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Abstract 

The applicaion of anificial neural network technique and particularly the Hopfield neural 
network in ordinary finite element analysis is presented. Due to the main property of the 
Hopfie!d neural network to minimize the stored network energy, this type of neural network 
can easily find application in finite element analysis. In this pape, two specific applications 
of the Hopfield neural network will be discussed: First, for obtaining the solution of finite 
element analysis directly by minimizing the energy of the network same as mmllnlzation 
of energy functional in ordinary finite element analysis, and second, for obtaining the 
solution of inverse optimization problems also in connection with finite element analysis. 
Some basic mathematical cakulus and correlations between neural network energy and 
energy functional that has to be minimized in finite element analysis are discussed. Some 
application examples to cln.rify the main idea are also presented. 

Keywords: finite element analysis. the Hopfield neural network, inverse optimization prob
lems. 

L Introduction 

Artificial neural networks, or short, neural networks (NN s) were first pro
posed in the early 1960s, but they did not receive much attention until the 
mid-1980s. Before that time, due to extended development in computer 
technology, they remained in the experimental stage. A NN is an imple
mentation of an algorithm inspired by research into the brain. It is an ar
tificial information processing system that simulates the process of the hu
man brain, unfortunately, still at a low level. The real breakthrough in NN 
research came with the discovery of the back-propagation training method, 
which was widely publicized in the mid-1980s, although discovered in 1974 
[1]. Since then and closely connected with the development of fast and rela
tively inexpensive computers, the interest in NN research has dramatically 
increased. Different types and construction pCl.tterns of NN were discovered 
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in order to deal successfully with a variety of problems. One of the pio
neers in NN research was J. J. HOPFIELD, who quite possibly for the first 
time in 1982 gave a sophisticated and coherent theoretical picture of how 
a NN could work, and what it could do [2]. The NN model that he intro
duced in 1982 [2] and extended in 1984 [3], is still one of the most widely 
used NN models. 

In this model, today called the Hopfield Neural Network (HNN), the 
interconnected neurons have the main property of decreasing the energy 
until it reaches a (perhaps local) minimum with the time evolution of the 
system. This process is very similar to the minimization process of the 
energy functional defined by ordinary finite element analysis (FEA). This 
similarity, therefore, enables the usage of HNN in ordinary FEA relatively 
easy. The initial work in this area was done by AHN, LEE, LEE and LEE 
[4] (although HNN was not used) in the area of generation of finite element 
meshes and was also presented in other papers where NNs were employed 
as expert knowledge-based systems [5]-[6J. Another area where NNs were 
employed in connection with FEA was in the solution of inverse optimiza
tion problems [7]-[10]. 

In this paper, the authors present another application of HNN for di
rect solution in FEA [I1J. At the same time, new considerations in the area 
of HNN application in inverse optimization problems are discussed. First, 
the main properties and construction of HNN are presented, and the math
ematical correlation between HNN and ordinary FEA is then determined. 
Next the procedure for determining the shape of a sigmoid function and its 
parameters together with its influence on the convergence and accuracy of 
the obtained results for direct solution in one and two-dimensional FEA, 
are discussed. Finally, an optimization problem in two-dimensional mag
netostatic FEA is presented. Some problems, future research and conclu
sions are also presented. 

2. tl,opn€;ld. Neural Network in Brief 

As mentioned previously, a NN is an attempt to simulate the behavior of 
the human brain, although the human brain is far more complex than NN 
models developed currently. In this context, one of the most popular NN 
models is the HOPFIELD NN [2], [3]. The standard approach to any NN is 
to propose a learning rule, usually based on already processed data with 
or without known soiution. After the learning procedure is finished, the 
trained NN may express an appropriate output pattern for new input data 
which are similar to the data with which it was trained. Hopfield, however, 
starts by saying that the function of the nervous system is to develop a 
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number of locally stable points in state space. Other points in state space 
flow into these stable points. This allows a mechanism for correcting errors, 
since deviations disappear from the stable points. Then he proceeds with 
the development of the network that shows this desired behaviour. He 
assumes that threshold logic units are the basic elements of the network. 
If the sum of all inputs in one neuron is above that threshold, the neuron 
responds to aI, otherwise with a 0 [2], or perhaps to a graded intermediate 
state between 1 and 0 [3J. In this way the developed network is recurrent, 
with all the neurons connected, and with the exception that a neuron is 
connected to itself. Therefore, the connection matrix has zeros along the 
main diagonal, a NN presented schematically in Fig. 1. 

Fig. 1. Hopfield Neural Network 

The connectivity is enabled by introduction of the weight function Wi.j 

between any two arbitrary neurons i and j. Another important point is 
that Hopfield takes into account the special case of the symmetrical matrix, 
where Wi,j = Wj,i' Then he defines a quantity, called E, which is the sum 
of all of the terms 

E= (1) 

The quantity E is equivalent to physical energy. It can be proved [3] that 
the energy E is bounded and that as the system evolves, due to its feedback 
dynamics, the energy decreases until it reaches a minimum. The updating 
rule of the system is, therefore, an energy minimization rule, where the 
modification of element activities, actually modification of the weights, 
continues until a stable state is reached, that is, until the lowest boundary 
of the energy is reached. This is a fundamental property of HNN that 
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Fig. 2. Sigmoid function 

makes it easily applicable in FEA where the solution is to be obtained by 
minimizing the energy functional. 

The input-output relation of each neuron is established through the 
nonlinear sigmoid function, the general shape of which is presented in 
Fig. 2. This sigmoidal nonlinear function is monotone increasing as the 
sum of inputs increases. However, the slope is very low for large values of 
the sum of inputs, so large increases in the sum have only a small effect on 
output activity. The slope of the sigmoid function is low for small values 
of the sum as well. The slope, together with the function's boundaries, can 
be freely determined by scaling or shifting. This is advisable and some
times necessary in order to obtain the desired solution. This sigmoid non
linear function is usually expressed by the following equation 

1 
Y = ----;:;-

1...L 
- I 

where }'- is the output value, X is the input value and T is the parameter. 
Depending on the parameter T, the slope of the sigmoid function changes. 

Let us consider more closely the similarities in the mathematical rep
resentation between ordinary FEA and HNN. The input of each neuron i 
came from two sources, external inputs Ii and inputs Vj from other neu
rons. The total input to neuron i is then 

Hi = 2.:.: Wij Vj + Ii 
]f.i 

(3) 
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The total energy in the network is expressed by the following equation 

(4) 

where n is the number of neurons in the network and li'f/i,j the weight 
between neurons i and j. The simplified model of the neuron is presented 
in Fig. 3. 

Fig. 3. Model of the neuron 

On the other side, the governing equations for electrostatic and mag
netostatic field problems can be expressed as 

Electrostatics 

_M agnetostatics 

e y 2V -p, 

fL-1y2A=-J, 

(5) 

(6) 

where V is electric potential, e and p are permittivity and electric charge 
density values, respectively. A is magnetic vector potential, J is current 
density and fL is permeability. The similarities between (5) and (6) are 
apparent. Using (5) or (6), one can easily develop the energy functional 
that has to be minimized in FEA. For example, the energy functional for 
two-dimensional analysis is in case of magnetostatics 

F(A) = ~ J fL -1 (y A)2dQ 
rl 

J JA dQ. 
rl 

(7) 
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It is quite easy to recognize the similarities between (4) and (7), or between 
energy of the HNN and the energy functional in FEA. In other words, 
the solution obtained by minimization of the energy functional in FEA is 
equivalent to the solution obtained from the HNN, because the solution of 
the HNN is derived by minimizing the network's energy. 

3. Direct Solution in FEA Using Hopfield NN 

3.1 One-dimensional Electrostatic Problem 

To use HNN for solving directly in FEA, the simple one-dimensional 
modells presented in Fig. 4 where developed. The parameters of the models 
were: length d = 1 [m], number of neurons n = 11, and number of elements 
n - 1. The electric parameters and the boundary conditions of the models 
are also presented in Fig. 4. 

element 
f _ 

4_) 6 7 8 

constant electric 
charge density = 2S()O [C/m] 

10 [V] 

9 iN1 

d = 1.0 [m] ------7 

a) I 
1 
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2 , 
4-S 6 7 8 .) 

Er = 3.6 [F/m]-7~ Er = 1.0 

d=1.0 [mJ 

b) i'v/odel 2 

9 

Fig. 4. One-dimensional models 
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The governing equation for electrostatic problems (5) in one-dimensio
nal space leads to the following energy functional 

n-l 

:F= (8) 
i=l 

In the above equation, Vi and Xi are electric potential and x-coordinate at 
point i in the mesh (neuron i). By analogy between the energy functional 
(8) and energy of the HNN (4), the weights and external forces for each 
neuron are determined easily. Extending the energy functional (8), the 
following matrix equation is obtained 

:F = [ J x 

r ;:;J: 
W l .2 0 0 0 

1 
W2.2 W2.3 0 0 
Vlh2 W3.3 0 0 

l 
x 

0 0 VVn -l,n-2 W n -l. n -l Wn~l,n J 
0 0 0 Wn.n-l VVn .n 

[V,1 
~J -rh I" I [J:J (9) 

In the above equation, each element in the matrix of the system is con
structed as a weighted sum of the inputs in each neuron. Therefore, its co
efficients are 

Wl,l = - fd IX
l 
~ x21 ' 

w. __ ci-1 1 
u - 2 IX i - 1 Xii 

C, 1 

2 IX i - Xi+ll ' 
(for i =j::. 1 and i =j::. n) 

Ci 1 
W"i+1 = W i+1,i = -21Xi - Xi+ll ' 

w __ Cn-l 1 
n.n - ? 1Xr X I 

PI 
Il=2IX2-X1I, 

- n-1 - n 

I = Pi-l IX - X 11 + Pi 
I 2 I 1- 2 

In = P;-I IXn - X n -11 . 

(for i = 2, ... ,n - 1) , 

( 10) 

(11) 
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As we could see, the above defined equations describe the generated HNN 
with diagonal elements whose values are not zero, therefore, different from 
ordinary HNN. Moreover, the diagonal elements are usually larger than all 
other coefficients in the matrix of the system. This is result of the nature 
of the FEA and could not be avoided. Fortunately, the values of diagonal 
elements are always negative, enabling uniform convergence of the obtained 
system of equations. 

Another important point is the definition of the sigmoid function. 
Due to the nature of FEA, the solution of the problem is usually not re
stricted only to the binary values 1 or O. On the contrary, the values of the 
unknown potential could be any real number. Therefore, we have to gen
erate a sigmoid function which permits output values within the interval 
[-co, +co]. These output values can be generated by the following function 

_ (r. 
.Y = tan) 2" 

~ 

( 12) 

Computation of the above equation is considerably slow due to the fact that 
this function contains several time-consuming operations such as exponen
tial function and, especially, tangent function. In order to overcome this 
problem, in our research we simplified this equation into the following shape 

17 = k); , (13) 

where X is the input value, Y is the output value and k > 0 is the parame
ter. Another important reason for choosing this expression is that the first 
derivatives of both the original sigmoid function (2) and our function (13) 
are always positive. 

The obtained results for the electrostatic problem described in 4, 
VV:",'-"CH'_l. ·v;;lith the curve of minimization of the energy of the HN:f\J vs. num
ber of are In 5 and 6. 'The resuits obtained 
agree with analytically obtained results up to four decimal digits. 

3.2 Two-dimensional Elecil'osiatic and IVlagneiosiaiic Problems 

The procedure described above was also implemented for solving two
dimensional electrostatic and magnetostatic problems. Here, only the mod
els and the obtained results will be presented. 

A two-dimensional electrostatic model with imposed boundary con
ditions and generated two-dimensional mesh is presented in Fig. 7. The 
electric potential distribution obtained directly from HNN is presented in 
Fig. 8. For comparison, in Fig. 9 we see the obtained electric potential 
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Fig. 5. Electric potential distribution Fig. 6. Minimization of the energy 
vs. number of iterations 

v = 0 [VI 

Fig. 7. Two dimensional electrostatic model 

distribution for the same model by ordinary FEA. The uniqueness of both 
solutions is apparent. 

The two-dimensional magnetostatic model presented in Fig. 10 with 
imposed boundary conditions was also treated directly by HNN. Different 
division maps resulting in different numbers of neurons in the network 
were considered. An increase in the number of neurons always results 
in an increase in accuracy of the obtained results. The distribution of 
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0,00 0.20 0,40 0,60 0,80 1,00 
[ * E+02 !J] 

Fig. 8. Electric potential distribution 
obtained directly by Hopfield 
Neural Network 

A = U 

I I I ' t 
0,00 0.20 0,40 0.60 0,80 1,00 

[ * E +02 !J) 

Fig. 9. Electric potential distribution 
obtained by ordinary finite el
ement analysis 

Fig. 1 C. Two dimensional magnetostatic model 

magnetic vector potential A obtained directly from the solution of the HNN 
is presented in Fig. 11. For comparison, the distribution of magnetic vector 
potential for the same model obtained from ordinary FEA is presented in 
Fig. 12. Both results agree very welL 
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Fig. 11. :'vfagnetic vector potential dis
tribmion obtained directly by 
Hopfield :\eural :\etwork 

I ' l---'---i 
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£+01 l)} 

12. :vlagnetic vector potential dis
tribution obtained by ordinary 
finite element analysis 

3.3 Definition of Parameter k in the Sigmoid Function 

Let us now consider the effect that parameter k in the sigmoid function 
(13) has on the iteration process, its convergence, number of iterations and 
computation time. It was found that minor changes in the value of this pa
rameter change the number of iterations required to minimize the energy 
of the model, and sometimes make the energy diverge from a stable point, 
even after a good convergence start. Typical curves of energy minimization 
for two relatively close values of the parameter k are presented in Fig. 13. 
A different definition of this parameter and changes in the sigmoid func
tion were also considered. However, the procedure for determining this pa
rameter and its automatic adjustment for various problems treated by the 
network must be considered as one of the problems where future research 
in this area should be concentrated. 

4. Solution of Inverse Optimization Problem by Hopfield NN 

In this chapter, we will discuss how HNN may be applied in the solution of 
inverse optimization problems. Here, a very simple two-dimensional magne
tostatic problem is treated, to develop easily the main idea and the method 
of solution. 
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Number ofiLeratwns 
Fig. 13. Influence of parameter k on energy minimization 

4.1 Definition of the Problem 

Let us consider a two-dimensional magnetostatic model, constructed of a 
core surrounded by coil in which current with density J flows uniformly in 
a normal direction shown on the cross-section (Fig. 14). Usually in FEA 
we presume that we know the amount of current density and for that 
amount of current, we compute magnetic vector potential and magnetic 
flux density distributions. This is an ordinary problem. We considered, 

the inverse prot,lem. where we have to determine the amount of 
source current and the shape and position of the coil to achieve the desired 
value of magnetic flux density at a certain point k. Therefore, we 
formulated the following problem: 

Determine the amount of current and its distribution (shape and po
sition of the coil) that will result with desired intensity and distribution of 
magnetic flux density value in a particular point kinside the analyzed 
region. 

We want to solve this problem directly using HNN, i.e., results ob
tained by minimizing the energy of HNN until the desired solution is 
reached. 
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Fig. 14. Analyzed model 

4.2 Mathematical Representation of the Problem 

233 

By first dividing the coil into an arbitrary number of sub-coils n (in the case 
of Fig. 14, n = 8), we could write the energy functional for magnetostatics 
in two-dimensional space as follows 

F(A) ~ ~ J ! {(~~)' + (~:)'} dxdy - J! p dxdy , (14) 

where v is reluctivity coefficient, J is current density and is magnetic 
vector potential. Parameter p defines which sub-coil is carrying the source 
current: if p = 1 current flow exists, if p = 0 current flow does not exist. 
Using ordinary FEA and expressing the value p for each sub-coil in one 
vector p = [Pl, P2, . ", Pn], magnetic flux density Bk at arbitrary point k 
is calculated by the following equation 

(15) 

where M is the matrix of the system obtained from ordinary FEA, I is 
the current value, while T stands for transposition. If the desired value 
of magnetic flux density at point k is BOb then the minimization of the 
following functional will be the solution of our problem 

(16) 
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where m is number of points with prescribed value of magnetic flux density 
B. Consequently, our pro blerri is now: 

Determine a vector p which minimizes the functional (16). 

Expanding (15) into the second degree Taylor series and inputting into 
(16), leads to the following equation 

m r 2 (? ? _ )12 
F = :L lBok - Bk(Pe) + Bk(i::l.p) + J . i::l.p J ' (17) 

k=1 

where pe is a stationary vector and J is the Jacobian matrix 

(18) 

For brevity 
(19) 

inputting into (17) and after developing, leads to the following equation 

(20) 

Considering in the above equation as an output value from each neuron, 
the similarities bet\:veen energy functional (20) and the HNN energy (4) are 
apparent. For the weights and the external sources, the following relations 
are :valid 

ill 

== -2 
h=l 

m 

Ii = 2 (22) 

Therefore, the sum of all inputs in each neuron is a function of time, and 
its change for a short time interval 6.t is expressed (see Eq. (3)) 

fiHi = (.y Wijfipj + Ii) !it 

= (-2 f t Jkdkji::l.Pj + 
j=lk=l 
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The output value for each neuron is expressed by the following sigmoid 
function 

~P (23) 

where H is the sum of all inputs in each neuron and Uo is a parameter. To 
increase the processing speed of the neural network, the following assump
tions were considered: 

Pi > 0.65 ==? Pi = 1.0 , 

Pi < 0.35 ==? Pi = 0.0 

The simplified now chart of the program is presented in Fig. 15. 

Pt' <, 

Pt' > 

Initia! 

Fig. 15. Flow chart 

n.5: 
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4.3 Results 

The above described procedure was applied on a very simple model pre
sented in Fig. 14. The number of sub-coils was 8, while the number of 
points with prescribed values of magnetic flux density was 2 (see Fig. 14). 
First, ordinary FEA was performed with only three sub-coils excited -
coils 1, 2 and 3. The value of magnetic flux density B was obtained at both 
trial points (see Fig. 14). Afterwards, each value of magnetic flux density 
B was treated as prescribed value BOk in the functional (16), the HNN was 
constructed and its energy minimized. The obtained results are presented 
graphically in Fig. 16. 

1.5 
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( ""- SUb~COil 2 
i 

i 
: ........ 

~ 
VSUb'jOill ! -,V I 

I sub·coil3 ! 

i 

-

\"v-"-- I 

\ I ",'.wil; J-8 
IJ 

(J 6 8 10 12 

Sumber of iterations 

Fig. 16. Results of i:1verse optimization problem 

The number of iterations is on the horizontal aXIS and the value of 
the p is on the vertical i. e., the value of the 
source current in each sub-coil. From Fig. 16, we could see that initially 
all su b-coib were excited with constant current value (Pe = 0.5). As time 
passed, the \3Jue of p for each sub-coil changed independently of each other, 
either increasing or decreasing. Finally, after 11 iterations, the value of the 
current, stabilized to value p = 1 for sub-coils 1, 2 and 3, and p = 0 for all 
other sub-coils, which is the same as expected solution. 

Division of the coil into more sub-coils enables a more accurate deter
mination of the shape of the coil and actually leads to optimization of its 
shape and parameters. The computation time in this case increases due to 
the increase of the number of neurons in the network. 

The influence of parameter Uo in the sigmoid function (24) on the 
number of iterations was also investigated. The obtained results are pre-
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Table 1 
Influence of Uo on iteration process 

Iterations 
Error 

!La 
Point 1 Point 2 

0..1 no solution 
OAS 1-t 0.0009 0.0008 
0 . .5 6 0.0009 0.0008 
0.6 8 0.0009 0.0008 
0.8 9 0.0009 0.0008 
1.0 11 0.0009 0.0008 

sented in "Table 1. From Table 1 v}e see that the value of parameter Uo IS 

crucial in obtaining fast and accurate analysis. 

5. Conclusions 

In this paper, we discussed an application of HNN for the direct solution 
of electrostatic and magnetostatic problems in one and two-dimensional 
spaces, usually treated by ordinary FEA. We proved that HNN could be 
dealt with very well in this area, due to its fundamental property of mini
mizing the energy of the network while the network evolves with time. Al
though the computational time using this procedure is of the same rate as 
some other conventional methods for solution in FEA, such as the ICCG 
method, the fact that HNN can be used for directly obtaining the solution 
of FEA is very important. This is mainly because in the near future, the 
development of hardware equipment based on neural networks, will open a 
wide area for parallel processing in FEA, which will obviousiy lead to im
provements in the computational process overall. On the other hand, in 
this paper we also presented the successful application of HNN in the area 
of inverse optimization problems in FEA. This should find a useful applica
tion especially in the design and optimization of different electromagnetic 
devices in two and three-dimensional spaces. Here, placing the already 
developed neural network software under neural-network-based hardware 
would bring a significant improvement in the CAD/CAM systems which 
are developing as a fast and accurate optimization tool. 

As we pointed out in the text, there are still many problems that must 
be investigated in this research area. Perhaps the most important will be 
the definition of the sigmoid function, and the development of a procedure 
for its self-determination depending on the problem. The HNN could then 
be easily and efficiently applied to various problems in the near future. 
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