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Abstract

The field quantities H, B, E, D, satisfy some interface and boundary conditions on the
boundary surface of two media. On the boundary surfaces there can be present electric
or magnetic single or double charge or current layers. This article describes interface and
boundary conditions for quantities H, B, E, D and for scalar and vector potentials. To
the best knowledge of the author some of these conditions have not been published.
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The field quantities H, B, E, D, J in Maxwell’s equations are frequently
determined by potential functions. The application of the electric scalar
potential ¢ and vector potential A or of the magnetic scalar potential 9
and vector potential F are usual. The use of other modified forms of these
potentials may also occur.

The scalar potential ¢ and the vector potential A are usually applied
if there are no magnetic charges and currents within the region examined.
In this case

B =curl A, (1)

E = —gradp — %% (2)

The scalar potential ¢ and the vector potential F are commonly used if
there are no electric charges and currents within the region examined. Then

D =curl F, (3)

H = —grady + %—1;— (4)
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It follows from (1) and (3} for an arbitrary surface S bounded by the curve

c that
f BdS = 5{ Adl, f DdS = _% Fdl. (5)
k3 [ S c

The potentials satisfy differential equations {Laplace — Poisson, Helmholtz,
wave equations ) which are derived from the Maxwell equations. The sola-
tion of these eguations is unigue only i appropriate boundary conditions
are satisfied. The continuity conditions for the potential functions describ-
ing the electromagnetic field on both sides of the boundary surface are
called interface conditions. The boundary conditions give prescriptions on
the boundary surface of the region examined under the assumption that
no electromagnetic field exists outside this domain.

The two significant types of boundary conditions are those of Dirich-
let and Neumann type. Ir case of Dirichiet boundary conditions the value
of a scalar fenction or the tangential component of a vector function are
prescribed on the boundary. In case of Neumann boundary conditions, the
normal component of the gradient of a scalar function or the tangential
compeonent of the curl of a vector function are given. The boundary con-
dition is of mixed type if Dirichlet condition is valid on the one part and
Neumann condition on the other part of the bounding surface.

Single or double charge or current layers may be present on the bound-
ary surfaces. T he name of such layers, the characteristic quantities and
their symbols are summarized in Table 1. On the bounding surfaces of the
region examined such layers are always present, they form a closure of the
electromagnetic field.

Table 1

Surfzce [ayers
Denomination Characteristic parameter Symbal
Electric charge layer Surface charge density ps
Double electric charge layer Moment 4
Magnetic charge layer Surface charge density 1S
Double magpetic charge layer Moment £
Electric current layer Surface current density Js
Double electric current layer Moment A
Magnetic current layer Surface current density Ks
Double magnetic current layer | Moment X
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In the following, the quantities appearing on the one side of the bound-
ary surface are denoted by the subscript 1, and those on the other side by
the subscript 2.

Interface Conditions for Potentials on Boundary Surfaces
without Surface Layers

The interface conditions known for E, D, H, B are in Table 2 for the
case if there are no surface layers on the boundary surface [1], [3]. (n is
the unit normal.) Hence the interface conditions of the time independent
scalar potentials are given in Table § on the basis of (2) and (4).

Table 2
Interface conditions for field quantities on surfaces without layers

nx(Ei—E2)=0 |n(D;-D2)=0 |nx(H;~Hy)=0 |n(B;~By)=0]

Table 3
Interface conditions for time independent scalar potentials
on surfaces without layers

p1—p2=0 n (e1grad 1 — 2 grad v3) = 0
Y1 —P2=0 n (p1 grad ¥ — po grad ¢2) =0

In (2} and (4) the gradients of scalar potentials are present, so the value of
the potential can arbitrarily be chosen in one point of the region examined
and this choice can be independent in the parts of the region separated by
boundary surfaces. This choice is expedient if it simplifies the calculation.
This means often that the zero potential points of these parts are common.
In this case, the scalar potential is continuous on the interface free of layers.

The satisfaction of a Dirichlet boundary condition for scalar potential
sirnultaneously determines the zero potential point, but in case of Neumann
boundary condition this point must be specified.

Egs. (1) and (3) yield the curl of the vector potentials. The diver-
gence of vector potentials may be chosen arbitrarily. Usually, this choice
corresponds to the Coulomb gauge:
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divA=0, divF=0 (6)

or to the Lorentz gauge:

. _ Oy . oy
div A=—oup — HE 5 div F = pue 5 (7
The Lorentz gauge is only practically useful in calculations for homogeneous
media.
The scalar potentials can be eliminated from the Egs. (2) and (4) of
time dependent fields with the aid of the Lorentz gauge:

OE _ 8°A | 1

=t Egra,d div A, (8)
8H &°F 1 .
¥ = Froa —/Egrad div F. 9)

On an interface without layers between two media the normal components
of the magnetic flux density B and of the displacement vector D are con-
tinuous ( Table 2), so for any surface S surrounded by a closed curve ¢ on
the boundary surface, we have

/BldS - /BzdS, /DldS - /DzdS (10)
S S S S

and so, taking (5) into consideration,

fAldl - f(Azdl j{Fldl - ?{ngl. (11)
[+ C C C

These are certainly satisfied if the tangential components of A and F are
continuous. The interface conditions of the vector potentials are dependent
from the choice of divergences of them. If the divergence is described with
the same function in the two regions, then the continuity of tangential
components of vector potentials on the boundary surface can be supposed.
When according to Coulomb gauge div A = 0, div F = 0 in the two media,
then can be supposed

nx (A —Ay) =0, (divA=0) (12)

nx (F; —Fg) =0, (div F = Q) (13)
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However, the divergences of vector potentials are chosen according to
Lorentz gauge, then the conditions for continuity of the tangential compo-
nents of E and of H could be in contradiction with (12) and (13).

The interface conditions on the normal components of vector poten-
tials are also dependent on the choice of divergences. The interface condi-
tions on the normal components of the vector potentials shall be first ex-
amined for time-dependent fields with ¢ = 0 and ¢ = 0 assumed. Then
the Lorentz condition coincides with the Coulomb gauge (div A = 0,
div F = 0). So from (8) and (9):

OA OF
E= 5 H= 5 (14)
It follows by time integration from the continuity condition of the normal
components of B, H for interfaces without layers that

n(e1A; —e2A2) =0 (divA; =divAg, ¢ =0) (15)
n(pF1 — peFo) =0 (divF; =div Fy, 9 =0), (16)

where the integration constants are assumed to be zero.
If the vector potentials satisfy the Lorentz gauge it shall be decom-
posed in normal and tangential components:

A:An+Ar, F=Fn+FT. (17)
It could be shown that the choice
divA-=0, divF.=0 (18)

constitutes no limitation [4]. Then we have from (8) and (9)

OE,  0°A, | 1 0%An O0Hn _0°F, 1 8%F,

5t = "o T ne o2 5 _ 68  ne on?

(19)

The normal components of vector potentials satisfy the homogeneous wave
equations if J = 0

%A, 8% Fy,
52 = 0, AF, — pe 52

The operator A is written as the sum of a normal and a tangential operator:

AA, — pe =0. (20)

82

(21)



Table 4
Interface conditions for vector potentials on surfaces without layers

assumption assumption

n x (A1 - Az) = 0, n(51A1 - EzAz) = 0, diVA] = divA2 n (ﬂ - _‘@.2_) = 0, divA = —Hop

I3 #2
— Jy
=0, HE i
n X (F; -~ Fy) =0, n(pFy — poFa) =0, divFy = divF, n B_E =0, divF = [AEQE[)—
1 p2 ot

Pp=0,
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So
8E, 1 0H, 1
€5 = #/_'\TAT,, el EA-,—Fn. (22)

It follows from Table 2 that the left sides of Egs. (22) are continuous on
boundary surfaces without layers, so the right sides are continuous, too.
By integrating twice with respect to 7 we have

;];Aln = Hl,;A2na n( Al - ’—AZ) =0 (dlv A= —poeY — #5”2): (23)
1P, = 1B, n(lF-1F)=0 (div F = pe22), (24)

where the integration constant is zero. (It can be remarked that the result
is the same as well, when J # 0.)

The interface conditions for vector potentials on surfaces without lay-
ers are summarized in Table 4.

Charge Layers and Deouble Charge Layers

The interface conditions for the electric and magnetic field on surfaces with
charge layers and double charge layers are summarized in Table 5.

Table 5
Interface conditions for field quantities
on surfaces with charge layers and deuble charge layers

Ps nX(El —Eg):O n(Dz—Dl) = 05
ns nx{H; ~H;)=0 n(B2-Bi)= 75g
v nX(E;-Ey) = —gl(—i- curl p n{D;-Dy) = 0
& nx (H;-H;) = ——'513 curl £ a(B;—B3) = 9§

The double charge layer consists of two charge levers at a distance
Al — 0. On the surface element AS1 of one layer the electric and magnetic
charge densities are —pg and 7g, whereas on the surface element ASy of
the other layer they are ps and 7ng, The distance between AS; and ASy is
Al and AS; = AS3. The characteristic parameters of the double charge
layers are the moments v and g defined by

v=mnv=pgAl, k=nk=r7nshl (25)

where Al = Aln and n is directed from AS: 0 ASs
The first rows of Tables § and 6§ are valid in the case, i there is
an electric charge density ps on the boundary surface. The second rows
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are valid for surfaces with magnetic charge density ns and the relations
in this row are analogous to those in the first one. The third rows relate
to the electric double charge layer with moment y and the fourth rows
to the magnetic one with moment k. &4 and pqg are the permittivity and
permeability of the homogeneous medium between the two layers. The
second column of the third row in Table §, which has not been published
before, to the best knowledge of the author, follows for time independent
fields from the relation in the second column of the third row in Table 6:

Table 6
Interface conditions for time independent scalar potentials
on surfaces with charge layers and double charge layers

ps w1 — w2 =0 n (&3 grad @1 — g9 grad v3) = pg
ns Py — P =0 n (p1 grad ¥ — po grad ¥2) = 5g
v P12 = =5 n (&1 grad @1 — €3 grad @) =0
£ Y1 -ty = -5 n (g1 grad ¥; — p2 grad ¢97) =0

1
n X (grady; — gradps) =n x (E; —E;) = ——nx gradv, (26)
d
It can be proved that curl n = 0 in any point of smooth surface, so

curly = curlny = gradv x n, (27)

nx (E;—Eq) = —;j—dcurlg. (28)

The second column of Table 6 is valid with the assumption that the zero
potential points in the two parts of the region examined divided by the
boundary surface are the same. In this case, the potential is continuous on
single charge layers and jumps with — v/eg and — £/ug on double charge
layers.

The relations of Tables 2 and § follow from Tables 5 and 6 in the
case ps = 0, ng =0,y = 0,5 = 0.

The boundary conditions are summarized in Tables 7 and 8 on the
basis of Tables § and 6. In this case no electromagnetic field is present on
one side of the charge layer or double charge layer. For instance, the field
quantities denoted by the subscript 1 are zero and the scalar potentials are
constant (n X grad ¢ = 0, n X grad ¢ = 0. The subscript 2 is omitted in
Tables 7 and 8.
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Table 7

Boundary conditions for field quantities

on surfaces with charge layers and double charge layers

Boundary conditions for time independent scalar potentials
on surfaces with charge layers and double charge layers

Ps nxE=0 nD=pg

1S nxH=0 nB=ng

v an:—l— curl v nD=0

£ an-—m curl [ nB=0
Table 8

PS nX grad ¢ = 0 ¢ = const. %‘;’;’ = —£5
ns nx grad ¢ =0 ¢ = const. g—}_‘b— = -1z
v nX grad ¢ = _—E curl ¥ g% =
& nX grady--—m curl & —g-’;";=

Current Layers and Double Current Layers

Table 9

Interface conditions for field quantities

on surfaces with current layers and double current layers

87

It is well known that the tangential component of the magnetic field inten-
sity changes abruptly on electric current layers, whereas the normal compo-
nent of the magnetic flux density is continuous. In case of magnetic current
layer, the tangential component of the electric field intensity jumps and the
normal component of the electric displacement is continuous ( Table 9).

[3s | nx(E-H)=17s
|Ks | nx(Ei-E2) = Ks
1A | ax @-E)=
| x | nx(E1-Ez)=0

n(31 -—Bz)=0
n(D1 —D2)=O

n(B;—-B3) =pg div A
n(Dl—-Dz) =—&d div v X

|
|
A |
|

The interface conditions of the normal and the tangential components

of curl A and curl F are obtainable from the field components ( Table 10).

If the divergences of A and of F resp. are described with the same

function on both sides of the electric and of the magnetic current layer,
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Table 10
Interface conditions for curl of vector potentials
on surfaces with current layers and double current layers

Conl
n

nx(p—lz— curl Ay — % curl A;)=Jdg n(curl Ag— curl Ag)=0
s nx(gl—l— curl F; — 51—2 curl Fp) = Kg n{curl F;— curl F3)= 0

=

nx (71{ curl Ay — Flz" curl Ag) =0 n(curl A;— curl Ag) =pq div A

nx(ng curl F; — ;1; curl Fp) = 0 n(curl Fi— curl Fp) =—¢4 div x

l1>¢ fi>~

then the tangential components of A and of F are continuousindependently
from values of Jg and K. This is always fulfilled at choice according to
Coulomb gauge. At choice according to Lorentz gauge it is only fulfilled,
when permeability and permittivity are the same on the two sides of current
layer. Then
nx(A; — As) =0, (div A1 = div Ag), (29)
nx(F; —Fp) =0, (div F; = div Fy), (30)
In double current layers, the current density on the element AS; of the
surface 57 is - Jg and - Kg, on the element AS; of the surface 52 at a
distance Al from AS; it is J5 and Kg (Al — 0, AS; = ASs, Fig. 1).

Fig. 1.
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At an arbitrary point of an electric current layer we have with the notations

of Fig. 1:

n X (Hd - H1) =-Js (31)
and .
n X (H2 - Hd) =Jg (32)
and hence
nx (H; — H;) =0, (33)

i. e. the tangential component of the magnetic field intensity is continuous
on double electric current layers. Thus, using (1)

nx (-l—curlAl - ——l—curl Aj)=0. (34)
H1 H2

Fig. 2.

The double electric current layer can be regarded as consisting of current
loops with the current

I =JsAh (35)

as shown in Fig. 2. The electromagnetic moment of such a loop is

m = Al x JsAhAa, (36)
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where A 1 = Aln and n is directed from AS; to ASs. The moment of the
double electric charge layer is defined by

1
AalAh

A= m=AlxJs, A=JsAl (37)

Denoting the vector potential between the two layers by A¢ and
integrating it along a loop with the electromagnetic moment m, we get

}{ Addl = (A% — A%)Aa = — pgHyAAl (38)
[+

where g is the permeability of the homogeneous medium between the
two layers. The subscripts ¢ and b denote the two orthogonal tangential
components. From (38), we have

1
HgAl = —(Afy — 439). (39)
Ld
It follows from (31), (39) and (37) that
HypAl — HyAl = /-LI—(A‘{,, — ASy) — HyAl = —J,Al = =) (40)
d
If Al — 0, then Hy; Al — 0 and so
1
—(Afy — A3s) = -\ (41)
1td
Considering the directions:

n x (A5 - A{) = pg). (42)

The tangential component of the vector potential A is continuous on elec-
tric current layers, i. e. A({tg = Aw,Ag,, = Asgy. So

nx (A2—-A;)) = KdA (divA; = div Ag), (43)

when the divergence of A is described with the same function on both sides
of the double current layer. This means that the tangential component of
the vector potential has a jump proportional to the moment of the double
electric current layer.
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The divergence of the (43) is
divin x (A2 — A1)] = (A2 — Aj)curl n—ncurl (A2 —Ag) = pg div A (44)
Since curl n = 0 on smooth surfaces, we have
n(B; — Bs) = pg div A (45)
The moment of a double magnetic current layer is
x=AlxKs. (46)

Its effect can be discussed similarly as above. The tangential component of
the electric field intensity is continuous on double magnetic current layers
(Table 9):

nx (E;—Eg) =0 (47)
and so 1 1
n X (a rot Fy — p rot Fz) = 0. (48)

The normal component of D jumps here:
n X (D2 - Dl) = g4 div X (49)

g4 is the permittivity of the homogeneous medium between the two lay-
ers. Similarly to (43), the tangential component of the vector potential F
changes abruptly on double magnetic current layers, when the divergence
of F is described with the same function on both sides of the double cur-
rent layer.

n X (Fl - FQ) =€&dX , (div Fi=div Fz). (50)

The boundary conditions are summarized in Table 11. On the double elec-
tric current layer the boundary condition is according (34) nx curl A = 0.
When n A = 0, it is equivalent with

%:o, (n A =0). (51)

Similarly, in the special case n ¥ = 0 nx curl ¥ = 0 may be described
in the form
oF _
on

on double magnetic current layer the boundary condition.

0, (nF=0), (52)



Table 11

Boundary conditions

on surfaces with current layers and double current layers

Homogeneous boundary conditions on electric and on magnetic walls

Jg nxH=Jg nB=( nxA=0 nX curl A=pJg n curl A=0

{9 nxEk =- Kg nD=0 nx¥F=0 nX curl F=—cKg n curl F=0

A nxJH=-0 nB=—p,div) nXA=—pgA nX curl A=0 n curl A=—p div A

X nxE =0 nD=¢ divy nxF=-g4x nXx curl F=0 n curl F=¢qdiv x
Table 12

Electric wall

Magnetic wall

nxk=0
nxH= 0

nB=20
D= 0

nxA=

nXF=

0
0

ncurl A= 0

ncurl F= 0

nxgrady = 0
nxgrady = 0

nXcurl F= 0
nxcurl A= 0

4]

ooyA I
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Equivalent Layers

Comparing Table § and Table 9 it can be established that some layers are
equivalent with respect to the interface conditions. Thus, an electric charge
layer is equivalent to a double magnetic current layer, provided

ps = &4 divz(_ ¢ (53)

Similarly, a magnetic charge layer and a double electric current layer are
equivalent, if
ns = —pg div A : (54)

A magnetic current layer and a double electric charge layer are equivalent,
provided

-Kg = }—curly_ (55)
€d =

and an electric current layer and a double magnetic charge layer, if
1
Js = —curls (56)
Kd -

In case of time dependent fields, further equivalences can be derived from
the continuity equations

divIg = —-‘?;—5-, divKg = —%ﬂti. (57)
Taking the time derivative of (53) and (54), we obtain
ops _ ... 0% Ons _ . 0A
5 = & div =, 5 = Hd div e (58)

Comparing (57) with (58) it can be established that these are certainly
satisfled, provided

ox oA
Jg = —gq—, Ksg= ;Ld—é-?. (59)

These can also be deduced from the fact that a section of a magnetic
current layer can be substituted by an electric loop current and a section
of an electric current layer by a magnetic loop current.

The condition of the equivalence between a double magnetic charge
layer and a double magnetic current layer is, according to (56) and (59):

ox
curlg = —,udsd—a—? (60)
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Similarly, a double electric charge layer and a double electric current layer
are equivalent, if

O\
curly = —udsdi . (61)

It follows from the above discussion that it is sufficient to take two kinds
of layers into consideration in case of time dependent fields. These may
be, e.g. the electric and the magnetic current layers. In boundary value
problems, the electric current layer occurs on ideal conductors (on electric
walls), and the magnetic current layer on so-called magnetic walls. The
electric wall is equivalent to the electric charge layer, to the double magnetic
charge layer and to the double magnetic current layer and the magnetic
wall is equivalent to the magnetic charge layer, to the double electric charge
layer and to the double electric current layer, provided the appropriate
relationships are satisfied.

The homogeneous boundary conditions on the two kinds of walls are
summarized in Table 12. It can be seen that on electric walls the vector
potential A satisfles the homogeneous Dirichlet boundary condition, the
scalar potential ¢ is constant and the vector potential F satisfies the ho-
mogeneous Neumann boundary condition . On magnetic walls a Dirichlet
boundary condition is valid for the vector potential ¥, a Neumann bound-
ary condition for the vector potential A and the scalar potential ¢ is con-
stant. These are only true, if the electromagnetic field is derived from the
potential pairs A—p or F—¢. When A and F are applied simultaneously,
the boundary conditions must be satisfied by the resultant field quantities.

In the fourth column of Table 12 the tangential components of A and
F are written as zero. They could be any constant. However, this constant
is arbitrary, so it is practical to choose it to be zero. The equations in the
fifth column are valid under this assumption.
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