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Abstract 

The field quantities H, B, E, D, satisfy some interface and boundary conditions on the 
boundary surface of two media. On the boundary surfaces there can be present electric 
or magnetic single or double charge or current layers. This article describes interface and 
boundary conditions for quantities H, B, E, D and for scalar and vector potentials. To 
the best knowledge of the author some of these conditions have not been published. 
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The field quantities H, B, E, D, J in Maxwell's equations are frequently 
determined by potential functions. The application of the electric scalar 
potential <p and vector potential A or of the magnetic scalar potential 'ljJ 
and vector potential F are usual. The use of other modified forms of these 
potentials may also occur. 

The scalar potential <p and the vector potential A are usually applied 
if there are no magnetic charges and currents within the region examined. 
In this case 

B = curl A, 

aA 
E = -grad<p - -at 

(1) 

(2) 

The scalar potential 'ljJ and the vector potential F are commonly used if 
there are no electric charges and currents within the region examined. Then 

D = curl F, 

aF 
H = -grad'ljJ + -. at 

(3) 

(4) 



It fonows from (1) and (3) for an arbitrary smface S bounded by the curve 
c: that 

(5) 

The potentials satisfy dllferential equations (Laplace - Poisson, Helmholtz, 
wave equations) which are derived from the Maxwell equations. The solu­
tion of these equations is unique onJy if appropriate boundary conditions 
are satisfied. The contim:rity conditions for the potential functions describ­
ing the eled:romagnetic field on both sides of the boundary surlace are 
called interface conditions. The boundCLry'" conditions give prescriptions on 
the boundary smface of the region examined under the assumption that 
no electromagnetic field exists outside this domain. 

The two signilicant types of boundary conditions are those of DUich­
Jiet and Nelllmann type. In case €lf Dirichlet boundary conditions the value 
of a scalar function €lr the tange:JiJi'ti.al component of a "rector function are 
prescribed €ln the boundary. In case €lf Nelllmann boundary conditions, the 
n€lrmal component of the gradient €lf a scalar function or the tangential 
component of the curl €lf a vector function are given. The boundary con­
dition is of mixed type if DirichJiet condition is valid on the one part and 
Nerunann condition €ln the other part of the bounding surlace. 

Single or d€luble charge or current layers may be present on the bound­
CL:rry smfaces. The name of such layers. the characteristic quantities and 
their symbols are summarized in Tahle 1. On the bounding smfaces of the 
Jregion examined such layers are always present, they form a closure of the 
ded:romagnetic field. 

Table 1 
Sw:face layers 

Uedric dnarge layer 

DGuoie electric charge liayer 

. Magnetic charge 

Douot'e ma;gnetic charge layer 

Uectric CUlnrent 

Scu:fare charge density 

~Ioment 

Swrfare charge density 

~IGment 

Suu:face I:tmrenii densi1iY 

~Ioment 

PS 

'IS 

JS 
), 

Ks 
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In. the following, the quantities appearing on the one side of the bound­
ary su.. ... 1·ace are denoted by the subscript 1, and those on the other side by 
the sUbscript 2. 

Interface Conditions for Potentials on Boundary Surfaces 
without Surface Layers 

The interface conditions known for E, D, H, B are in Table 2 for the 
case if there are no surface layers on the boundary surface [1], [3]. (n is 
the unit normal.) Hence the interface conditions of the time independent 
scalar potentials are given in Table 3 on the basis of (2) and (4). 

Table 2 
Interface conditions for field quantities on surfaces without layers 

Table 3 
Interface conditions for time independent scalar potentials 

on surfaces without layers 

'PI - 'PZ = 0 

'r/JI - '1fJ2 = 0 

n (cl grad 'PI - c2 grad 'PZ) = 0 

n (f-LI grad '1fJI - f-LZ grad '1fJ2) = 0 

In. (2) and (4) the gradients of scalar potentials are present, so the value of 
the potential can arbitrarily be chosen in one point of the region examined 
and this choice can be independent in the parts of the region separated by 
boundary surfaces. This choice is expedient if it simplifies the calculation. 
This means often that the zero potential points of these parts are common. 
In this case, the scalar potential is continuous on the interface free of layers. 

The satisfaction of a Dirichlet boundary condition for scalar potential 
simultaneously determines the zero potential point, but in case of Neumann 
boundary condition this point must be specified. 

Eqs. (1) and (3) yield the curl of the vector potentials. The diver­
gence of vector potentials may be chosen arbitrarily. Usually, this choice 
corresponds to the Coulomb gauge: 
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div A = 0, div F = 0 (6) 

or to the Lorentz gauge: 

(7) 

The Lorentz gauge is only practically useful in calculations for homogeneous 
media. 

The scalar potentials can be eliminated from the Eqs. (2) and (4) of 
time dependent fields with the aid of the Lorentz gauge: 

aE a2A 1 . 
- = --- + -grad dlV A, at at2 jLc 

(8) 

oH a2F 1 . 
- = -- - -grad dlV F. at at2 jLc 

(9) 

On an interface without layers between two media the normal components 
of the magnetic flux density B and of the displacement vector D are con­
tinuous (Table 2), so for any surface S surrounded by a closed curve c on 
the boundary surface, we have 

J BIdS = J B2dS, (10) 
s s 

and so, taking (5) into consideration, 

(ll) 
c c c c 

These are certainly satisfied if the tangential components of A and Fare 
continuous. The interface conditions of the vector potentials are dependent 
from the choice of divergences of them. If the divergence is described with 
the same function in the two regions, then the continuity of tangential 
components of vector potentials on the boundary surface can be supposed. 
When according to Coulomb gauge div A = 0, div F = 0 in the two media, 
then can be supposed 

(divA=O) (12) 

(div F = 0) (13) 
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However, the divergences of vector potentials are chosen according to 
Lorentz gauge, then the conditions for continuity of the tangential compo­
nents of E and of H could be in contradiction with (12) and (13). 

The interface conditions on the normal components of vector poten­
tials are also dependent on the choice of divergences. The interface condi­
tions on the normal components of the vector potentials shall be first ex­
amined for time-dependent fields with 'P == 0 and 'lj; == 0 assumed. Then 
the Lorentz condition coincides with the Coulomb gauge (div A = 0, 
div F = 0). So from (8) and (9): 

E=_aA 
at ' 

H= of. 
at (14) 

It follows by time integration from the continuity condition of the normal 
components of E, H for interfaces without layers that 

n(clAl - c2A2) = 0 (divAl = divA2, 'P == 0) (15) 

n(jL1Fl - jL2F2) = 0 (div Fl = div F2, 'lj; == 0), (16) 

where the integration constants are assumed to be zero. 
If the vector potentials satisfy the Lorentz gauge it shall be decom­

posed in normal and tangential components: 

It could be shown that the choice 

div AT = 0, div FT = ° 
constitutes no limita1ion [4]. Then we have from (8) and (9) 

a En 0 2 A.n 1 0 2 A.n -----+---at - at2 jLc an2 ' 

aHn 
at 

(17) 

(18) 

(19) 

The normal components of vector potentials satisfy the homogeneous wave 
equations if J = 0 

(20) 

The operator ~ is written as the sum of a normal and a tangential operator: 

(21) 



Table 4 
Interface conditions for vector potentials on surfaces without layers 

assumption 

n x (AI - Az) = 0, n (cIAI - c2AZ) = 0, divAI = divAz n ( Al _ Az ) = 0, 
JL I JLZ 

'P::= 0, 

n x (FI - F z) = 0, n(JL1F j - JLZ)i'2) = 0, divFI = divF2 n (FI _ F2) = 0, 
JLI JLz 

'Ij;::=0, 

assumption 

divA = -JLU'P 

alP 
-W;Ft 

d" F a'lj; IV ,= JLc-at 

~ 

:-. 

"" ;,., 
Q 
0, 
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So 
(22) 

It follows from Table 2 that the left sides of Eqs. (22) are continuous on 
boundary surfaces without layers, so the right sides are continuous, too. 
By integrating twice with respect to T we have 

;1 AIn = ;2A2n, n(;l Al - ;2A2) = 0 (div A = -JUTCP - j.L£~), (23) 

ell FIn = ;2 F2n, nC:\ Fl - ;2F2) = 0 (div F = j.Lc&;:), (24) 

where the integration constant is zero. (It can be remarked that the result 
is the same as well, when J f. 0.) 

The interface conditions for vector potentials on surfaces without lay­
ers are summarized in Table .4. 

Charge Layers and Double Charge Layers 

The interface conditions for the electric and magnetic field on surfaces with 
charge layers and double charge layers are summarized in Table 5. 

PS 

77S 

Table 5 
Interface conditions for field quantities 

on surfaces with charge layers and double charge layers 

nx(E1-Ez)=O 

nx(HI-Hz)=O 

nx(EI-Ez) = - cId curl g 

nx (Hl -Hz) = -tb curl!S:. 

The double charge layer consists of two charge la>yers at a distance 
I:,.Z -t O. On the surface element I:,.Sl of one layer the electric and magnetic 
charge densities are -Ps and TJs, whereas on the surface element !1S2 of 
the other layer they are PS and 7JS, The distance between tlS1 and b:.S2 is 
b:.l and b:.51 = b.52. The characteristic parameters of the double charge 
layers are the moments ~ and tf:: defined by 

~ = nv = psb.l, tf:: = nn; = 7]50.1, (25) 

where 1:,.1 = I:,.ln and n is directed from b:.S1 to 1:,.52. 
The first rows of Tables 5 and 6 are valid in the case, if there is 

an electric charge density PS on the boundary surface. The second rows 
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are valid for surfaces with magnetic charge density 7]s and the relations 
in this row are analogous to those in the first one. The third rows relate 
to the electric double charge layer with moment !!.. and the fourth rows 
to the magnetic one with moment g. cd and J.Ld a;;; the permittivity and 
permeability of the homogeneous medium between the two layers. The 
second column of the third row in Table 5, which has not been published 
before, to the best knowledge of the author, follows for time independent 
fields from the relation in the second column of the third row in Table 6: 

PS 

1]5 

!!. 

!:i 

Table 6 
Interface conditions for time independent scalar potentials 

on surfaces with charge layers and double charge layers 

'PI - 'P2 = 0 n (Cl grad 'PI - c2 grad 'P2) = PS 

1/!1 -l/J2 = 0 n (f-Ll gradl/Jl - f-L2 grad 1/!2) = 1]5 

'PI - 'P2 = - (d n (Cl grad 'PI - c2 grad 'P2) = 0 

1/!1 -1/!2 = -Jh n (f-Ll grad 1/!1 - f-L2 grad 1/!2) = 0 

1 
n X (gradipl - gradip2) = n X (E2 - EI) = - -n X grad v. (26) 

cd 

It can be proved that curl n = 0 in any point of smooth surface, so 

curl g, = curl nv = grad v X n, (27) 

1. e. 
1 

n X (El - E2) = --curl!!... (28) 
cd -

The second column of Table 6 is valid with the assumption that the zero 
potential points in the two parts of the region examined divided by the 
boundary surface are the same. In this case, the potential is continuous on 
single charge layers and jumps with - V/Cd and - "'/f.Ld on double charge 
layers. 

The relations of Tables 2 and 3 follow from Tables 5 and 6 in the 
case Ps = 0, 7]5 = O,!!.. = O,ii = 0. 

The boundary condit~ns are summarized in Tables 7 and 8 on the 
basis of Tables 5 and 6. In this case no electromagnetic field is present on 
one side of the charge layer or double charge layer. For instance, the field 
quantities denoted by the subscript 1 are zero and the scalar potentials are 
constant (n X grad 'P = 0, n X grad'lj; = O. The subscript 2 is omitted in 
Tables 7 and 8. 
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Table 7 
Boundary conditions for field quantities 

on surfaces with charge layers and double charge layers 

Ps nxE=O nD=ps 

7JS nxH=O nB=7Js 

~ nxE= /d curl ~ nD=O 

ti nxH=th curl ti nB=O 

Table 8 
Boundary conditions for time independent scalar potentials 

on surfaces with charge layers and double charge layers 

PS nx grad 'P = 0 'P = const. 8<p _ _ f!li. an - g 

7JS nx grad if; =0 if; = const. 8T/J !l§.. an = - J1. 

~ nx grad 'P = - gld curl ~ 8<p - 0 
- an-
ti nx grad if; = -,Id curl ti 8T/J - 0 an-

Current Layers and Double Current Layers 

87 

It is well known that the tangential component of the magnetic field inten­
sity changes abruptly on electric current layers, whereas the normal compo­
nent of the magnetic flux density is continuous. In case of magnetic current 
layer, the tangential component of the electric field intensity jumps and the 
normal component of the electric displacement is continuous (Table 9). 

Table 9 
Interface conditions for field quantities 

on surfaces with current layers and double current layers 

nx(H2-Hd= Js 

I nx(E1 -E2) = Ks 

I nx (H1-H2 )=0 

I nx(EI-E2)=0 

n(BI-B2)=O 

n(D1-D2)=O 

n(BI-B2) =J1.d div :2: 
n(D1 -D2) =-ed div K 

The interface conditions of the normal and the tangential components 
of curl A and curl F are obtainable from the field components (Table 10). 

If the divergences of A and of F resp. are described with the same 
function on both sides of the electric and of the magnetic current layer, 
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Js 

Ks 

,i 
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Table 10 
Interface conditions for curl of vector potentials 

on surfaces with current layers and double current layers 

nx(.l curl A2 - .l curl Ad= Js 
1-'2 1-'1 

nX(;l curl FI - ;2 curl F2) = Ks 

nX (.l curl Al - ,~ curl A2) =0 
1-'1 .... 2 

curl F2) = 0 

n(curl A2- curl AI)= 0 

n(curl F I - curl F 2 )= 0 

n(curl Al curl A2) =fLd div ~ 

n(curl F 1 - curl F 2 ) =-cd div 

then the tangential components of A and of F are continuous independently 
from values of J s and Ks. This is always fulfilled at choice according to 
Coulomb gauge. At choice according to Lorentz gauge it is only fulfilled, 
when permeability and permittivity are the same on the two sides of current 
layer. Then 

nX(Al - A2) = 0, (diy Al = diy A2) 1 (29) 
nx (Fl - F2) = 0, (diy Fl = diy F2). (30) 

In double current layers, the current density on the element /j.Sl of the 
surface SI is - Js and - Ks, on the element /j.S2 of the surface S2 at a 
distance Lll from LlSl it is Js and Ks (Lll -t 0, LlSl = LlS2, Fig. 1). 

Fig. 1. 
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At an arbitrary point of an electric current layer we have with the notations 
of Fig. 1: 

n X (Hd - HI) = -Js (31) 

and 
n x (H2 - Hd) = Js (32) 

and hence 
n X (HI - H2) = 0, (33) 

i. e. the tangential component of the magnetic field intensity is continuous 
on double electric current layers. Thus, using (1) 

1 1 
n X (-curlAI - -curlA2) = o. 

J.LI J.L2 
(34) 

Fig. 2. 

The double electric current layer can be regarded as consisting of current 
loops with the current 

1= Jst::.h (35) 

as shown in Fig. 2. The electromagnetic moment of such a loop is 

ID = t::.l X Jst::.ht::.a, (36) 
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where .6. 1 = .6.1n and n is directed from .6.81 to .6.82. The moment of the 
double electric charge layer is defined by 

1 
~ = .6.a.6.h rn = .6.1 x Js, ,\ = Js.6.l. (37) 

Denoting the vector potential between the two layers by Ad, and 
integrating it along a loop with the electromagnetic moment rn, we get 

f Addl = (A~t9 - Att9).6.a = - Jld Hdb.6.a.6.1, (38) 
c 

where Jld is the permeability of the homogeneous medium between the 
two layers. The subscripts {} and b denote the two orthogonal tangential 
components. From (38), we have 

(39) 

It follows from (31), (39) and (37) that 

If .6.l -4 0, then Hlb f:::.l -4 ° and so 

(41) 

Considering the directions: 

(42) 

The tangential component of the vector potential A is continuous on elec­
tric current layers, i. e. Att9 = A 1t9, A~t9 = A2t9. So 

(div Al = div A2), (43) 

when the divergence of A is described with the same function on both sides 
of the double current layer. This means that the tangential component of 
the vector potential has a jump proportional to the moment of the double 
electric current layer. 
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The divergence of the (43) is 

Since curl n = 0 on smooth surfaces, we have 

(45) 

The moment of a double magnetic current layer is 

~ = ~l x Ks. (46) 

Its effect can be discussed similarly as above. The tangential component of 
the electric field intensity is continuous on double magnetic current layers 
(Table 9): 

(47) 

and so 

n x (~rot Fl - ~rot F2) = O. 
cl C2 

( 48) 

The normal component of D jumps here: 

(49) 

cd is the permittivity of the homogeneous medium between the two lay­
ers. Similarly to (43), the tangential component of the vector potential F 
changes abruptly on double magnetic current layers, when the divergence 
of F is described with the same function on both sides of the double cur­
rent layer. 

(50) 

The boundary conditions are summarized in Table 11. On the double elec­
tric current layer the boundary condition is according (34) nx curl A = O. 
When n A = 0, it is equivalent with 

aA = 0 , (n A = 0). an 
Similarly, in the special case n F = 0 nx curl F 
in the form 

aF = 0 • (n F = 0) , an 

(51) 

o may be described 

(52) 

on double magnetic current layer the boundary condition. 



Table 11 
Boundary conditions 

OIl surfaces with current layers and double current layers 

Js nxH=Js nB=O nxA=O nX curl A=pJs n curl A=O 

Ks nxE =.- Ks nD=() nxF=O nX curl F=-eKs n curl F=O 

.c\ nxH=:O nB=-Pt/div~ nxA=-Pd~ nX curl A=O n curIA=-Pddiv ~ 

X nxE =() nD=ct/divK nxF=-cdK nX curl F=O n curl F=eddiv K 

Table 12 
Homogeneous boulldary conditions on electric and on magnetic walls 

._._ .. :_:] nxE= 0 n 

~agnetic wa.ll~~!:~_? 

B=() nxA= 0 n curl A= () nxgrad<p = 0 nxcurl F= 0 

D=O nxF= 0 n curl F= () nxgrad'lj; = 0 nxcurl A= 0 
-----

Electric wall 

co 

"" 

~ 

;S, 
4J 
0. 
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Equivalent Layers 

Comparing Table 5 and Table 9 it can be established that some layers are 
equivalent with respect to the interface conditions, Thus, an electric charge 
layer is equivalent to a double magnetic current layer, provided 

(53) 

Similarly, a magnetic charge layer and a double electric current layer are 
equivalent, if 

(54) 

A magnetic current layer and a double electric charge layer are equivalent, 
provided 

1 
-Ks = -curl~ 

cd -
(55) 

and an electric current layer and a double magnetic charge layer, if 

1 
Js = - curl!5::. 

!Ld -
(56) 

In case of time dependent fields, further equivalences can be derived from 
the continuity equations 

d' J oPs 
IV s = ---, 

at 
divKs = _ OT/S, 

ot 
Taking the time derivative of (53) and (54), we obtain 

OT/s ' Oil -- = - /-Ld dlV -= 
at at' 

(57) 

(58) 

Comparing (57) with (58) it can be established that these are certainly 
satisfied, provided 

(59) 

These can also be deduced from the fact that a section of a magnetic 
current layer can be substituted by an electric loop current and a section 
of an electric current layer by a magnetic loop current, 

The condition of the equivalence between a double magnetic charge 
layer and a double magnetic current layer is, according to (56) and (59): 

(60) 
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Similarly, a double electric charge layer and a double electric current layer 
are equivalent, if 

(61) 

It follows from the above discussion that it is sufficient to take two kinds 
of layers into consideration in case of time dependent fields. These may 
be, e.g. the electric and the magnetic current layers. In boundary value 
problems, the electric current layer occurs on ideal conductors (on electric 
walls), and the magnetic current layer on so-called magnetic walls. The 
electric wall is equivalent to the electric charge layer, to the double magnetic 
charge layer and to the double magnetic current layer and the magnetic 
wall is equivalent to the magnetic charge layer, to the double electric charge 
layer and to the double electric current layer, provided the appropriate 
relationships are satisfied. 

The homogeneous boundary conditions on the two kinds of walls are 
summarized in Table 12. It can be seen that on electric walls the vector 
potential A satisfies the homogeneous Dirichlet boundary condition, the 
scalar potential cp is constant and the vector potential F satisfies the ho­
mogeneous Neumann boundary condition. On magnetic walls a Dirichlet 
boundary condition is valid for the vector potential F, a N eumann bound­
ary condition for the vector potential A and the scalar potential 'ljJ is con­
stant. These are only true, if the electromagnetic field is derived from the 
potential pairs A-cp or F-'ljJ. When A and F are applied simultaneously, 
the boundary conditions must be satisfied by the resultant field quantities. 

In the fourth column of Table 12 the tangential components of A and 
F are written as zero. They could be any constant. However, this constant 
is arbitrary, so it is practical to choose it to be zero. The equations in the 
fifth column are valid under this assumption. 
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