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Abstract 

VVe use the of the wave-vector surface in uniaxially anisotropic media to con­
struct an equation for the amplitude or extraordinary waves. This equation is identical 
to the one derived directly from MaxwelPs equations for the component of the electric 
field vector parallel to the optic axis. In principal axis coordinates, the extraordinary 
wave equation is a scaled version of the scalar He!mholtz equation. Consequently, there 
is a one-to-one correspondence between extraordinary waves and scalar waves in vacuum. 
This equivalence can be used to find the solution of problems on diffraction and beam 
propagation in uniaxial media from known solutions of the corresponding isotropic 'prob­
lems. As a simple example we determine the size of the focal region of converging beams 
in uniaxial crystals. 

Keywords: propagation, crystal optics. 

The widespread use of birefringent materials in integrated optical devices 
[1-3] has raised interest also in computational problems relating to the 
propagation of waves in anisotropic media. Since these problems [4-9] are 
often more difficult to solve than their counterparts in isotropic optics, it 
is desirable to find methods for the reduction of anisotropic problems to 
isotropic ones. 

In this paper we present a method by which some problems concern­
ing the propagation, focusing and diffraction of monochromatic extraordi­
nary waves in homogeneous but uniaxially anisotropic media may be trans­
formed into equivalent problems relating to an isotropic medium. 

At first we assume that the wave field to be described is characterized 
by a scalar amplitude and that the latter is expressible as a superposition 
of plane waves whose wave vectors are determined by the ellipsoid of wave 
vectors known from elementary crystal optics. From this assumption we 
construct a homogeneous scalar wave equation for the extraordinary waves 
and prove that this equation is the same as the one derived from Maxwell's 
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equations for the component of the electric vector that is parallel to the 
optic axis. 

Next we note that the anisotropic wave equation, if written in prin­
cipal ayis coordinates, is a transformed version of the Helmholtz equation. 
The transformation is trivial: each coordinate is scaled by one of the re­
fractive indices. Consequently, there is a very simple one-to-one relation 
between extraordinary waves and waves in vacuum. 

Finally, we use this similarity argument to determine the spot size in 
the focal line of a converging extraordinary beam. 

)e:rii/a~ti()Il. of the Extraordinary Wave Equation 
from the Scalar Angular Spectrum 

yVe consider a monochromatic extraordinary wave in a homogeneous uni­
axial crystal. \Ve assume that 1. the extraordinary wave is characterized 
by a position-dependent scalar amplitude \if, 2. the amplitude is the super­
position of plane waves, 3. the end points of the wave vectors of the plane 
wave components lie on the ellipsoid of wave vectors. 

By assumptions 1) and 2), the scalar amplitude is given by 

where k = (kz, ky, 7~:;) denotes the wave vector of a plane-wave component 
and A(l~,r, ky) is the angular (or plane-vvaye) spectrum of \if. (Note that k:; 
is a t-wo-valued function of k<" and k:l . Therefore, the above integral is in 
fact the sum of two integrals containing the two branches of the function 
k:; (k,r, If the x direction is parallel with the optic axis of the uniaxial 
medium then assumption 3) states that 

where no and ne are the ordinary and extraordinary refractive indices of the 
medium and ko is the vacuum wave number [10]. Taking the second partial 
derivatives of (1) with respect to x, y and z, respectiyely we find that 

(3a) 

(30 ) 

(3e) 
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We first divide (3a) by n~ and (3b) and (3e) by n~ and then we add the 
three resulting equations to obtain 

1 {Pi[[ 1 fFif! 1 (Pi[[ ---.-1- ___ + ___ -
n~ 8x2 . n; 8y2 n; 8z2 -

According to (2) the factor under the integral before A. is equal to k6 and 
(1) the right hand side of (4) is just -k6if!. if! is a solution 

to the differential PCl-"",-"on 

=0. (5) 

Up to this point we have not given yet any physical interpretation for 
the scalar amplitude W. As the above 'derivation' is based on a scalar 
description, it is inherently incapable of producing a physical justification 
of itself. Before accepting Eq. (5) we must therefore compare it to the 
wave equation(s) obtained from the exact electromagnetic theory. To this 
end, we repeat the steps described by FLECK and FElT [7] to derive the 
vectorial wave equation for the electric field vector E of a monochromatic 
extraordinary wave in a homogeneous, uniaxial, nonmagnetic crystal. 

In a rectangular coordinate system whose x axis is parallel with the 
optic axis, the (relative) dielectric tensor c is diagonal with elements 

2 2 
ne, cy = cz = no . (6) 

Assuming a time dependence of eiwt , the elimination of H from Maxwell's 
two curl equations 

rot H = iwcocE, rotE = -iwJLoH (7) 

yield 
6E = -gl'ad divE + k5c:E = 0 . (8) 

U sing the divergence relation 

(9) 
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to replace div E in (8) by 

div E = (1 _ ez ) oEz 

ez ox 

we find that the x component of (8) is 

a2Ez o2Ey o2Ez _ (1 _ ez ) a2
Ez k2 E - 0 

.Q 2 + .Q 2 + J::l 2 J::l 2 + oez z-
vX vy vZ ez vX 

or, after division by ez, 

(10) 

(11) 

(12) 

According to definition (6) of the ordinary and extraordinary refractive 
indices, (12) is seen to be equivalent to (5). Thus we conclude that the 
originally unspecified scalar amplitude iJ! must be identified with E z , i.e., 
as the component of E parallel with the optic axis. 

The exact equations in Ref. 7 for the y and z components of E are 
different from (5) in that they contain also a term with the mixed second 
partial derivatives of Ez: 

(12b) 

(12c) 

If Ez is known, these terms may be treated as source terms and Ey, 
may be found as the solutions of the inhomogeneous scalar wave equations 
(12b), (12c). If the beam is ordinary then Ex = 0 (because ordinary waves 
are TE with respect to the optic axis) and the equations for Ey, Ez reduce 
to the homogeneous wave equation for an isotropic medium with refractive 
index no. 

Correspondence between Extraordinary 'Naves 
in a Uniaxial Medium and Scalar Waves in Vacuum 

It is noteworthy that Eq. (5) is just the scalar Helmholtz equation written 
in a scaled coordinate system. We show how this fact leads to an obvious 
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equivalence between scalar waves in vacuum and extraordinary waves in a 
uniaxial medium. 

Let wiso(e, 71, () denote a solution of the scalar Helmholtz equation: 

(13) 

The second partial derivatives of the function 

- ani ( ) Jj iso ( ) 1J! X, y, z = 1J! nox, neY, neZ (14) 

are 

(15) 

Consequently, \f!ani(x, y, z) given by (14) is a solution oHhe extraordinary 
wave equation (5). This means that from each known solution Wiso(e, 71, () 
of the Helmholtz equation one can construct a function 'lrani(x, y, z) satis­
fying (5) and vice versa. In other words, there is a trivial one-to-one cor­
respondence between waves in vacuum and extraordinary waves in a uni­
axial medium. 

The Size of the Focal Region of a Converging 
Extraordinary Wave 

In this section we use the above correspondence between vacuum waves and 
extraordinary waves to determine the spot size of a focused extraordinary 
beam that propagates in a direction perpendicular to the optic axis. 

According to diffraction theory [10] relating to isotropic media, the 
spot diameter (or, generally speaking, any characteristic transverse linear 
dimension measured in the focal plane) of a converging paraxial beam in 
vacuum is given by 

f iso 
D iso - C ---

- 1 koAiso ' 
(16) 

where fiso is the focal length (i.e., the distance of the focal point from 
a fixed 'aperture plane'), A iso is the diameter of the aperture (or, more 
generally, a characteristic transverse linear dimension of the beam measured 
far from the focal point), ko is the vacuum wave number, and Cl is a 
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numerical factor that depends on the shape but not on the SIze of the 
amplitude distribution along the 'aperture plane'. 

The generalization of (16) to extraordinary waves is readily found 
from the similarity rule (14). The transverse dimensions A, D and the lon­
gitudinal dimension f characterize a solution \{riso of the Helmholtz equa­
tion. Therefore, the corresponding dimensions of the equivalent anisotropic 
amplitude function \{rani are 

A
ani _ Aisoj - no, D

ani _ Disoj fani _ fiSOj - no, - ne (17) 

(Here it is assumed that the transverse dimensions A and D are measured 
in the principal section i.e., in the (x, z) plane which is parallel with the 
optic axis.) Expressing the isotropic quantities from these relations and 
inserting them in (16) , we find for the spot diameter (measured in the 
principal section) 

(18) 

This means that the spot size (in the principal section) of a focused ex­
traordinary beam is (ne/no)2 times the value calculated for a beam that 
propagates in an isotropic medium whose refractive index is ne. Previously 
we have established this relation by more involved Fourier optical [8, 9] and 
numerical [9] investigations. 

Conclusion 

have shown that 
1. the scalar combined with the equa-

tion of the wave-vector surface of extraordinary 'Naves in a uniaxial medium 
is sufficient for the derivation of the exact wave equation of the component 
of E parallel with the optic axis, and that 

2. this wave equation is a scaled version of the scalar Relmholtz 
equation. 

As a consequence, we have found that 
3. there is one-to-one correspondence between scalar vacuum waves 

and extraordinary waves in a uniaxial crystal, and that 
4. if measured in the principal section, the spot size of a focused beam 

in a uniaxial medium is (ne/no)2 times the value obtained from the formula 
for the spot size of a beam (with the same far-field beam diameter) that 
propagates in a homogeneous medium with refractive index ne. 
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