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Abstract 

Channel routing is one of the basic problems in VLSI routing. While the minimum width 
can be found in linear time in the single row routing problem, the complexity of the 
channel routing problem is not fully understood yet. A solution can be found, even in 
linear time, in the unconstrained model, but the complexity of determining the minimum 
width is not known. The present article concentrates on the Manhattan model where 
horizontal and vertical wire segments are positioned on different sides of the board. In 
this case, the routing problem is known to be NP-complete. Hence there is no hope to 
find an algorithm whose running time is polynomial both in the length and the width of 
the channel. The width of the channel is usually much smaller than the length, thus, an 
algorithm, whose running time is exponential in the width and polynomial' in the length 
can be efficient in the case of a narrow channel. We show that the channel routing problem 
in the Manhattan model is solvable in linear time if the length of the input is proportional 
to the length of the channel, and the width does not belong to the input. 
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A channel given with length n and width w. The terminals appear 
on both sides of the channel. A net is a collection of terminals. A channel 
routing problem is a set of pairwise disjoint nets. The solution of a routing 
problem is a set of subgraphs (wires) where each subgroup connects all 
the terminals of the corresponding net under the conditions of the wiring 
model. In the restricted version of the Manhattan model each wire could 
occupy only one horizontal row (track). This model is called the dogleg-free 
model. We need an algorithm which finds a solution for the given routing 
problem in the dogleg-free model if there is any or else indicates that there 
is no solution. LA PAUGH (1980) and SZYMANSKI (1985) proved that the 
channel routing in the Manhattan model was NP-complete. We suppose 
that the width of the channel is small ,thus, the algorithm can be efficient if 
its running time is exponential in the width and polynomial in the length. 
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Fig. 1 a. Solution of a routing problem 
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Fig. 1 b. One of the profiles belonging to the first 3 wires. 
Continuous line: wires forming the profile 
Dotted line: 4th wire. 

The algorithm proceeds on the channel from left to right. It takes 
the nets one after the other. It takes a net earlier if its leftmost terminal is 
nearer to the left end of the channel. If two nets begin in the same column, 
no matter which one is taken first. The actual net has to be connected, it 
means in the dogleg-free model that it has to be assigned to an appropriate 
free horizontal line. Suppose that the first i nets have been connected. 
Which previously placed wires influence the rest of the process? The wires 
passing a column containing terminals of not connected nets. All nets not 
connected yet nets start at or after the beginning of the last connected 
net while none of the already placed wires begin after the beginning of the 
last one. Hence, all the already placed wires reaching a column containing 
not connected terminals pass the column belonging to the beginning of the 
last placed wire. So the number of such wires is at most the width of the 
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channel (w). Consequently, the arrangement of at most w wires influences 
the remaining process. At most w wires passing a common column can 
be assigned to tracks in at most w! different ways. Let the arrangements 
of wires influencing the placement of the (i+l)th or later wires be called 
profiles belonging to the first i wires, see Fig. 1. 
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Fig. 2. All profiles belonging to the first 3 wires 
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The algorithm: 
Let i denote the number of wires already placed. 

O. Initially i = 0, the corresponding profile is the empty profile. 
1. i = i + 1. Take the ith net. 
2. Take the profiles belonging to the first i-I wires one after the other. 

See Fig. 2 if w = 3, i = 4. 
3. Try to continue the profile with the ith wire in all the. possible ways. 

(Try to place the ith wire in every empty line of the profile in such 
a way that its vertical segments don't overlap vertical segments of 
another wire.) See Fig. 3. 
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Fig. 3. Profile B of Fig. 2 can be continued only in one way with the 4th wire 
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Fig. 4. The profile arising after placing the 4th wire in profile B of Fig. 2 

4. Determine which profiles belonging to the first i wires arise after plac
ing the ith wire, see Fig. 4. If we have already got this profile, we 
don't have to do anything with it (unless we are searching for an opti
mal solution). Else we got a new profile belonging to the first i wires. 
Store this profile (we will use it at the next net). The corresponding 
placement of the first i wires can be stored efficiently, too. 

5. If any profile belonging to the first i-I wires is left, go to Step 2. 
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6. a) If there was no profile which was able to be continued with the 
ith wire, there is no solution. 

b) If no wire is left, we are ready, we have found a solution. The 
empty profile belongs to the last wire. The corresponding place
ment of the wires can be easily retrieved. 

c) Otherwise go to Step l. 
Running time: 

the number of nets: :s; n 
the number of possible profiles of the same wires: :s; w! 
the number of possible placements of a wire in a profile: :s; w 
Step 4: :s; c . w (c is a constant) 

Total: :s; c· n . w! . w 2 

The algorithm can be easily modified to find the solution with min
imum wire length. (No polynomial time algorithm is known which deter
mines the minimum wire length even in single row routing problem where 
every terminal is located at the upper boundary.) In this case we have to 
store the minimum wire length belonging to the placement of the corre
sponding wires in addition to the profile. 

We have implemented the algorithm on IBM PC. The program finds 
the solution with minimum wire length. The program was tested on an 
IBM PC 486 (33 MHz). The solution was found for w < 8 but for w = 8 
the program failed because of insufficient memory. The example of Fig. 5 
consists of 18 wires, the width of the channel is 7, the length of the channel 
is 35. The minimum wire length is 344. The program determined the 
solution in 0.66 s. The solution of Fig. 6 belongs to a channel with twice 
that length. The minimum wire length is 694, the running time is 0.83 s. 
The channel consists of relatively many wires and there are a lot of opposite 
vertical segments. Hence, the number of possible profiles decreases after 
placing the first few wires. In such a case the algorithm finds the solution 
especially quickly. That is why the running time of the second example 
increases less than expected. 
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Fig. 5. 
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Fig. 6. 
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