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Abstract 

This paper describes a boundary integral method for computation of three-dimensional 
electric field distribution. In the boundary integral method, the surfaces of electrodes and 
insulators are divided into curved surface elements because the use of the curved surface 
elements provides a good approximation of the contours of the electrodes and insulators. 
Furthermore, the boundary integral method is applied to optimum design of electrode and 
insulator shapes. 
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1. Introduction 

In the design of high-voltage equipment, the computation of electric field is 
one of the important technologies. The computation of three-dimensional 
electric field distribution is often performed by boundary integral meth­
ods [1] because of the high accurate computation and the less input data 
preparation. In this paper, curved surface elements which provide good 
approximation of the boundary surface are used in a boundary integral 
method. The surface shape of each element is approximated by quadratic, 
cubic or fifth-degree function of coordinates. The distribution of surface 
charge on each element is approximated by a linear function of coordinates 
and discretized to the values on the vertices (nodes). After computing the 
charge distribution, potential and electric field at each computation point 
are calculated. The computation results of electric field distribution are 
presented in the SFs gas insulated cable. 

On the other hand, optimization of electrode and insulator shapes 
is performed to reduce the maximum electric field strength or to obtain 
the desired electric field distribution by using iteration methods. Anyone 
or more of the surfaces are modified by the iteration methods in order 
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to obtain desired electric field strengths at any electrode and/or insulator 
surfaces. 

The stress-ratio method [2], [3] is one of the simple iteration methods 
and used to reduce the maximum electric field strength on the surface of 
the electrode. The modification of the electrode surface is determined in 
proportion to the stress. 

When applying the 'nonlinear programming to the iteration methods, 
an object function is defined [3], [4]. The object function which is used 
for modification of the surfaces takes a form of least squares. Then, the 
object function is evaluated by using integrals over the surfaces on which 
desired electric field distributions are given, and it is minimized iteratively 
by the Newton method or other iteration methods. The modification of 
the surfaces is performed by the iteration methods: the steepest descent 
method, the conjugate gradient method, the quasi-Newton method and the 
Gauss-Newton method. 

The application of the stress-ratio method to insulation design is il­
lustrated by a practical model. 

2. Boundary Integral Method 

The boundary integral method for electric field analysis is known as sur­
face charge simulation method [1]. In the boundary integral method, the 
surfaces of electrodes and insulators are divided into numbers of boundary 
elements on which the distribution of appeared surface charge density are 
defined. And the discretized surface charge densities are solved by simul­
taneous equations. 

2.1 Basic Equations 

In the boundary integral method, the potential Vi and the electric field Ei 
induced at the computation point i are given by 

(1) 

(2) 

where <p is the fundamental solution of the Laplace's equation, S is the 
total area of the boundary surface, (J is the surface charge density and cO 

is the permittivity of free space. 
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The electric field on the boundary surface is given by 

Ei = ±-' -' - - 0" V <jJds n"O"" 1 If 
2co co 

E" _ niO"i 
,- 2co 

s 

where ni is the unit normal vector at i. 

(on the insulator surface) 

(on the conductor surface) 
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(3) 

(4) 

The flux continuity condition at i on the insulator surface is given by 

(5) 

where Eli and E2i are electric fields in the dielectric 1 and 2, respectively, 
Cl and C2 are the permittivities of dielectric. 

When applying the potential condition given by Eq. (1) to the node on 
the electrode surface and the flux continuity condition given by Eq. (2) to 
the node on the insulator surface, the final simultaneous equations for the 
surface charge densities discretized at the nodes on the boundary surface 
are obtained by 

[C]{O"} = {v} , (6) 

where [C] is the coefficient matrix having N rows and N columns and {O"} 
is the vector of unknown surface charge densities. And {v} is given by 

(7) 

where Ne is the number of nodes on the electrode surfaces. 

2.2 Computation Accuracy 

The computation accuracy of the electric field by the integral equation 
method depends on the following accuracies: 
(a) approximation of boundary surfaces by boundary elements, 
(b) approximation of surface charge density distribution, 
(c) numerical integrations for setting up coefficient matrix of the final 

simultaneous equations. 
In order to approximate curved surfaces of electrodes and insulators 

in high voltage equipment, curved surface elements which provide good 
approximation of the boundary surfaces are used. The surface shape of each 
element in triangular type case is approximated by a quadratic function 
or a fifth-degree function. In rectangular type case, it is replaced by a 



384 H. TSUBOI et al. 

Fig. 1. Subdivision of a tri'1ngular element 

cylindrical surface. Furthermore, in two-dimensional and axi-symmetric 
problems, the shape of line element is approximated by a cubic function. 

The distribution of surface charge density which is assumed on each 
element is approximated by a linear function and discretized to the values 
on the vertices (nodes) of the elements. 

When using the curved surface triangular elements, the integrals ap­
peared in Eqs. (1) and (2) can be evaluated by the use of the Gaussian 
quadrature formula. However, in the case of the integrals including a singu­
lar point, the numerical integration formulae for polynomial approximation 
are not sufficient for the accuracy because of the singular behaviour of the 
kernel function. Therefore, an adaptive integration method is introduced 
and applied to reduce computation time and to obtain the high accuracy 
of the integration [5], [6]. For example, the triangular element shown in 
Fig. 1 is subdivided into four small congruent triangles until the value of 
integration for a small triangle with a singular point is regarded as zero, 
and the Gaussian quadrature formula with seven sampling points is applied 
to each small triangle. 

3. Optimization Methods 

The optimization of electrode and insulator shapes is performed by iter­
ation methods. In order to obtain the distribution of the desired electric 
field strength, anyone or more of the surfaces are modified by using the 
iteration methods. 
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9.1 Stress-Ratio Method [2J 

One of the simple iteration methods is the stress-ratio method. The dis­
placement of electrode surface is determined in proportion to the stress 
(force). Therefore, the displacement vector di at the node i is given by 

(8) 

where c is the constant, fi is the stress and Ei is the electric field strength. 
The stress-ratio method is effective to reduce the maximum electric 

field strength. However, the desired electric field distribution cannot be 
obtained by the method. Furthermore, it is difficult to fix the nodes which 
are located at the end of the area to be modified. 

9.2 Newton Method [9J, !4J 

When the Newton method is applied to optimization, an object function is 
introduced. The object function is evaluated by integrals over the surfaces 
on which desired electric field distributions are given, and it is minimized 
by iteration methods. The object function W is given by the form of the 
method of least squares as 

L 

W = L:CEi - EiO)2 , (9) 
i=l 

where Ei is the calculated electric field strength, EiO is the desired electric 
field strength and L is the number of nodes at which desired electric field 
strength is given. 

The design variables are displacements of the nodes on the electrode 
and insulator surfaces to be modified. In this method, the direction of the 
modification is fixed to that of the normal vector in order to reduce the 
number of the design variables. The design variable vector {x} is given by 

(10) 

where Xj is the displacement of the node j and M is the number of the 
nodes to be modified. 

We consider a problem to find {x} which provides the minimum value 
of the object function. The design variable vector {x} is modified by the 
following equation 

(11) 
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where k is the iteration step, a is determined by a linear-search method and 
{d} is the modification of the design variable vector which is determined by 
the iteration methods: the steepest descent method, the conjugate gradient 
method, the quasi-Newton method and the Gauss-Newton method. 

The iteration for the optimization is terminated by the convergence 
of the object function. The convergence is decided by the normalized value 
of the object function as follows: 

-jWk/L - -jWk-l/L 
< 8 , (12) 

where (EiO)rnax is the maximum value of desired electric field strength. For 
the value of 8, 0.01 is normally chosen. 

4. Computation Results 

4.1 Electric Field Analysis of SFs Gas Insulated Cable [If 

Fig. 2 shows a single-core SFs gas insulated cable model. The relative 
permittivities of SFs gas and epoxy-resin spacer are 1 and 5, respectively. 
The arrangement of curved surface elements in the gas insulated cable 

SF6 gas 
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Fig. 2. Single-core SF6 gas insulated cable model 
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model is shown in Fig. 9. Equipotential lines and distributions of the 
electric field on the conductor and insulator surfaces are shown in Figs. 4 
and 5, respectively. The maximum electric field strength occurs at the 
point M in SF6 gas . 
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Fig. 3. Arrangement of curved surface element in the gas insulated cable, (a) condllctor, 
spacer and sheath, (b) electrode 
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Fig. 4. Equipotential lines in the gas insulated cable model 

4.2 Optimization of Sleeve Electrode {2} 

Fig. 6 shows a sleeve electrode model. The contour between the point A 
and C is optimized by the stress-ratio method to reduce the maximum 
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Fig. 5. Distribution of electric field on the conductor and insulator surfaces 
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Fig. 6. Sleeve electrode model 

electric field strength. The initial and optimized contours are shown in 
Fig. 7. The maximum electric field strength at the point M is reduced 
by 38 %. The changes of the electric field distribution on the contour 
between A and C and the changes of the maximum electric field are shown 
in Figs. 8 and 9, respectively. Using the samples in Fig. 10 the results of 
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~ ~ 
Fig. 7. Initial and optimized contours of the sleeve electrode model and electric field 

distributions, (a) initial contour, (b) optimized contour 
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Fig. 8. Changes of the electric field distribution 

AC flashover tests are shown in Fig. 11. The mean flash over voltage of the 
sample with the optimized shape is 13 % higher than that of the sample 
with the initial shape. The fact that the increase of the fiashover voltage 
(13 %) is relatively low compared with the reduction (38 %) of maximum 
field strength brought by the optimization seems to be caused by the the 
approximation error in the production process and the area effect (the 
shape after optimization has extended the region of almost uniform field 
strength). 
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Fig. 9. Changes of the maximum electric field strength 
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Fig. 10. Sleeve electrode for experiments, (a) initial, (b) optimized 
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Fig. 11. Experimental results of f1ashover voltages 

4.3 Optimization of Sphere Electrode in Cube /3j, /4j 

Fig. 12 shows a sphere electrode model. The shape of the sphere electrode 
is optimized by the Newton method to obtain uniform electric field distri-
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x 

Ca) (b) 
Fig. 12. Sphere electrode model, t a) boundary elements, t b) cross section on the x y 

plane 

Fig. 13. Optimized sphere electrode 

bution on the sphere electrode surface. The value of the desired electric 
field strength is 40 (= 100/2.5) (V/unit length). In one eighth part of 
the sphere electrode model, the triangular area A-B-C without nodes A, 
Band C is modified by the Gauss-Newton iteration so that the electric 
field strength on the triangular area A-B-C becomes equal to the desired 
electric field strength. The optimized shape of the sphere electrode ob­
tained after three iteration steps is shown in Fig. 13, and the electric field 
distributions on the electrode surfaces are shown in Fig. 14. The Newton 
method provided good convergence characteristic for the sphere electrode 
model. 
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Fig. 14. Distributions of electric field on the sphere electrode surfaces 

5. Conclusion 

A boundary integral method for computation of the three-dimensional elec­
tric field distribution was described. The use of curved surface elements 
provided a good approximation of the electrode and insulator surfaces, and 
the accurate numerical integrations were performed by an adaptive inte­
gration method. 

Optimization methods of electrode and insulator shapes in insulation 
design were presented. The stress-ratio method was effective to reduce 
the maximum electric field strength on the surface of the electrode. The 
desired electric field distribution was obtained by the Newton method using 
an object function. 

The auth?rs think that the boundary integral method and the opti­
mization methods are applicable to the design of insulation in high voltage 
equipments. 
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