fields derived from A_{l} and from W.

In view of (9) and (10), A_{l} and F_{l} satisfy the scalar wave equation, i.e.

$$
\begin{align*}
& \Delta A_{l}-\mu \sigma \frac{\partial A_{l}}{\partial t}-\mu \varepsilon \frac{\partial^{2} A_{l}}{\partial t^{2}}=0 \tag{34}\\
& \Delta F_{l}-\mu \sigma \frac{\partial F_{l}}{\partial t}-\mu \varepsilon \frac{\partial^{2} F_{l}}{\partial t^{2}}=0 \tag{35}
\end{align*}
$$

So, it follows from (27) and (28) that V and W satisfy the wave equations

$$
\begin{equation*}
\Delta V-\mu \sigma \frac{\partial V}{\partial t}-\mu \varepsilon \frac{\partial^{2} V}{\partial t^{2}}=0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta W-\mu \sigma \frac{\partial W}{\partial t}-\mu \varepsilon \frac{\partial^{2} W}{\partial t^{2}}=0 \tag{37}
\end{equation*}
$$

So, if the electromagnetic field is derived from V and A or W and F_{1}, the calculations invariably involve functions satisfying the wave equation.

Functionals of the Potentials

In the time harmonic case functionals of A_{l} and F_{l} can be given:

$$
\begin{equation*}
I_{A}^{\prime}=\frac{1}{2} \int_{\Omega}\left(\operatorname{grad}^{2} A_{l}-k^{2} A_{l}^{2}\right) \mathrm{d} V \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{F}^{\prime}=\frac{1}{2} \int_{\Omega}\left(\operatorname{grad}^{2} F_{l}-k^{2} F_{l}^{2}\right) \mathrm{d} V \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{2}=(\sigma+j \omega \varepsilon) j \omega \mu \tag{40}
\end{equation*}
$$

In case of general time variation these two functionals can be given in current-free region:

$$
\begin{align*}
& I_{A}^{\prime \prime}=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[\frac{1}{\mu} \operatorname{grad}^{2} A_{l}-\varepsilon\left(\frac{\partial A_{l}}{\partial t}\right)^{2}\right] \mathrm{d} V \mathrm{~d} t \tag{41}\\
& I_{F}^{\prime \prime}=-\int_{0}^{T} \int_{\Omega}\left[\frac{1}{\varepsilon} \operatorname{grad}^{2} F_{l}-\mu\left(\frac{\partial F_{l}}{\partial t}\right)^{2}\right] \mathrm{d} V \mathrm{~d} t \tag{42}
\end{align*}
$$

References

 Book Company, Inc 1953.
2. Fztege, S. (1958): Handbuch der Plasik, Band XVI. Springer Veriag, 1958.
3. SimoNY, K. (1963): Foundations of Flectical Fagineering, Pergamon Press, London, 1963.

