
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 38, NO. 2, PP. J.F-17'; (199';)

USING LOGIC SYNTHESIS TOOLS FOR TEXAS
INSTRUMENTS FP GAs

Geza NEMESSZEGHY

Department of Electronic Technology
Faculty of Electrical Engineering
Technical University of Budapest

Phone.: (36-1) 271-2330
E-mail: nemes@ett.bme.hu
H-1521 Budapest, Hungary

Received: April 10, 1994

Abstract

High density PLDs (Programmable Logic Devices) and FP GAs (Field-Programmable Gate
Arrays) are becoming more and more popular in the field of logic design. Their ultimate
advantages - no NRE (Non-REcurring) costs, fast time-to-market, in-house design, etc.
- are being combined with ever increasing speeds and densities. Up to now the tradi­
tional FPGA design technique has been schematics. But hardware complexity has outrun
schematics with chips so complex that the graphical representation of the circuit shows
only a web of connectivity, not the functionality of the design. For this reason more and
more engineers are turning to Hardware Description Languages (HDL) for digital design.
The prospect of using Logic Synthesis Tools is one of the main reasons which make HDLs
attractive for designers. These tools take a behavioural, or other type of HDL description,
and produce a technology specific net list for an FPGA or for another type of ASIC. The
effectiveness of the Logic Synthesis Tools is a key factor in deciding against or in favour
of HDLs and synthesis. The synthesis powers of two programs were tested and compared
using three sample designs. The meaning of FPGAs, HDLs and Logic Synthesis are ex­
plained in more detail in the first chapters of the article. The results of logic synthesis
are in the second part. The source codes, command line arguments and batch (or script)
files used are also given.

Keywords: ASIC (Application Specific Integrated Circuit), Core, Design Analyser, De­
sign Compiler, Exemplar, FPGA (Field-Programmable Gate Array), Synopsys, Ti'x'press,
VHDL compiler.

Tools used: Synopsys V3.0
(Sun workstation)

Exemplar
(PC)
Texas Instruments
Model Technology

Source Code: VHDL

Designs: - 16 bit adder
4 bit cascadable counter

- 16 bit counter

--' Design Analyser
Design Compiler

VHDL Compiler
--' Logic Synthesis System (Core V1.21)

Ti'x'press (Subset of Core)
-; ALS
--, V-System/Windows

148 G. NEMESSZEGHY

1. Introduction

For over 25 years the most popular way of logic design was schematics. But
today new techniques are making themselves felt in the world of digital de­
sign. Hardware complexity has outrun schematics with chips so complex
that the graphical representation of the circuit shows only a web of con­
nectivity, not the functionality of the design. With increasing densities it
is becoming more and more essential to be able to express the functionality
of the design in a high level language, hiding the details of implementation.
Another trend that is calling for new design methods is the need for tech­
nology independence. This can be necessary, for example, when migrating
from one technology to another. Schematics must use the functional blocks
(called macros) provided by the technology in question, making migration
rather difficult.

For reasons mentioned above more and more engineers are turn­
ing to Hardware Description Languages (HDL) for digital design. Top­
down, HDL-based system design is most useful in the development of large
projects, where several designers or teams must work concurrently. HDLs
provide structured development, so that after the major architectural deci­
sions have been made, work can proceed on several subdesigns. HDLs are
quite similar to high level programming languages, and they are replacing
schematics for more or less the same reasons as high level languages are
replacing assembly languages. If the design is expressed in a hardware de­
scription language, it must be translated into real logic. This process is
called logic synthesis. The logic synthesis tools take the HD L code (or an­
other technology independent format) and, using the technology libraries,
create a netlist. It is important to be aware of the synthesis powers of these
tools, as this determines the usability of HDLs.

2. VHDL

VHDL is one of just a few HDLs in widespread use today, and it is recog­
nised as a standard HDL by the IEEE (IEEE Standard 1076, ratified in
1987). The United States Department of Defence, as part of his Very­
High-Speed Integrated Circuit (VHSIC) program, developed VHSIC HDL
(VHDL) in 1982 (MIL-STD-454L). VHDL offers three types of constructs
for digital design:

- The structural description method expresses the design as an arrange­
ment of interconnected components. This is actually writing a netlist
on a higher level.

USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA, 149

- The data-flow description method is similar to a register-transfer lan­
guage. This method describes the function of the design by defining
the flow of information from one input or register to another register
or output.
The behavioural description method describes the function of a hard­
ware design in terms of circuit and signal responses to various stimuli.
The hardware behaviour is described algorithmic ally without show­
ing how it is structurally implemented.

All of these methods can be intermixed in a single design description. For
detailed information on hardware description languages you can find a list
of VHDL textbooks at the end of the document.

2.1 VHDL simulation

Working in HDL is very similar to computer programming: we tell the
computer in a high level ianguage what we expect our design to do. In
digital design though, writing the source code is only the first step in a long
design-flow, so it is important to be sure that our description is correct.
It can cost a lot of precious development time to simulate the design only
after logic synthesis.

For VHDL there are a number of simulators running both on PCs
and workstations (Synopsys VHDL Simulator, VIEWlogic's VHDL reader
etc.). I have used a PC based program, the V- System/Windows from
Model Technology. This compact simulation system provides a full VHDL
environment and supports the complete IEEE 1076-1987 standard. First
we must translate the VHDL file and then we can start the simulation. It
is also possible to simulate designs that use vendor specific functions, data
types or operators. These functions are usually defined in packages. So
before simulating our design we first must translate these packages into the
simulator, and specify the correct library name in the source code.

3. FPGAs

Basically an FPGA is a Programmable Logic Device (PLD), though a lot
of sources use the abbreviation PLD in a more restricted meaning, exclud­
ing FPGAs. PLDs, in turn, belong to the family of ASICs (Application
specific ICs), but the popular usage of this term only refers to other types
of ASICs like Gate Arrays, Standard Cell, etc. (For simplicity I will use
the term ASIC in this meaning). FP GAs differ from the rest of PLDs in
their architecture: Usually programmable logic blocks are distributed on
the surface of the chip, from which you can build up your design. In addi-

150 G. NEMESSZEGHY

tion, there are some sort of routing resources used to interconnect the logic
cells. There are I/O blocks as well, to connect the interior of the device to
the outside. FPGAs are manufactured with CMOS technology. There are
two methods in use to store the configuration data on the chips: volatile
Static RAM (SRAM) cells and antifuses. SRAM FPGAs are two chip solu­
tions, as an additional element (EPROM or EEPROM) is needed to store
the data when the system is off power. The word antifuse refers to the fact
that it works just the opposite way than a fuse: it conducts when it is pro­
grammed. The antifuse is much smaller than the SRAM cell, so an FPGA
of that type can have smaller logic cells and offer more abundant routing
resources. The FPGA families from TI use antifuses for data storage. The
logic cells are arranged in horizontal channels. The horizontal interconnec­
tion lines run between, the vertical ones run over the logic cell rows. The
TPC12 has two types of logic blocks: a combinatorial and a sequential cell.
Both block types are multiplexer based. The cells are relatively small. This
can be an advantage, as with larger blocks a lot of logic can go to waste
when you only need to implement a simple logic function in a cell.

The main advantage of FPGAs is that they are Field-Programmable:
the chip is programmed after all the manufacturing steps have been com­
pleted. This means fast time to market and no NRE (Non-REcurring)
costs. Their densities, though, are smaller than ASICs. As a conclusion we
can say that FPGAs (PLDs) are cheaper for smaller volumes, and ASICs
(Standard Cell, Full Custom, Gate Array, Uncommitted Logic Array, etc.)
are more economical for larger volumes. This makes FPGAs ideal for ASIC
prototyping. It is also possible to start to manufacture an application with
FPGAs and switch to ASICs for higher volumes later.

The name of these devices implies that they resemble Gate Arrays.
This is only true for FPGAs having very simple and small logic blocks. For
most of the chips there is considerable difference in the architecture. This
means that it is not so simple to migrate from FP GAs to Gate Arrays.
The migration becomes easier, if we can describe a design in a technology
independent format. This format can also be used to switch from one
FPGA or PLD to another, or to try to fit your design into more chips, to
see which one gives the best result.

The technology independent format can be a truth-table, a state ta­
ble, Boolean equations or a hardware description language, like VHDL or
Verilog. These source codes then must be translated to real logic, and
mapped into the technology used. This procedure is called Logic Synthesis.

USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGAs 151

3.1 Different FPGA Design Flows

When the first PLDs appeared on the market, the whole design and pro­
gramming process had to be done by hand. Today a high-density PLD
is unimaginable and practically not usable without the design software,
which takes the design in one or in several input forms and leads the de­
signer through all steps that must be performed. The software provided
by the manufacturer usually includes mapping, optimisation, place & route
and programming. The design entry and simulation software is generally
a third-party product.

DESIGN ENTRY

~ Hardware Disclipton Languages l Loolc SYnthesis
(VHDL, Verilog) I t

~
~ Truth Tables, State Tables, Boolean Equations I I Technology Specific Netlist Format ~ (CUPL, PALASM, LogIIC, ABEL etc.)

Netlist Conversion r H Schematic editors l
I (VIEWldraw, Orcad, Mentor etc.) I
I

ID:SIGN
/irVlPLEMENTATION

!
11 Maoping. Optimization, Place and Route etc. Sack Annotation

I
I t

I Programming I
...............

DESIGN

iVERIFICA nON

I
I On board testing I I. Prelayout Simulatlon I l Postiayout Simulation I

Fig. 1. FPGA design-flow

152 G. NEMESSZEGHY

We can see the possible design flows of FP GAs (or PLDs) on Fig. 1. The
first step must be the specification of the functionality of the circuit. This
can be done basically in two different ways:

1. Structural description: Here we specify the Circuit's internal logical
structure by describing the actual logical components and their inter­
connections. Again it can be done in more different ways:

a) writing a netlist:
- using a hardware description language that allows

component instantiations (VHDL, Verilog);
- using a technology specific or other netlist formats;

(this would be rather tedious)
b) using a schematic editor.

n. 'Functional' description: Now we are focusing more on what the cir­
cuit does rather than on its logical implementation. Designing this
way is like writing a computer program. The name functional refers
to the fact that here we are only concentrating on the functionality
of the design. We can use the following tools:
- hardware description languages;
- state tables, diagrams;
- truth tables;
- Boolean equations.

There are a lot of languages that allow the use of state diagrams, truth ta­
bles and Boolean equations (CUPL, ABEL, Log/IC PALASM, etc.). HDLs
represent a higher level of abstraction, and it is usually possible to mix
structural and functional descriptions with them. The most prominent and
generally accepted hardware description languages are Verilog and VHDL.
The different entry formats must all be translated to a technology specific
netlist format. For a structural description it is relatively easy: we only
need a simple conversion program. Logic synthesis,that is translating a
functional description, is a much more complex problem.

After Design Entry comes the Implementation and Verification phase.
Usually we have to run several programs to map, optimise, place and route
our design. Simulation is possible at more points of the design process.
With prelayout simulation we can make sure that our design is functionally
correct. Postlayout simulation takes place after place and route, when we
already have the exact delay values. These values can be back annotated
to the simulator.

USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA. 153

4. Designing with Logic Synthesis Tools

After this general overview let us concentrate on that path of the design
flow we are interested in. First a few things about the Synthesis Tools used.
Synopsys is a complex design system running on workstations, and was
originally created for ASIC design. Later support was added for FPGAs.
The system has its own library editor, so in theory it can be used to design
any FPGA, if all the necessary libraries have been written (Symbol Library,
Technology Library). The software accepts a large variety of input for­
mats, such as Verilog, VHDL, truth table, state table, Boolean equations,
EDIF netlists, schematics, etc. A lot of parameters determine the way the
synthesis works. You can choose from a set of optimisation strategies, and
you can constrain your design. Constraining your design means that you
tell the software what characteristics (speed, area, etc.) you expect to get
after synthesis. The complexity of the system means that it is worth play­
ing with these parameters trying to find the best result. But this is also a
disadvantage, as trying out all the possibilities can take a lot of time, and
sometimes it is really difficult to reproduce a result previously reached, but
not saved. The basic design steps for VHDL code are as follows:

- Read in the VHDL source code;
- Constrain the design (set your goal);
- Compile (optimise) the design using the technology libraries.

There are a lot of other options, for example you can extract a state machine
from the netlist and compile the state table format (you might reach a
better result that way), or you can create a schematic using the symbol
library. It should be noted that the output greatly depends on the input
code. This means that if you are rerunning the optimisation phase over and
over again with the same set of parameters, you are going to get different
results every time.

Exemplar's Complete Optimisation/Retargeting Environment (CORE)
was developed to allow the use of technology-independent design methods
for FPGA, high density PLD and CMOS ASIC design. CORE accepts de­
signs as equations, truth tables, netlists or VHDL descriptions, and it pro­
duces vendor specific netlist formats (ActelfT1, Xilinx, QuickLogic, Altera,
LS1 gate array). The software runs on PCs and on workstations as well.
This system is simpler and easier to learn, but does not offer as much con­
trol of the synthesis as Synopsys does. Here you can use control files to
constrain the design, and you can compile for minimum area or for maxi­
mum speed. I have synthesised VHDL code into ADL format (T1 netlist),
but it is also possible to optimise a technology specific netlist (e.g. gener­
ated by a schematic editor), or to retarget from a device to another. CORE

154 G. NEMESSZEGHY

also accepts ElL (Exemplar Integration Language) files, with which you
can connect multiple designs in different formats into one large design.

Tl'X'PRESS is also an Exemplar product, and it is a subset of CORE.
It can only produce an ADL netlist from VHDL, PDS, PLA, OpenABEL,
ADL and ElL files. The VHDL reader accepts a restricted version of
VHDL, called Boolean 1076. In Boolean 1076 you can only use data-flow
constructs. Behavioural description and component instantiation are not
allowed. This means that if the VHDL source code is using a data-flow de­
scription, then both CORE and TI'X'PRESS should reach the same result.

cae2adl-alscknl

cae2adl -aal2ad1

VHDL Simulator
(VIEWlogic, Synopsys, V-systemlWindows etc.)

--------..-~

I '-------------

Create symbol for the circuit
(Additional components)

Add PADs

Select device

Validate

Timer (Prelayout)

Place & Route

~~~~~~~~~-r-------8d~ct 
'---=~"",",=:-! 

'--_____ .....li..-___ =;:.:..:.::..::.:;::..::;;=:::..::::=.:::..:=:::...:;==:::...:.=:..-L-_·Timer (Postlayout) 

Programming 

Fig. 2. Design-flow with Synopsys and CORE 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA. 155 

Fig. 2 shows the design flow for TI TPC12 (~O, 14) FPGA using Synop­
sys and CORE. After creating the VHDL file we should simulate it to see 
whether it works properly or not. When we are sure that the source code is 
correct, then comes the logic synthesis. Synopsys cannot generate an ADL 
file, so first we must make an EDIF netlist and then make the ALS Design 
with the ALS EDIF reader (cae2adl-edn2adl). The program can automat­
ically insert the input and output buffers from the technology library, but 
the TPC12.db library does not specify any components as PADs. It in­
cludes all the PADs as simple components though, so they can be inserted 
in the VHDL source code by component instantiation. If the EDIF netlist 
does not have PADs, they can be added using a schematic editor supported 
by ALS. The most frequently used schematic editor with ALS is VIEW­
logic's VIEWdraw. We must run VIEWlogic's EDIF reader (edifneti) to 
get a VIEWlogic (VL) netlist. After creating a symbol for the circuit we 
can add the PADs or other components, which can come from any other 
source (schematics, HD Ls, truth tables, etc.). We can use the 'v12adl' pro­
gram to convert the VL netlist to an ALS Design. 

With CORE it is more straightforward to make an ADL file directly 
from the VHDL source code. If you run the program in CHIP mode, 
then PADs are inserted on the ports. We can use the MACRO mode to 
prevent the placement of PADs. In MACRO mode we use our design as 
a component or subdesign. We can join these subdesigns with the ElL 
format or by converting it to VIEWlogic. For VL conversion we first must 
make an EDIF file (adI2edn) and then use 'edifneti'. CORE 'only makes 
a single ADL netlist, which is not enough to run ALS. You must create 
an ALS Design (which means the creation of additional files) by running 
'cea2adl' with the '-alscknl' and the '- aal2adl' switches. 

When we have an ALS Design we can run the 'als' program, which is 
a graphical environment. Within this environment you can perform several 
tasks (Fig. 3). First the device and package type must be selected. The 
next step is to run 'validate', which searchers for design errors (like missing 
PADs, fanout problems etc.). If your design has passed the validation, 
than you can run the Place & Route and the Extract functions. 'Extract' 
generates a timing file (design-names.del), specific to the layout and timing 
of your design. The' .del' file contains delay information used by the ALS 
Timer or other simulators. The Timer is a static analysis tool. With the 
timer you can get information of all the delays in your design. You can also 
use it in prelayout mode to get an estimate of the delays before running 
Place & Route. At the end you can program your device within ALS by 
downloading the data into the chip. 

Simulation of the synthesised design is possible at two points: before 
and after Place & Route (prelayout and postlayout simUlation). This can 



156 G. NEMESSZEGHY 

be done with a lot of third-party software products (Orcad, Susie, VIEW­
logic, etc.). Again the most popular tool with ALS design is VIEWlogic's 
VIEWsim and VIEWwave. Prelayout simulation can be performed from 
the VL netlist by running the 'vsm' program, which generates the necessary 
information for VIEWsim. Here unit delays are used for the components. 
For postlayout simulation the delay information must be back annotated to 
the simulator (deI2adl), and then it will work with real delay information. 

5. The Sample Designs 

I have used four sample designs to test the synthesis powers of these tools, 
and to determine the impact of different VHDL constructs. I have trans­
lated both behavioural and data-flow descriptions to see if there is any 
remarkable difference in the output. From now on I will refer to the 
TI'X'PRESS code as the data-flow construct of CORE, as the two pro­
grams will produce the same result for this type of description method. I 
have tried to use the same source codes for all the software products. This 
could not be done with every design, because the synthesis tools do not 
support a.ll VHDL features, and they have their own unique functions and 
data types. The sample designs are as follows: 

Sixteen bit adder with carry-out; 
- Four bit cascadable counter; 
- Sixteen bit counter. 

5.1 Sixteen Bit Adder with Carry-out 

There is no difference between the behavioural and the data-flow descrip­
tion method for combinatorial circuits. I could not use the same code for 
CORE and Synopsys. I had problems mainly with the carry-out bit, as 
VHDL cannot handle operations with different sizes, and arithmetic oper­
ators are only defined with the integer data type. That is, I could not add 
two sixteen bit numbers and connect the result to a seventeen bit signal. 
I have tried to work around the problem, but in the end I was forced to 
use vendor specific functions. I could have solved this problem by writing 
my own functions, running with both programs, but it would have been 
too time consuming. The use of our own functions also causes the tools to 
generate a lot of unnecessary logic, which is later optimised away, slowing 
down the translation process. 

In CORE I have used the predefined 'add' function, which takes two 
In' bit vectors of std.logic_vector type and returns the result in a 'n + l' 
bit vector. Here is the code for the adder: 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA. 

library IEEE; 
use ieee. std_logic_1164. all; 
use ieee.exemplar_1164.all; 

entity add16_ti 
port (a, b 

c 
co 

end add16_ti; 

is 
in std-1ogic_vector (15 downto 0); 
out std-1ogic_vector (15 downto 0); 
out std-1ogic); 

architecture TI of add16_ti is 
signal s_int std-1ogic_vector (16 downto 0); 

begin 
s_int 
co 
s 

end TI; 

<= add (a, b); 
<= s-int(16); 
<= s_int(15 downto 0); 

157 

Synopsys provides a data type unsigned, which is the same as an 
integer, but its bits can be handled one by one. The software also has 
arithmetic operators working with this data type. I have used this type 
for the adder. I also had to use a conversion function (defined in the 
'stdJ.ogicarith' package) that extends the larger operand to a seventeen 
bit signal: 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 

entity add16 is 
port (a, b 

s 
co 

end add16; 

in unsigned (15 downto 0); 
buffer unsigned (15 downto 0); 
out std-1ogic); 

architecture df_sy of add16 is 
signal s_int unsigned (16 downto 0); 
begin 

process 
begin 
s_int 
s 
co 

<= conv_unsigned(a, 17) + b; 
<= s_int(15 downto 0); 
<= s_int (16) ; 

end process; 
end dLsy; 



158 G. NEMESSZEGHY 

5.2 Sixteen Bit Counter 

This is a loadable 16-bit counter with ripple carry output (RCO) and clock 
enable (CE). First let us see the behavioural description. Here the codes 
are the same for the two programs: 

entity cn16 is 
port (Q 

P 
buffer INTEGER range 0 to 65535; 
in INTEGER range 0 to 65535; 

RCO out BIT; 
CLK in BIT; 
CLR in BIT; 
CE in BIT; 
LD in BIT ); 

end cn16; 
architecture sy-behav of cn16 is 
begin 

process ( CLK, CLR, LD, CE, P, Q ) 
begin 

if Q = 65535 then 
RCO <= '1'; 

else 
RCO <= '0'; 

end if; 
if CLR = '0' then 

Q <= 0; 
elsif (CLK'event and CLK 

if LD = '0' then 
Q <= P; 

elsif CE = '1' then 
if Q = 65535 then 

Q <= 0; 
else 

Q <= Q + 1; 
end if; 

end if; 
end if; 

end process; 
end; 

'1') then 

You cannot imply a register with the data-flow description, you can 
only describe the flow of information between the flip-flops. So the data 
storage elements must be instantiated or flip-flop functions must be used. 
With CORE I have used the dffc_ v register function. Here is the input file: 

entity cn16 is 
port (q 

p 
out INTEGER range 0 to 65535; 
in bit_vector (0 to 15); 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGAs 

rco out BIT; 
clk in BIT; 
clr in BIT; 
ce in BIT; 
ld in BIT ) ; 

end cn16; 
architecture ti_df of cn16 is 

signal ff_in, ff_out: bit_vector(O to 15); 
signal en : bit; 

begin 
dffc_v(ff_in, clr, clk, ff_out) 
q <= ff_out; 

en 
rco 
ff-in 

P 
q+1 
q 

end tLdf; 

<= (ld and ce); 
<= '1' when q = 65535 else '0'; 
<= X"OOOO" when (ld = , 1') and (ce ' 1') 

(q = 65535) else 
when ld = '0' else 
when (ld = '1') and (ce ='1') else 

159 

Another way to implement this design is to cascade 4 bit counters 
to build the 16 bit counter. I have tried this approach with Synopsys, 
because the synthesis tools usually have problems with more complex logic, 
so cascading might produce a better result. For cascading I have used a 
translated and optimised four bit counter described with the behavioural 
method (you can find the source code in chapter 6). Here is the code that 
instantiates and routes the smaller counters: 

library IEEE; 
use IEEE. std_logic_1164. all; 

entity cn16 is 
port ( clk, clr, ld, ce: in std_logic; 

p in std_logic_vector (0 to 15); 
q out std_logic_vector (0 to 15); 
rco out std_logic 

) ; 
end cn16; 
architecture cascade of cn16 is 

signal rco_O, rco_1, rco_2, one 
signal clk_i, clr_i, ce_i, ld_i, rco_i 
signal p_i, q_i: std_logic_vector(O to 15); 
component cn4 

port (CLK, CLR, LD, ENT, ENP : in std-1ogic; 
P in std_logic_vector (0 to 3); 
Q buffer std_logic_vector (0 to 3); 
RCO out std_logic); 

std_logic; 
std_logic; 



160 

end component; 
component nffiUF 

G. NEMESSZEGHY 

port (PAD : in std~ogic; 
y out std~ogie); 

end component; 
component OUTBUF 

port (PAD : out std~ogie; 
D in sttLlogie); 

end component; 
component CLKBUF 

port (PAD : in std~ogic; 
y out std~ogie); 

end component; 
begin 

one <= '1'; 
cn4_0: cn4 port map(clk~, elr~, ld_i, ee_i, one, 

p~(O to 3), q_i(O to 3), reo_O); 
cn4_1: cn4 port map(elk_i, elr_i, ld_i, one, reo_O, 

p~(4 to 7), q_i(4 to 7), reo_1); 
en4-2: cn4 port map(elk_i, elr_i, Id_i, reo_1, reo_O, 

p~(8 to 11), q_i(8 to 11), reo_2); 
cn4_3: cn4 port map Celk_i, elr _i, ld_i, reo_2, reo_O, 

p~C12 to 15), q_i(12 to 15), reo_i); 
clk~n: CLKBUF port map (elk, elk_i); 
clr~: INBUF port map (elr, elr_i); 
ce~: INBUF port map (ee, ee_i); 
ld~: INBUF port map (Id, Id_i); 
reo_in: OUTBUF port map (reo, reo_i); 
GEl: for i in q'range generate 
out_q: OUTBUF port map (q(i), q_i(i); 
in_p: INBUF port map (pU), p_iCi»; 
end generate GEN; 

end; 

6. The Results of the Analysis 

I have optimised the source codes with CORE and Synopsys both for area 
and speed. I have also tested TI'X'PRESS whether it generates the same 
output as CORE does, when the input files are the same. I have used the 
adder for this purpose, and I have found the two results to be identicaL 

CORE provides two modes of operation controlled by the '-fast' switch. 
The default mode is optimisation for area. If we set this switch the pro­
gram will look for the fastest solution. CORE has nine optimisation runs, 
all of which uses different algorithms, and chooses the best solution accord­
ing to the design constraints and the mode of operation. CORE also uses 
different algorithms for speed and area optimisation. It would be possible 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA, 161 

to reoptimise an ADL netlist more times, and select the best result. I have 
not done this, because I worked with CORE on a PC, and every pass took 
approximately 10 ... 30 minutes, depending on the complexity of the design. 
It was simply too time consuming, so I had to be content with the result 
of the first optimisation. CORE may run faster on workstations, so reop­
timisation could be practical there. The design steps with CORE were the 
same for all the designs: 

Optimisation: 
Area: fpga design-Ilame.vhd design-Ilame.adl -ta= 

act2-re=2-adLcheck-Ilames 
Speed: fpga design-Ilame.vhd design-Ilame.adl -ta= 

act2-re=2 -fast -adLcheck-Ilames 
ALS Design generation: 
cae2adl -alscknl fam:act2 design-Ilame 
cae2adl -aal2adl aal:d-Il.adl design-Ilame 
Synopsys is a much more complex system, letting you define a lot of 

parameters, write libraries, create, view and even edit schematics, simulate 
VHDL files and so on. You must have the necessary licenses to run the 
appropriate programs. (The programs I had access to are listed on the front 
page of the report.) I have used the Design.Analyser for logic synthesis. In 
this complex system it is not so simple to optimise only for area or speed. 
I had to play around with the parameters trying to find the fastest or 
smallest solutions. Here it is worth to rerun the compilation phase over and 
over again and select the best result, as the optimisationseldom takes more 
than one minute (it is only true, of course, for these three simple designs). 
You must set the environment parameters correctly before you start your 
work. You tell the software which libraries to use, where it should look for 
files, what conventions it should follow when reading in and writing EDIF, 
VHDL and other files, and so on. These settings can be done easily by 
executing a 'script' file. Here is the script file I have used: 

designer ="Geza Nemesszeghy" ; 
company ="Texas Instruments" ; 
search_path = {".", "/vol/synopsys/libraries/syn", 
"/auto/home/gezan/lib", "/auto/home/gezan/designs/design_lib ll

} 

link_library TPC12.db 
target_library = TPC12.db 
symbol_library = TPC12.sdb 
edifout-lletlist_only = true 
edifout-llo_array = true 
edifout_power_and_ground-Iepresentation cell 
edifout_ground_name = GND 
edifout_ground_pin-llame = Y 
edifout_power-llame = VCC 



162 G. NEMESSZEGHY 

edifout_power_pin~ame = y 
edifout_array -IDember ~aming_style = "%s%d" 
edifout_array Jange~a.TIling_style = "%s_%d_%d" 
edifout-IDatch3hdl~ames = "true" 

It is a problem now in Synopsys to add the input and output buffers 
to a TPC FPGA design. It is not the fault of the system though. It is 
possible to specify the different ports as PADs and set the required PAD 
characteristics, and then the program chooses the appropriate buffer types, 
or we can explicitly select a buffer type to use. The problem is that the 
TPC12.db technology library does not include the I/O buffers as ports, so 
we have to insert these buffers. We can do this in several ways. At first 
glance it seems that the most straightforward method is to instantiate the 
PADs in the source code, but this can cause problems. For instantiation 
we have to be able to access the bits of the signals, so we cannot use integer 
types, or we must use type conversion functions. I have used a different 
approach. I have written another VHDL file, where I have instantiated the 
I/O buffers and the real source code as black boxes. Now I did not have 
to bother with the data types used in the original design. To make things 
easier I have used a skeleton file for this purpose, where I only had to add 
the name and ports of the design. Here are the files of both approaches for 
the four bit counter: 

Instantiating the PADs within the source code: 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE. std_logic_arith. all; 

entity 
port 

cn4_sy is 
( CLLD, CLR_D, 

(P _0 
(Q_D 
(RCD_D 
) ; 

end cn4_sy; 

LD_D, ENT_D, ENP_D : in std_logic; 
in std_logic_vector (0 to 3); 
out std_logic_vector (0 to 3); 
out std_logic 

architecture sy_behav of cn4_sy is 
signal CLK, CLR, LD, ENT, ENP, RCD : std_logic; 
signal P, Q integer range 0 to 15; 
signal P _V, Q3 std_logic-vector (0 to 3); 
component INBUF 

port (PAD : in std_logic; 
Y out std_logic); 

end component; 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGAs 

component OUTBUF 
port (PAD : out std_logic; 

D in std~ogic); 
end component; 
component eLKBUF 

port (PAD : in std_logic; 
Y out std_logic); 

end component; 
begin 

inclk: eLKBUF port map (eLK_D, eLK); 
inclr: INBUF port map (eLR_D, eLR); 
inld: INBUF port map (LD_D, LD); 
inent: INBUF port map (ENT_D, ENT); 
inenp: INBUF port map (ENP_D, ENP); 
outrco: DUTBUF port map (ReD_D, ReO); 

P_V <= conv_std_logic_vector(P, 4); 
Q3 <= conv_std_logic_vector(Q, 4); 
GEN: for I in P_V'range generate 

inp: INBUF port map (P_D(I) , P_V(I)); 
outq: OUTBUF port map (Q_D(I), Q_V(I)); 

end generate GEN; 
process (CLK, CLR, LD, ENT, ENP, Q) 
begin 

if ((Q = 15) and (ENT = '1')) then 
Reo <= '1'; 

else 
ReO <= '0'; 

end if; 
if eLR = '0' then 

Q <= 0; 
elsif (CLK'event and CLK '1') then 

if LD = '0' then 
Q <= P; 

elsif ((ENT = '1') and (ENP '1')) then 
if Q = 15 then 

Q <= 0; 
else 

Q <= (Q + 1); 
end if; 

end if; 
end if; 

end process; 
end; 

163 

The source file of the TOP design using the 'skeleton' file (The text added 
to the 'skeleton file' is written in bold): 



164 G. NEMESSZEGHY 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity cn4_sy is 
port(q out std_Logic_vector (0 to 3); 

reo out std_Logic; 
p in std_logic_vector (0 to 3); 
elk, elr, ent, enp, Id: in std_Logic}; 

end cn4_sy; 
architecture synps of cn4_sy is 

signal q_i, p_i: std_Logic_vector (0 to 3); 
signal reo_i, elk_i, elr _i, enLi, 

enp_i, ld_i: std_logic; 
component cn4 

port (CLK_O, CLR_O,LD_O, ENLO, ENP_O : in std_logic; 
P_O in std_logic_vector (0 to 3); 
Q _ 0 buffer std_logic_vector (0 to 3); 
RCO_O out std_logic}; 

end component; 
component INBUF 

port (PAD : in std_logic; 
Y out std_logic); 

end component; 
component OUTBUF 

port (PAD : out std_logic; 
D in std_logic); 

end component; 
component CLKBUF 

port (PAD : in std_logic; 
Y out std_logic); 

end component; 

begin 
1 . c-'f_zn: cn4 port map (elk_i, elr _i, ld_i, enLi, 

enp_z, p_z, q_i, rco_i) ; 
elk_in: INBUF port map (elk, elk_i); 
elr_in: INBUF port map (elr, elr _i); 
enLin: INBUF port map (ent, enLi); 
enp_zn: INBUF port map (enp, enp_i); 
Id_in: INBUF port map (Id, Id_i); 
reo_zn: o UTB UF port map (rco, rco_i); 

GEN: for i in q'range generate 
ouLq: OUTBUF port map (q(i) , q_i(i}}; 
in_p: INBUF port map (p(i), p_i(i}}; 

end generate GEN; 
end; 

In the following chapters I will first present the results in table format 
for each design. I will also give the script files and show the steps I have 
followed in Synopsys, showing the outcome of the different compilation 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA. 165 

runs, the best one written in bold. The timing and area values given under 
the Runs heading were generated by Synopsys (the values in the tahle are 
from the ALS Timer in postlayout mode). The resnlts of the old versions 
are from (6]. The version numbers of the tools analysed can he seen helow: 

Synopsys -+ old version: V2.2h 
new verSlOn: V3.0 

CORE -+ old version: Vl.12 
new verSlOn: V1.21 

6.1 Sixteen Bit Adder 

Table 1 
16 bit adder 

Tools Area Speed Old version 

CORE Sequential 0 0 
modules 
Combinatorial 53 118 
modules 
Longest 172.1 142.4 
delay (ns) 
Logic levels 19 16 

10.3 OUTBUF 10.3 OUTBUF 12.9 
Component 5.3 XNOR 5.6 XNOR 8.0 
delay (ns) 

8.3 XNOR 8.5 AX1C 7.9 
8.9 MAJ3 8.0 OA5 8.8 
9.6 MAJ3 9.3 A0I4A 9.3 
8.9 MAJ3 8.4 A0I4A 9.6 
9.2 MAJ3 11.2 A0I4A 7.6 
10.0 MAJ3 6.9 OAS 7.S 
7.5 MAJ3 6.3 OA2A 8.9 
9.2 MAJ3 8.4 OA5 l1.S 
9.5 MAJ3 10.1 A0I4A 8.9 
75.4 MAJ3 7.5 OAS 6.8 
9.0 MAJ3 6.7 OA2A 8.S 
57.5 MAJ3 9.3 OA5 8.9 
10.9 MAJ3 8.6 AOIl 8.7 
9.2 MAJ3 17.3 INBUF 14.4 
6.9 A01C 
6.5 NAND3 
14.8 INBUF 

0 

131 

146.8 

16 
OUTBUF 
NOR4A. 

X01 
MX2A 
A0I4A 
OA5 
OA2A 
OAS 
AOI4A 
OAS 
OA2A 
OAS 
AOI4A 
OA5 
AND2 
L~BUF 



166 G. NEMESSZEGHY 

Optimisation for area: First you must read in the VHDL file and set the 
parameters by running the script file given below. Then you should compile 
the design three times without changing the settings. 

Tools 

Script file: 

current_design = add16 
set~latten true ; 
set~latten -effort medium 
set~latten -minimize single_output 
set~latten -phase false ; 
set_structure true -boolean true; 
set-local_link-Iibrary {TPC12.db} 
max_area 0 ; 

Table 2 
16 bit adder 

Area Speed 

SYNOPSYS Sequential 0 
modules 
Combinatorial 46 
modules 
Longest 163.7 
delay (ns) 
Logic levels 17 

10.3 OUTBUF 
Component 5.6 XNOR 
delay (ns) 

8.6 MAJ3 
13.3 MAJ3 
8.4 MAJ3 
9.2 MAJ3 
8.9 MAJ3 
10.0 MAJ3 
10.1 MAJ3 
9.8 MAJ3 
9.0 MAJ3 
8.9 MAJ3 
8.5 MAJ3 
9.7 MAJ3 
10.7 MAJ3 
10.0 CY2A 
12.7 INBUF 

Old version 

0 0 

110 170 

83.2 112.7 

9 II 
10.3 OUTBUF 8.9 OUTBUF 
7.3 AX1B 7.2 AND5B 

7.8 A06A 11.6 AND4 
8.6 INV 9.7 XNOR 
7.3 INV 6.7 A011B 
8.9 MAJ3 9.3 OA2A 
8.9 A07 8.2 AI\D2A 
7.6 AND2 6.6 OA:3A 
16.5 INBUF 8.3 OR2B 

6.8 OR2B 
29..4 INBFF 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA. 167 

Runs: (compile -map_effort high) 

AREA TIME 
( cells) (ns ) 

55 292.30 
49 223.29 
46 188.79 
51 245.98 
53 267.70 

- Optimisation for speed: After reading in the VHDL file and setting 
the parameters you only have to run the optimisation phase once. 

Script file: 

current_design = add16 
max_delay 0 all_outputs 
set.-:flatten false ; 
set_struct~re true ; 
set_Iocal_link_library {TPC12.db}; 
set_ungroup find(cell, "plus"); 

Runs: (compile -map_effort high) 

TIME AREA 
(ns) ( cells) 

79.87 110 
81.63 125 

6.2 Sixteen Bit Counter 

- Optimisation for area: Synopsys has more problems with sequential 
logic. It is more difficult to reach an acceptable result, and you can 
never be sure that you have the best output that the software can 
produce. I could not reach a good result for area optimisation. After 
setting the parameters you should compile 4 times, then set the timing 
driven structuring off and compile again. 

Script file: 

current_design = cn16 
set.-:flatten true ; 
set.-:flatten -effort medium 
set.-:flatten -minimize multiple_output 
set.-:flatten -phase true ; 



'foolR 

SYNOPSYS 

Component delay 
(nR) 

Sequentill,l modules 
Combinatorial 
modules 
Max. frequency (MH7.) 
Logic levels 

Table 3 
Hi Bit counter 

Cascading 
anm speed 

Hi 16 
35 54 

12.22 22.88 
11 5 

0.5 DFMB 0.5 DFMB 
7.4 XOH. 7.8 XOH. 
7.3 NAND2 7.7AND4A 
9.0 HAl 14.10R4D 
8.4 AND3A 13.2DFMB 
7.4 NAND2 0.4 skew 
8.4 AND2A 
8.9 NAND3A 
7.1 NAND2 
7.9 HAl 
9.1 DFMB 
0.4 skew 

,... 
c:n 
QQ 

Behavioral 
area old 

16 16 Hi 
60 112 92 

7.22 21.5 19.76 
18 6 6 

0.5 DFMB 0.5 DFClB 0.5 DFMB 
7.8 TA157 0.0 A05A 6.1 OA2 
6.9 AND2A 6.6 NAND4A 8.6 AND2B 
6.5 A01 10.4 A06A 10 NOR4D 

10.0 AND2A 9.3 NOR3C 11.3 NOR4D ~ 
7.9 NAND2 13.6 DFClE 13.3 DFMB ~ 
9.5 AND2 6.0 skew ~ 

10.3 AND2 'n 
'" 9.3 AND2 t:l 
Cl 

9.0 AXlE ::r:: 
'< 

9.0 AND2A 
6.6 AX1B 
6.5INV 
8.0 AXIB 
6.3 INV 
7.8 AX1C 
7.2INV 
8.7 DFMB 
0.7 skew 



Table 4 
l() Bit counter 

Tools Data-flow Behavioral 
area speed area speed 

CORE Sequential modules 16 16 16 16 
Combinatorial 40 44 40 45 
modules 
Max. frequency (MHz) 13.3 24.87 13.6 19.61 
Logic levels 9 5 9 6 

0.5 DFMB 0.5 DFMB 0.5 DFM 0.5 DFMB 
Component. delay 7.5 AX1C 6.9 AX1C 7.4 AX1 7.8 AX1C 
(ns) 7.9 AND2 10.4 AND5B 8.1 AND 8.4 AND5B 

8.4 AND2 8.4 INV 8.8 AND 9.5 AND5B 
8.5 AND2 12.6 DFMB 8.0 AND 11.0 AND4 
9.1 AND2 1.4 skew 8.4 AND 12.7 DFMB 
11.3 AND2 11.9 AND2 1.1 skew 
10.8 AND4 10.7 AND4 
12.5 DFMB 11.8 DFMB 
-1.4 skew -2.2 Psk 

old 

16 
61 

19 
6 

0.5 DFMB 
6.5 AX1C 
9.5 AND4 
10.8 DFMB 
11.3 AND4 
11.6 DFMB 

c:: 
'" .... :;,; 
Cl 
t-
o 
Cl 
(:; 
r" 
~ 
~ 
t'J 
r" .... 
r" 
'""3 
0 
0 
t-

'" ..., 
0 
:>J 

t;l 
>< ;,. 
r" 

~ 
;;l 
c:: 
~ :;,; 
'""3 

'" :;) 
Cl 
i!" 

...... 
0> 
OD 



170 G. NEMESSZEGHY 

Table 5 
4 Bit counter 

Tools Behavioral old 
area speed 

SYNOPSYS Sequential modules 
Combinatorial 
modules 

4 
10 

4 
10 

4 
27 

Max. frequency (MHz) 
Logic levels 

Component delay (ns) 

38.17 
4 

0.5 DFMB 
7.1 XOR 
7.9 AND4 

10.7 DFMB 
0.0 skew 

38.17 
4 

0 .. 5 DFMB 
7.1 XOR 
7.9 AND4 

10.7 DFMB 
0.0 skew 

set_structure true -boolean true -timing -true; 
set~egister_type -exact -flip_flop DFMB 
max_area 0 ; 
set_ungroup find( cell, "adder") true ; 

Runs: (compile -map_effort high) 

AREA TIME 
(cells) (ns) 

87 363.22 
81 208.26 
80 253.63 
77 229.03 
seLstructure true -Boo lean true -timing false 
76 202.86 

17.89 
8 

0.5 DFE3A 
6.2INV 
8.,5 OA2A 
7.3 XOR 
9.3 NAND2 
7.2INV 
9.3INV 
7.6 DFC1B 

- Optimisation for speed: The result for speed optimisation is quite 
good when we compare it to the design with the minimum area. Here 
you only have to rerun the compilation phase three times to achieve 
this result. 

Script file: 

cn16_sys.db:cn16_sys 
current_design = cn16 
create_clock -period 50 _waveform {O 25} find(port, "eLK") 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGAs 

max_delay ° all_registers(-data_pins) + all_outputs() 
set-flatten true ; 
set-flatten -effort medium ; 
set-flatten -minimize single_output 
set-flatten -phase false ; 
set_structure true ; 
set-Iegister_type -flip-flop DFM6B 
setJnax-fanout 24 all_inputs() ; 
set_ungroup find( cell, "adder") true 

Runs: (compile -map_effort high) 

ARE 
(cells) 

138 
142 
128 

TIME 
(ns) 

76.66 
64.84 
64.84 

171 

Cascading the 4 bit counters: I have also tried cascading to build the 
16 bit counter. I translated the 4 bit counter first, where I used the 
FSM (Finite State Machine) extraction. After reading in the files I 
reoptimised the design both for area and speed. I have grouped the 
four smaller counters into one design (see the script files) excluding 
the PADs. I had to do this to prevent Synopsys to connect a net to 
the wrong port of the I/O buffers. Here are the script files I have used: 

Script file for area optimisation: 

current_design = cn16.db:cn16 
create_clock -period 50 -waveform {O 25} find (port, "clk") 
set_ungroup find( cell, "cn4_0") true 
set_ungroup find( cell, "cn4_1") true 
set-ungroup find( cell, "cn4_2") true 
set_ungroup find( cell, "cn4_3") true, 
group {"cn4_0", "cn4_1", "cn4_2", "cn4_3"} _design-Ilame 
cn16_sy_cas_core ; 
current_design = cn16_sy_cas_core 
max_area ° ; 
Runs: (compile -map_effort high) 
medskip 
AREA 
(cells) 

51 
50 
50 

TIME 
(ns) 

(not recorded) 
121.07 
131.94 



172 G. NEAfESSZEGHY 

Script file for speed optimization: 

current_design = cn16 
set_ungroup find( cell, Icn4_0") true 
set_ungroup find( cell, Icn4_l") true 
set_ungroup find( cell, Icn4_2") true 
set_ungroup find( cell, Icn4_3") true , 
group {"cn4_01, 11 cn4_l 11 , Icn4_2", IIcn4_3 11 } _design..name 
cn16_sy _cas_core ; 
current_design = cn16_sy_cas_core 
create_clock -period 50 -waveform { 0 25 } 
find(port,"clk_i") 

Runs: (compile -map_effort high) 
AREA TIME 
(cells) (ns) 

61 
65 
63 
62 
65 

57.19 
55.74 
61.02 
60.06 
60.06 

7. Conclusion 

We can derive a lot of useful information from the results presented above. 
They can be helpful when choosing from the analysed synthesis tools, and 
they can also show the areas where the these tools need to be improved. 

There is considerable difference between Synopsys and CORE. Syn­
opsys is a highly complex system created mainly for ASIC design. This 
complexity makes it more flexible, but also more difficult to use. If you 
want to get good results out of this system you must spend hours of hard 
work with it. When you are using Design Analyser you can try a lot of 
ways to realise your design. The only problem is that if you do not save 
and document every single compilation phase you will find it really diffi­
cult to reproduce a result previously attained, especially with large designs. 
We must also be aware of this when we compare the old and new versions. 
The better results of the new release may be only due to the considerable 
amount of time that I have spent in improving the designs. 

CORE was written mainly for FPGAs. The advantage of this VHDL 
compiler lies in its simplicity. It can run on PCs as well, so you only need a 
single Personal Computer to design FPGAs. You can learn all you have to 
know about this software within one day. This program has two drawbacks: 



USING LOGIC SYNTHESIS TOOLS FOR TEXAS INSTRUMENTS FPGA. 173 

it does not allow as much control of the synthesis as Synopsys does, and the 
translation takes a lot of time, at least on PCs. We have to take into account 
the fact that the area and speed values for CORE are the results of only one 
compilation run, while I made a lot of translations and trials with Synopsys. 

It is quite evident from the results that Synopsys is smarter with 
arithmetical designs. It could produce better gate-utilisation and speed 
values even for the first compilation. We can observe an improvement on 
the old versions, especially with Synopsys. CORE seems to work better 
with sequential designs, as it gave better results for the counters. I had to 
try a lot of settings in Design Analyser to attain the result I have presented. 
It is interesting that the FSM (Finite State Machine) extraction yielded the 
best values for the 4 bit counter both for area and speed. This means that 
Synopsys can translate a state table format more efficiently than a VHDL 
file. Unfortunately the extraction did not work for the 16 bit counter, as 
the system always broke down when I tried to extract the state machine. 
Probably it cannot cope with a 16 bit long state vector. 

We would expect that the data-flow description, being less abstract, 
should produce better results than the behavioural, and we can see a con­
siderable difference between the results at the speed optimisation of the 
relatively complex 16 bit counter. So we might get better area and speed 
values for larger designs if we use the data-flow description. 

Cascading shows that it is worth mixing the different VHDL descrip­
tion methods. I have reached the best results here with Synopsys both for 
area and speed optimisation. I could synthesise the 16 bit counter using 
the minimum number of logic cells (51), which is even less than the values 
achieved with CORE. Cascading may also be tried with CORE using the 
ElL file format. 

7. HDL Textbooks 

IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1987., 
Published by The Institute of Electrical and Electronics Engineers, Inc. 
345 East 47th Street, New York, NY 10017, U.S.A. 
VHDL: Hardware Description and Design, Lipsett, Schaefer, Ussery, Kul­
wer Academic Publishers, 101 Philip Drive, Assinipi Park, Norwell, Mas­
sachusetts 02061 U .S.A. 
The VHDL handbook, David R. Coelho, Kulwer Academic Publishers, 101 
Philip Drive, Assinipi Park, Norwell, Massachusetts 02061 U.S.A. 
Chip Level }.1odeling with VHDL, James R. Armstrong, Prentice Hall, En­
glewood Cliffs, New Jersey 07632 U.S.A 



114 Go NEMESSZEGHY 

VHDL. Douglas L. Perry. McGraw-Hill, Inc. Professional Publishing Group, 
n West 19th Street, New York, NY 10011 U .S.A 
Applice.tion of VHDL to CErcv.it Design, Rarr and Stanculescu, Kulwer 
Academic Publishers. 101 Philip Drive, Assinipi Park, N orwell, Massachusetts 
02001 U .S.A. 
Int'B"Odtu:tWn to HDL - based design using VHDL, Steve Carlson, Synop­
sys. Inc. 1098 Alta Avenue, Mountain View California 94043 
The Verilog Ha:n1:ware Description Language, Donald E. Thomas, Philip 
Moorby. Kulwer Academic Publishers, 101 Philip Drive, Assinipi Park, 
Norwell" Massachusetts 02061 U .S.A. 
Digital Design 'With Verilog HDL, Eliezer Sternheim, Rajvir Singh, Yatin 
Trivedi" Design Automation Series 1990, Automata Publishing Company, 
Onpertmo. OA 95014 U.S.A. 

References 

:I.. Sy:EllOpsys VHDL Compiler Reference Manual (Version 3.0 1992, Synopsys, Inc.) 
2. Sj""EllIi)j!b-ys DesignWare Datahook (Version 3.0 1992, Synopsys, Inc.) 
3. Digitrali Design with Veriiog HDL (Eliezer Sternheim, Rajvir Singh, Yatin Trivedi, Design 

Autli)maUon Series 1990: Automa.ta Publishing Company, Cupertino, CA 95014 
U..s_tL) 

4. J:l>:Iel!Iltrolr Graphics Introduction to VHDL (Mentor Graphics Corporation 8005 S.W. 
&eckman Road. \l1llsonville, Oregon 97070, December 1991) 

5. E:;z:empEaur vlIDL S}""Ellthesi.s Reference Ma.nual (Exemplar Logic, Inc. 2250 Ninth Street, 
Suite 1102 Berkcley: CA 94710, 1993) 

6. H€Ji'ili\ ~dJi can Sy:Ellthesi.s Tools map Logic to FPGAs (Dr. Dung Tu, Technical Marketing 
Manager. Texas fu:,-trnments) 


