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Abstract 

For the processing of color images, multivariable 3-input, 3-output 2-D digital filters are 
used, considering decomposition in the R, G and B components. Assuming that the three 
image components are decorrelated, three independent single-input, single-output (SISO) 
two-dimensional (2-D) digital filters are needed for the processing of each monochromatic 
image. Additional processing is needed for the correlated noise components in each chan­
nel. The requirement of very fast processing dictates the use of special purpose hardware 
implementations. The VLSI array processors, which are special purpose, locally intercon­
nected computing networks, are ideally suited for the fast implementation of digital filters, 
since they maximize concurrency by exploiting both parallelism and pipelining. In this 
paper fast implementation architectures of 3-input, 3-output 2-D multi-input digital filters 
for color image processing that are based on matrix decompositions are presented. The 
resulting structures are modular, regular, have high inherent parallelism and are easily 
pipelined, so that they may be implemented via VLSI array processors. 

Keywords: color image processing, matrix decompositions, fast implementation tech­
niq ues, parallel architectures, digital filtering. 

1. Introduction and State of the Art 

Color information is very important in human perception. Therefore it has 
attracted the interest of the researchers working in computer vision and 
image processing quite early, i.e. at the beginning of the seventies. How­
ever, color image processing has not experienced the same fast development 
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with other areas in digital image processing. There are several reasons for 
this delay. First of all, the development of monochromatic image process­
ing techniques is the first step towards color image processing. Therefore 
scientists concentrated their efforts on black and white (BW) image pro­
cessing. The second reason is that no accurate models of the human color 
perception were available, thus making the development of color image pro­
cessing algorithms difficult. The third reason is the large amount of data 
and computation required (almost 1 Mbyte for a 512 x 512 RGB image). 

Early applications of color are in false color, pseudocolor [1], color 
composition and ratioing [2], [3]. False color and pseudocolor are color 
mappings to enhance detectability of certain objects in the image by a hu­
man observer. In pseudocolor, the original image is not a color image. 
Color composition and ratioing are techniques commonly applied to mul­
tispectral imagery to reveal subtle variations that exist between the indi­
vidual spectral components. 

Despite those difficulties in the relatively new and still largely unex­
plored area of color image processing, several efforts have been made. The 
relevant research can be divided into the following areas: 

1.1 Color Vision Modelling 

A lot of research has been done by researchers to model the early stages 
of the human chromatic perception system. Some of the early results are 
summarized in classical books [1], [2], [4]. More recent results on color im­
age formation can be found in [5-7]. Problems as distinguishing highlights, 
shadows and material changes, as well as chromatic constancy under dif­
ferent illuminants are discussed in these references. 

The trichromatic nature of light is represented by three component 
color spaces. Thus, a color image requires three times the data and stor­
age of its monochrome equivalent. As such, efficient compression schemes 
should be developed for color images. Color image compression is a rela­
tively active research area. In [8] a new adaptive vector quantization scheme 
with codebook replenishment for color image sequence compression is pre­
sented. In [9], an interpolative vector quantizer (IVQ) is invented to reduce 
the block effect of coded color pictures. A generalized variable-stage motion 
search motion compensated algorithm is given in [10J. Considerable savings 
in computations and additional compression are achieved in the algorithm 
without compromising the picture quality. In [11], RGB (red, green, blue) 
images are first transformed into YIQ coordinates. Color signals are mul­
tichannel (vector) signals. However, no effort has been made to develop a 
theory for multi-channel color processing although such efforts have already 
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been made in other areas, e.g. geophysics [12]. The development of such a 
theory will be beneficial for all other problems in color image processing. 

1.2 Color Image Restoration and Enhancement 

The brute force approach to color image restoration consists in performing 
three restorations in the R, G and B channel of a color image. However, it 
is known that the R, G and B components of a color image are generally 
correlated. Therefore, the use of this correlation in the restoration process 
is of great advantage. Karhunen-Loeve (K-L) transformation is used for 
the decorrelation of the three image components and then Wiener filtering 
is applied to the decorrelated components [13]. Also RGB to XYZ and 
YIQ transformations have been also proposed for decorrelation purposes. 
Both methods produce correlated noise components in each channel. Blur 
identification from blurred color images, as well as constrained least squares 
restoration are presented in [14]. The modelling of each of the R,G,B 
components has been described in [15] for image restoration purposes. The 
fact that the saturation component Y in the YIQ representation carries 
much of the high frequency image components has been used for color 
image enhancement by processing the saturation component [16]. Finally, 
a modification of the median filters has been proposed in [17] for color 
image filtering. 

Multiple restorations of monochromatic images do not de blur a color 
image. Optimal restoration of a color image has been found in decorrelated 
component restoration [18]. To obtain truly decorrelated components, the 
tedious K-L transformation must be applied. Since YIQ transformation 
approximates the K-L transformation, it can be used instead. Research 
has found that deblurring only the Y component of a color image is often 
sufficient. In [18], deblurring only the Y component using the theoretical 
Wiener filter is suggested. [15] presents the use of reduced updated Kalman 
filter on Y. 

Early color image enhancement techniques concentrated in satellite 
imagery [3]. In [16] the sharpening of color images in video and photogra­
phy using the LHS (luminance, hue, saturation) color space is considered. 
For outdoor scenes, saturation data contain more high frequency energy 
than the luminance data. The algorithm adds spatial frequencies from sat­
uration data to luminance data in order to enhance edges in the luminance 
component. The same approach can be applied to adaptive sharpness en­
hancement and adaptive contrast enhancement. 

The modelling of color vision is critical in enhancement of color im­
ages. Early models are reported in [1]. More recent research considering 
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physical factors such as lighting and reflectance are highlighted in [19] and 
[6]. In [20], experimental results show that much larger color differences 
are required for the recognition of small irregular objects on a CRT than 
those assumed from the conventional color discrimination data for detec­
tion or color matching. 

Image processing of monochromatic images is very rich in both lin­
ear and nonlinear techniques for image restoration, filtering and enhance­
ment. The extension of those methods to color image processing is not 
trivial if the correlation of the color channels is taken into account. There­
fore the development of techniques such as Wiener filtering, minimum en­
tropy filtering is an open problem. Furthermore, the development of non­
linear color image filters (e.g. homomorphic filters, order statistics filters, 
morphological filters) is an open problem, too. 

1.3 Color Edge Detection and Image Segmentation 

Color edge detection has been scarcely discussed in the literature, although 
it is known that color carries edge information. Edges are assumed to be 
intensity discontinuities in the three components, which are relatively in­
dependent with the constraint of having the same orientation [21]. The 
achromatic H ueckel edge detector is extended to color edges. Luminance 
edges are found to contain most of the information required to obtain ob­
ject boundaries. However, for images of poor contrast or poor illumination, 
edges are present only in the chromatic components. Also the use of differ­
ent color coordinates for edge detection has been investigated in [22]. More 
work has been devoted to color image segmentation, where color informa­
tion has been recognized as important. RGB, YIQ and HSI (hue saturation 
intensity) components have been used for color image segmentation [23-26]. 

An important aspect of color image segmentation is the choice of 
suitable color features. RGB, YIQ, HSI decompositions have been used 
in various segmentation research. [23] suggests using the Karhunen-Loeve 
(K-L) transformation as test, and after running it on 8 different images, 

11 = (R + G + B)/3, h = R - B, h = (2G - R - B)/2 

are found to be the set of effective color features. This set may be useful in 
other related areas, e.g. in edge extraction. The use of the XYZ color space 
and of the three dimensional histograms for segmentation was investigated 
in [25]. Also the Munsell color system and color histograms were applied 
for segmentation purposes in [27]. Finally, multichannel AR models were 
used for color texture description and region segmentation in [28]. In recent 
years, there has been a burst in the literature about edge detectors. Color 
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edge detection, when carefully defined, can take great advantage of all these 
recent developments. 

1.4 Color Image Coding 

Color image coding has been one of the most active research areas in the 
recent years. An excellent review of the early research can be found in 
[29]. In more recent approaches motion compensated color image coding 
was considering in [10]. In most cases in color image coding color transfor­
mations were used to reduce the channel correlation [29], [11]. 

1.5 Digital and High Definition TV 

The main advances in color image processing are expected to come from 
the areas of digital color TV [30], [31] and high definition TV (HDTV) [32]. 
A lot of technological research and development is conducted in those areas 
mainly in the private sector. The commercial application of both systems 
is expected to produce new vistas in the theoretical and applied research 
in color images processing. 

1.6 Fast Implementation Techniques for Color Image Processing 

The processing of color images requires fast processing of huge amounts of 
data. In addition, many applications in telecommunications, moving object 
recognition and tracking, traffic monitoring (of planes, rockets, satellites, 
cars and fishes), automatic industrial control and inspection [33], remote 
sensing and robotic vision [34] require real-time processing. Thus, the 
acquisition, processing and display of images must be executed in fractions 
of a second. 

For the processing of color images, multivariable 3-input, 3-output 2-
D digital filters are used, considering decomposition in the R, G and B 
components. Assuming that the three image components are decorrelated 
(after the application of the Karhunen-Loeve transformation), three inde­
pendent single-input, single-output (SIS0) 2-D digital filters are needed 
for the processing of each monochromatic image. Additional processing is 
required for the correlated noise components in each chann~l. 

2-D digital filters are implemented both in software and hardware. 
However, the requirement of very fast processing dictates the use of special 
purpose hardware implementations. VLS1 technology has recently resulted 
in enormous hardware facilities at very low costs for the implementation of 
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high complexity algorithms, and leads to a reconsideration of design and 
implementation criteria in digital signal processing. Specifically, past ap­
proaches based on the minimization of dynamic elements and of the quanti­
zation noise are replaced by a new set of criteria such as concurrency, paral­
lelism, pipelining, modularity, flexibility, throughput rate and reduction of 
the latency of the number of shared buses and of the communication paths. 

The VLSI array processors (APs), which are special purpose, locally 
interconnected computing networks [35]-[38], ideally suit the fast imple­
mentation of 1-D and 2-D digital filters [39]-[44]. The APs maximize con­
currency by exploiting both parallelism ar.d pipelining. Prominent classes 
of VLSI APs are systolic and wavefront arrays. A systolic array is a net­
work of elementary processor elements (PEs) that rhythmically compute 
and pass the data through the system. A wavefront array may be regarded 
as a systolic array with local synchronization using data-flow control. 

The underlying realization structures of the 2-D digital filters that will 
process 2-D color images will exploit the ideas of matrix decomposition and 
block processing. In the block processing structures a number of input pixels 
are processed simultaneously. Thus, high sampling rates are permitted, 
since the operations in the parallel branches are executed individually and 
simultaneously on a common input array [45]-[48]. In general, if L pixels 
are processed simultaneously, then the throughput rate is increased by L. 
L and the throughput rate are confined only by practical limitations such 
as hardware complexity and input-output bound. 

Matrix decomposition approaches have been used for the modular, 
parallel implementation of linear and quadratic nonlinear 2-D digital filters 
that are appropriate for processing monochromatic images [49], [50]. In 
this technique, the coefficient matrices are decomposed in a product of 
other matrices; finally, the whole filter is composed of combinations of 
parallel branches, each one consisting of 1-D terms. The techniques of 
block processing and matrix decomposition have been combined in order 
to make use of all their advantages [51], [52]. 

This paper presents fast implementation architectures of 3-input, 3-
output 2-D linear digital filters for color image processing that are based 
on matrix decompositions. The concept of block processing may be also 
exploited in order to increase concurrency and achieve real-time color im­
age processing. The resulting structures are modular, regular, have high 
inherent parallelism and are easily pipelined, so that they may be imple­
mented via VLSI array processors. The proposed technique may be applied 
for the fast and efficient implementation of 3-input, 3-output 2-D nonlin­
ear Volterra digital filters. 
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2. Modelling of Multichannel 2-D Linear Digital Filters 

Since the color images have three independent coordinates, the R, G and 
B images, the associated 2-D shift-invariant multivariable linear filter with 
three inputs and three outputs, 1S described by the matrix convolution 
equation: 

nl ml n2 m2 

Y(k, I) = L L A;jU(k i, I - j) - L L BijY(k-i,l-j) , (2.1) 
i=O j=o i=O j=O 

(i,j)::j; (0,0) 

where 

[UR(k, I) 1 [YR(k,l) 1 
U(k,l) = uG(k,1) , Y(k,1) = YG(k, I) (2.2) 

uB(k, I) YB(k,1) 

are the (k, l)th input and output vectors, respectively. 
The application of the 2-D z-transform to the matrix equation (2.1) 

gives: 

where H(Zl' Z2) is the 3 x 3 transfer function matrix 
invariant multivariable linear filter, having the form 

hRG(Zl, Z2) 
hGG(Zl' Z2) 
hBG(Zl, Z2) 

(2.3) 

of the 2-D shift-

(2.4) 

The diagonal transfer functions elements represent the S1S0 2-D digital 
filters that process the monochromatic R, G and B images, while the off­
diagonal transfer functions stand for the input-output relations of corre­
lated noise components among the monochromatic channels. Specifically, 
the hij (Zl, Z2) term marks the transfer function relating the ith output 
Yi(Zl, Z2) with the jth input Uj(Zl, Z2) and is given by 

) 
Yi(Zl, Z2) _ aij(Zl, Z2) 

hij(Zl,Z2 =U.( _) b ( )' i,j=R,G,B, 
J Zl, "'2 ij Zl, Z2 

(2.5) 

where 

(2.6) 

n2 ffi2 

bij(Zl,Z2) = 1 + L L b:{zfz~ (2.7) 
s=O t=O 

(s,t)::j;(O,O) 

and Uj(Zl, Z2), Yi(Zl' Z2) denote the 2-D z-transforms of uj(k, I) and Yi(k, I), 
respectively. 
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3. Matrix Decomposition Structures of 2-D Multivariable 
Linear Digital Filters 

The decomposition matrix approach, as well as the block processing ap­
proach, should be applied to the 3-input, 3-output 2-D digital filter with 
the transfer function matrix H(Zl, Z2). In the sequel, this will be done in­
dependently for the cases of FIR and HR filters. 

FIR Filters 

For the case of FIR filters, (2.1) is reduced to the nonrecursive matrix 
equation 

nl ml 

Y(k,l) = I:: I:: AjU(k - i,l- j) . (3.1) 
i=O j=O 

The application of the 2-D z-transform to (3.1) gives: 

(3.2) 

and U(Zl, Z2), Y(Zl' Z2) denote the 2-D z-transforms of U(k, 1) and Y(k, I), 
respectively. It can be seen from (3.2) that the 3x3 polynomial matrix 
A(Zl' Z2) is the transfer function matrix H(Zl, Z2) of the multivariable 2-D 
FIR filter and has the form 

nj mj 

H(zl. Z2) = A(zl, Z2) = I:: I:: Aijziz~ , 

where 

[ 

a~~ 
I) 
21 

Aij = aij 

a~l 
I) 

are 3x3 constant coefficient matrices. 

i=O j=O 

The polynomial matrix A(zl, Z2) may be written in the form 

where 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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and Akl E R(nl +l)(ml +1) are coefficient matrices defined by 

[ ~~ ak1 
kl 1 01 aO,ml 

kl ak1 kl 
A alO 11 :~,m. j Akl = . 

kl kl 
anl,o anIJl an1,ml 

Equivalently, (3.5) may be rewritten in the concise form 

T A 

A(Zl, Z2) = [13 ® ZI }A[I3 ® Z2] , 

133 

(3.7) 

(3.8) 

where ® denotes the Kronecker product. The Kronecker product of two 
matrices X E R nxm is defined in [53] as 

[

X11Y 

x2IY 
x®y= . 

xnlY 

X12 Y 
X22Y XlmYj 

x2mY 

xn~Y . 

The constant coefficient matrix A E R 3(n1 +1)x3(mj +1) in (3.8) is given by 

(3.9) 

Alternatively, the polynomial matrix A(Zl' zz) may be written jn the form 

A(Zl, Z2) = [Zf ® hJA[Zl ® la] , (S.lO) 

where the constant coefficient matrix A E R3(nl +1)x3(mj +1) In (3.10) is 
given by 

[ Aou 
ADl AD,ml 1 

AID All A1,ml 
A= 

An:,ml J 

, (3.11) 

A~j,D Anl,l 

where Aij, i = 0,1,2, ... , nI, j = 0,1,2, ... , ml are the constant coefficient 
matrices given in (3.4). Note that A contains the same elements with thDse 
of A, reorganized in a different way. 

In the sequel the matrix decomposition approach will be applied on 
the matrix A (equivalently, the decomposition may be applied on A) as 
follows: 

A=RS, (3.12) 
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where R E R 3(n1 +l)xp and S E RPx3(m1 +1) are constant matrices. The 
decomposition of A in (3.10) may be achieved in a number of ways so that 
the Sylvester's inequality 

rank(R) + rank(S) - p ~ rank(A) ~ min{rank(R), rank(S)} (3.13) 

holds. 
One possible decomposition is achieved by selecting R as a 3(nl + 1) X 

3(nl + 1) square nonsingular matrix and then calculating S by S = R-1 A. 
In this case, it is desirable for the matrix A to have a known inverse matrix, 
in order to reduce the calculations for the determination of S. 

Substituting (3.12) in (3.10), we obtain: 

A(zl, Z2) = [(Z[ Q9 h)R][S(Z2 Q9 h)] 

= R(Zl)S(Z2) 

(3.14) 

where Ti(Zl), i = 1,2,3 and sj(Z2), j = 1,2,3, are the ith row and jth 
column of the matrices R(Zl) and S(Z2), respectively. 

Substituting (3.14) in (3.2), we obtain that the Tth, T 1,2,3, partial 
output YT(Zl, Z2) is given by (Fig. 1) 

3 

Yr(Zl, Z2) = LYri(Zl, Z2) 
i=l 

3 

= L[Tr (Zl)si(Z2)]Ui(Zl, Z2) 
i=l 

where YTi(Zl, Z2) represents the Tth, T = 1,2,3, partial output, which is 
influenced by the ith input Ui(Zl, Z2), and Tij(Zl), Sij(Z2) denote the (i,j)th 
elements of the matrices R(Zl) and S(Z2), respectively. 
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Fig. 1. The matrix decomposition-based realization of the 2-D FIR filter with transfer 
function matrix H(Zl,Z2) = .4(Z1>Z2), according to (3.15) 

IIR Filters 

The application of the 2-D z-transform to (2.1) provides the 3 X 3 transfer 
function matrix of the multivariable 2-D HR filter 

H(Zl' Z2) = [fa + B(Zl' Z2)r
1 
A(Zl' Z2) , 

where A(Zl' Z2) is given by (3.3) and B(zl, Z2) by 

n2 m2 

B(Zl, Z2) = L L BijZ{z4 . 
i=O j=O 

(i,j)#:(O,O) 

(3.16) 

(3.17) 

The HR filter described by the transfer function matrix (3.16) may be im­
plemented in two alternative forms, direct form I and Il, as a cascade con­
figuration of two 3-input, 3-output filters. Specifically, the direct form I 
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consists of the 2-D FIR filter with a transfer function matrix A(ZI' Z2), in 
cascade with an IIR filter with a transfer function matrix [la + B(ZI' Z2)]-1 
(Fig. 2). The direct form II is obtained if the order of the 2-D FIR and HR 
filters is reversed (Fig. 3). Since both filters are space-invariant, their order 
can be reversed without altering the final transfer function matrix H (ZI' Z2). 

Direct Form I Decomposition 

The transfer function matrix A(ZI' Z2) of the 2-D FIR filter is written in 
the form (3.14), according to the matrix decomposition (3.12). The output 
X(ZI' Z2) of the FIR filter is given by (3.15). 

The all-pole 2-D IIR filter, described by the transfer function matrix 
[la + B(zl, Z2)]-\ is implemented with unities in the forward branch and 
the polynomial matrix B(ZI' Z2) in the feedback branch (Fig. 2), which 
is decomposed similarly to A(ZI' Z2) in (3.14). In fact, B(ZI' Z2) may be 
written as 

(3.18) 

where the constant coefficient matrix B E R 3(n2+1)x3(m2+1) m (3.18) is 
given by 

0 BOl BO,m2 

BI0 Bll B1,m2 
B= (3.19) 

Bn2 ,o B n2 ,1 Bn2 )m2 

and 

(3.20) 

It can be seen from (3.18) and (3.19) that B(Zl, Z2) does not contain 
a constant term. This fact ensures the fundamental necessary realizability 
condition that the corresponding implementation structure does not con­
tain any delay-free loops. It is emphasized that a structure is realizable if 
and only if none of the parallel branches has a constant term. This latter 
necessary and sufficient condition can be always satisfied by the decompo­
sition structure, by selecting properly the auxiliary matrices Q and S in 
the decomposition of the matrix B 

B=QS. (3.21) 
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V(Zl,Z2) 
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I 
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IIR FILTER 
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Fig. 2. Block diagram for direct form I realization of the 2-D HR filter with transfer 
function matrix H(ZJ,Z2) = [h + B(ZJ,Z2)]-J.4.(Zl,ZZ) 

r---------- W(zl,z2) 
U(zl,z2) I .-----..., 
----~+~~-------------.~---4 

I ~---~ 
I 

~zl ,z2) 
I 

L ______ - - - - - -. 

IIR FILTER 

Fig. 3. Block diagram for direct form IT realization of the 2-D HR filter with transfer 
function matrix H(Zl,Z2) = [h + B(Zl;ZZ)]-l.4.(Zj,zz) 

A matrix form of 5 enSUrIng realizability IS the nonsingular 3( m2 + 1) 
x3(m2 + 1) matrix 

500 501 50,m2 

0 511 51,m2 
5= (3.22) 

0 5 m2 ) Sm2,m2 
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where Sij , i, j = 0,1, ... , m2 are 3 x 3 constant matrices. Indeed, in that 
case, the matrix Q has the form 

Q= 

Q01 

Q11 
(3.23) 

where Qij, i = 0,1, ... , n2, j = 0,1, ... , m2 are 3 x 3 constant matrices. In 
correspondence to (3.14), the polynomial matrix B(Zl, Z2) may be written 
in the form 

[ 

q1(Zl)sl(Z2) q1(Zl)s2(Z2) q1 (Zl)s3(Z2) 1 
= Q2(Zl)sl(Z2) Q2(Zl)s2(Z2) Q2(Zl)s3(Z2) , 

Q3(Zl)sl(Z2) Q3(Zl)s2(Z2) Q3(Zl)s3(Z2) 
(3.24) 

where Qi(Zl), i = 1,2,3 and sj (Z2), j = 1,2,3, are the ith row and jth 
column of the matrices Q(zI} and S(Z2), respectively. If the matrices have 
the form of (3.22) and (3.23), it can be easily seen that none of the elements 
Qi(Zl)sj (Z2), i = 1,2,3, j = 1,2,3 in the decomposed implementation has 
a constant term. This fact ensures that there are not any delay-free loops 
in the feedback branches. 

The matrix S in (3.21) is generally different from the matrix S in 
(3.12). For the sake of modularity, the matrix S may be selected to be 
the same in the matrix decompositions (3.12) and (3.21), provided that 
m1 = m2· 

The feedback branches in Fig. 2 are described by the vector equation 

(3.25) 

The substitution of (3.24) in (3.25) results in that the Tth, =1,2,3, partial 
feedback signal is given by (Fig. 4) 
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Fig. 4. The direct form I matrix decomposition-based realization of the 2-D IIR filter 

3 

V,(Zl, Z2) = L V,i(Zl, Z2) 
i=l 

3 

= L[Ql(zI) si(Z2)]Yi(Zl, Z2) 
i=l 

= t, [t q,;(zlls;;(z,) 1 U;(ZJ, Z,), T = 1,2,3, (3.26) 

where V,i(Zl, Z2) represents the 7th, 7 = 1,2,3, feedback signal, which is 
influenced by the ith output Yi(Zl, Z2). In (3.26) it has been considered 
that p is now the number of columns of Q (note that p denotes the number 
of columns of R in (3.15)). 
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Direct Form II Decomposition 

The direct form H decomposition of the 2-D HR filter with transfer function 
H(Zl' Z2) is described by the equations (Fig. 3): 

(3.27) 

and 

(3.28) 

Moreover, the feedback branches in Fig. :; are described by the vector 
equation 

(3.29) 

The matrix convolution equations corresponding to (3.27) and (3.28) in the 
space domain are 

n2 m2 

W(k,l) = U(k,l) - L L BijW(k i,l- j) , 
i=O j=O 

(i,j):;i:(O,O) 

nl ffil 

Y(k,l) = LLAijW(k-i,l j). 
;=0 j=O 

(3.30) 

(3.31) 

The substitution of the polynomial matrices B(Zl' Z2) and A(Zl, Z2) in their 
decomposed forms (3.24) and (3.14) in (3.28) and (3.29), respectively, gives 

3 

YT(Zl, Z2) = LYTi(Zl, Z2) 
i=l 

3 

= L[rT(zI) s i(Z2)]Wi(Zl, Z2), 7 = 1,2,3 , (3.32) 
i=l 

3 

V-;'(Z1, Z2) = L VT i(Z1, zI} 
i=l 

3 

= I::[QT(Zl)si(Z2)]Wi(Zl, Z2), 7 = 1,2,3 . (3.33) 
i=l 

where YTi(Zl, Z2) and VTi(Zl, Z2) represent the 7th, 7 = 1,2,3 partial out­
put of the feedback signal, respectively, which are influenced by the ith in­
termediate signal Wi(Zl, Z2). 
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Comparing (3.32) and (3.33), it can be seen that the l-D factors si(Z2) 
(if they have been selected to be the same in both the decompositions), 
may be shared by the HR all-pole filter (3.27) and the FIR filter (3.28). 
Sharing si (Z2) among the feedback branches of the HR filter and the forward 
branches of the FIR filter results in a reduction of the hardware and storage 
requirements (Fig. 5). 

4. Matrix Decomposition Structures of 2-D Multivariable 
Volterra Nonlinear Digital Filters 

In a viable approach to the description of nonlinear l-D and 2-D digital 
filters that are suitable to analytic characterization, analysis and synthe­
sis are based upon the truncated Volterra series [54], [55]. This approach 
satisfies the desire to obtain characterization procedures for nonlinear sys­
tems that retain'a part of simplicity and analytic representation, since the 
filter's output is linear in respect of the Volterra kernels. Implementations 
of l-D and 2-D quadratic nonlinear digital filters based on the Volterra se­
ries description [55], as well as highly nonlinear digital filters implemen­
tation [ 56] have been already presented. Efficient implementation struc­
tures, based on appropriate matrix decompositions, of multi-input, multi­
output 2-D nonlinear Volterra digital filters may be derived by applying the 
presented multichannel technique to the methodology developed for single­
input, single output Volterra digital filters [55], [56]. 

5. Concluding Remarks 

Fast implementation architectures of 3-input, 3-output 2-D linear digital 
filters for color image processing that are based on matrix decompositions 
have been presented. The proposed implementation structures are char­
acterized by a high degree of concurrency (due to combined inherent par­
allelism and data pipelining), modularity and regularity. They are ideally 
suited for implementation using systolic and wavefront array processors, 
as well as by other classes of VLSI APs such as the MIMD (multiple in­
structions, multiple data) and the SIMD (single instruction, multiple data). 
Special Walsh-Hadamard transforms may be used for the involved matrix 
decompositions in order to avoid intermediate calculations [52]. The block 
processing of color images using the matrix decomposition approach is also 
possible. 



:E y: t ~ ) +-----~ 

:Er: ~,f .( 

'-___________________ ...:.... _______ -.J,V j (2 j ,2Z) 

Pig. 5. The direct. form II matrix decomposit.ion-based realizat.ion of the 2-D HR fil­
t.er, where t.he factors Bi(zz) are shared among t.he feedback and the forward 
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