
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 37, NO. 2, PP. 97-109 (1993)

FAULT INJECTION BASED DEPENDABILITY
ANALYSIS 1

Balazs BENy6* and Andras PATARICZA **

*Department of Measurement and Instrument Engineering
Technical University of Budapest

H-1521 Budapest, Hungary
Fax: +36-1-166-6808

E-mail: benyo@mmt.bme.hu

*"'Friedrich-Alexander U niversitiit Erlangen-N iirnberg
Institut fur Mathematische Maschinen und Datenverarbeitung III

D-91058 Erlangen, Martensstrasse 3

Received: Nov. 22, 1993

Abstract

In more recent years there has been a rapid increase in the use of fault tolerant systems.
The majority of computer systems, even those which are not labeled as fault tolerant have
some built-in fault tolerant features. Accordingly, the need for dependability evaluation
tools is increasing. These tools may help the system designer in the validation of the fault
tolerance specification of their systems.

A portable, general purpose evaluation.environment (called DEEP, Dependability
Evaluation Experimental Package) was developed for the dependability analysis of fault
tolerant systems. Our objective was to design a general purpose tool both in the sense of
the target machine type and fault conditions as well. A special emphasis was given to a
realistic fault injection scheme.

The test environment was implemented for the dependability analysis of the Mod­
ular Expandable Multiprocessor SYstem MEMSY, developed at the Friedrich-Alexander
University of Erlangen-Nuremberg.

In the paper the developed dependability environment (DEEP) is treated. The
system structure and the detailed description of the modules are introduced.

The paper contains the description of the reimplementation work of the developed
portahle system for the master-checker simulation as well. Experimental results of the
evaluation of the MEMS'{ system are presented.

Keywords: fault injection, dependability analysis, master-checker simulation. fault toler­
ance, experimental validation.

1 This research is part of Project 70 of the Hungarian-German Scientific CoopcratiOll
Agr<'<'ment with additional support from the following grants: SFB 182 (DFG)' OTKA-
760 and T-3:394 (H lIngarian National Scientific Found),

98 B. BENYO and .4. PATARICZA

1. Introduction

The estimation of the level of dependability becomes more and more a
general requirement not only for fault-tolerant but even for general purpose
systems as well. Accordingly, the need for dependability evaluation tools
is increasing.

Several dependability evaluation systems exist. The systems can be
grouped into the following main classes according to the applied algorithm:

System examination in natural (real) environment.
System examination in artificial environment.
Simulation based estimation.
The dependability evaluation in the real operational environment is

a very tedious and time consuming process. In simulation huge efforts are
needed to build a sufficiently detailed model of the system properly reflect­
ing the effects of the faults as well. Accordingly, the majority of the depend­
ability evaluation tools examine the target computer system in an artificial
environment using fault injection experiments. However, despite the sim­
ilarities in the evaluation methodology for different computer systems the
strong hardware dependency of the usual systems inhibits portability.

Our primary goal was to develop a portable, general purpose evalua­
tion environment for the dependability analysis of fault tolerant systems.
The objective was to design a general purpose tool both in the sense of
the target machine type and fault conditions as well. Special emphasis was
given to a realistic fault injection scheme.

As a pilot project for the verification of the new tool an algorithm
was developed evaluating the main dependability parameters of a com­
puter system in master-checker mode. This mode is the simplest form of
a multiplicated modular redundant system. The processor is duplicated
and the corresponding input pins of both OPUs are interconnected, ac­
cordingly they process the same input stream. One of them, the master
drives the output signals. The master and checker outputs are pairwise
interconnected, too, but the checker output pins are used only as inputs to
the internal comparator, comparing the signals driven by the master and
the internal signal of the checker. The main problem in the evaluation of
the system dependability in master-checker mode results from the improper
observability and controllability of the system, as in this mode the checker
processor is absolutely hidden to the user. This means that this part of the
system is neither observable nor controllable.

Accordingly, for the evaluation of the system dependability in master­
checker mode traditionally a hardware fault injection method is used. The
advantage of this solution is its realistic fault injection methodology but
the system realization is time consuming, expensive and unportable.

FAULT INJECTION BASED DEPENDABILITY ANALYSIS 99

With the aid of the developed dependability evaluation environment
(called DEEP, Dependability Evaluation Experimental Package) the algo­
rithm was implemented for the dependability analysis in the master-checker
mode working Modular Expandable Multiprocessor SYstem MEMSy2 (de­
veloped at the Friedrich-Alexander University of Erlangen-Nuremberg, see
[4], [5]). The paper contains the evaluation algorithm and the experiments
of the implementation as well.

2. Dependability Evaluation Environment

2.1. Dependability Evaluation Arguments

Dependability evaluation is the process of generating the description of the
behaviour of the system related to error occurrence [1]. According to this
standard, the main characteristics of a dependable system are defined as
follows:

Fault coverage: The subset of faults that are discovered by the system.
The fault coverage measure can be estimated simply by collecting the
error reports from the system under test, and comparing the number
of non-error-free test runs with the total number of test runs.
Fault latency: The average time between the fault occurrence and its
manifestation to the outer world.
The DEEP dependability evaluation system investigates both the

fault coverage and latency time as well.

2.2. Development Guidelines

The primary goal in the development was the assurance of a high porta­
bility in order to support its use in the dependability evaluation of several
computer systems. Other important factors influencing the development
are the following:

- The limitation of the number of necessary experiments for the analysis
to an acceptable level. The growing complexity of the systems to be
examined results in any realistic situation in an enormous number of
possible faults. In order to create a measure of system dependability
all of these components must be considered.
The analysis process should be repeatable and comparable, e.g. in the
cases of the evaluation of the several system configurations.

2The MEMSY project is supported by the DFG (Deutsche Forschungsgerneinschaft)
as part of the 'Sonderforschungsbereich' SFB 182.

100 B. BENy6 and A. PATARICZA

The possibility for application specific dependability checks was to be
assured by the open interface for integration of user specified additions
e.g. for the examination of the system behavior in the case of special
fault injection.

2.3. Fault Injection Method

The dependability analysis method, adapted for the DEEP system is based
on fault injection. The main idea of this principle is as follows:

Two systems of identical structure are modelled: the reference system
and the probe system. The environment contains all of the factors influ­
encing the system operation and output (e.g. system stimuli). The only
difference between these systems is that during each experiment at a pre­
defined time one fault from the fault list is injected into the probe system
by the experiment supervisor.

In this way two system outputs are generated: The error-free response
from the reference system which becomes the reference output and the
probably faulty output from the probe system. By comparing these outputs
and the internal states of the systems, we can evaluate the effect of the fault
to the system operation. (The analysis of the internal states supports the
detection of those injected faults which are masked or remain latent).

The basic scheme of the fault injection methodology, essentially iden­
tical with the classical model of testing is shown in Fig. 1.

In ut

Fault type

Fig. 1. The scheme of dependability evaluation with fault injection

FAULT INJECTION BASED DEPENDABILITY ANALYSIS 101

The main difference between this scheme and the classical test scheme
is only the fault injector inserting faults into the probe system.

3. System Development

In order to assure a high degree of portability the hardware dependent and
hardware independent functions are implemented in strictly separated soft­
ware modules, similarly to the architecture of the UNIX operating system.
The evaluation environment contains the important hardware independent
parts of the above described system, and provides the interfaces to the user
for the integration of the hardware dependent parts.

3.1. System Structure

The system is divided into four basic functional modules:
- Fault injector

The fault injector supports the generation of different fault types.
The faults are injected into the memory directly supporting the simulation
of the effects of storage, bus transfer, etc. errors. As the basic functions of
this module are based on memory accesses, only the setting of a few con­
figuration parameters, such as memory word width, memory area borders,
etc. is required to tailor this module to a new target system.

This principle can be adapted for the error simulation of such other
devices as the CPU as well by deducing their faults to a memory image
error. The main idea, e.g. for the simulation of a register fault in a CPU
can be realized by the following method:

Copy all internal registers of the CPU into the main memory,
into the work area of the experimental environment.
Inject a fault into the copy of the register.
Reload copies into internal registers.

Observer
The observer module generates the description of the observed sys­

tems state in order to compare it with the reference systems description.
Some experimental setups are required to store the system state de­

scription. In order to decrease the huge storage place requirement of the
state description the observer ensures the possibility to perform some in­
formation compaction methods, e.g. checksum or signature analysis.

- Evaluator
The evaluation module analyses the occurrence of the several faults

and the average latency time of the error. As a service to the supervisor
module it accounts the required experiment number based on the defined

102 B. BENYO and A. PATARICZA

consistency interval. The applied algorithm of the experiment number
estimation can be found in [2].

Supervisor module
The supervisor module has three main functions:

Organizing and synchronizing the working modules during the
experiments.
Handling the observed system.
Providing some basic services to the other modules.

The hardware dependent part of the fault injection system contains
the description of hardware environment and some simple service routines
(e.g. a pseudo random number generator, based on [2], controlling the fault
injection into the defined memory area or a time-out watch-dog, etc.).
Due to the hardware dependency of parts of the system, these routines
are located in separate source files in the supervisor module and they are
linked to the system after a recompilation. At the same time the supervisor
module assures a unified interface of the hardware dependent functions
logically belonging to other modules. A separate hardware description file
contains the definitions of data types and constants used by all of the
modules.

The structure and information flow of DEEP are shown in Fig. 2.
Information flow in this sense means not only data flow but also several
services provided by modules to each other as well. A more detailed tech­
nical description of the system can be found in [7].

4. Dependability Evaluation of the Computer
in Master-checker Mode

For the conceptual validation of the DEEP project an application was se­
lected, which assured not only the checking of correctness of the imple­
mentation but also characterized the efforts needed to model building, too.
As a pilot project, the simulation of the master-checker mode was selected.
The main attraction of this selection is that the execution of a whole model
design process was required, while the results of the measurement exper­
iments were well-predictable and verifiable due to the simplicity of the
principle to be modeled.

4.1. The M aster-checker Principle

Duplicated modular redundancy is a well known principle in fault tolerant
system design [4], [5], [6], which means that the function to be made fault
tolerant is executed simultaneously in two identical units processing the

FAULT INJECTION BASED DEPENDABILITY ANALYSIS 103

Fault mode

Fig. 2. The environment structure and the internal information flow

same input. As far as the system is fault-free, each unit generates the very
same output. In the case of a fault in any unit a discrepancy appears on
the system outputs which can be detected by a comparator.

In master checker mode the system setup, as depicted in Fig. 3 is
based upon this duplication of the system. Both the master and checker
units receive the same inputs. One of the units, the so-called master gen­
erates the output signals of the system. The checker unit performs the
same operations as the master and the outputs of both units are compared
by the built-in comparators of the checker. In the case of a mismatch an
error is detected and signalled to the 'outer world'. It should be pointed
out that the application of a combinatorial comparator assumes a strict
synchronism of both units.

104 B. BENy6 and A. PATARICZA

• MASTER OUTPUT

INPUT -- COMPARATOR :t:- O' ERROR

.. CHECKER
,.

Fig. 3. Master-checker mode

As in all duplicated systems, this approach supports only fault detec­
tion. In the case of a discrepancy it cannot be decided which unit produced
a faulty output, thus neither unit level diagnostics, nor error correction can
be performed.

Another restriction on the fault detecting capabilities results from the
processing of the same input signal stream by both processors. In the case
of an input error both units generate identical (and from the user's point
of view faulty) outputs without any error signal. For detailed information
on the master-checker principle see [3] and [6].

4.2. The Problem with the Realization of the
Fault Injection Based Evaluation

The master-checker configuration detects any fault in the duplicated part
of the system. In order to evaluate the dependability measures of a system
in master-checker mode faults are to be injected into one of the duplicated
units of the system. The problem is caused by the improper controllability
of these units, as in master-checker mode both of the duplicated units (the
master and checker) receive the very same input. In this way a software
injected fault had an identical effect on both units. Because of this reason
in the master-checker mode a software fault generator without hardware
modification cannot be applied to the evaluation of the effects of faults in
the computing core.

Potential solutions to this problem are the use of a hardware fault
injector or the evaluation of a fully software-based simulation model, which
assures higher controllability than the real system itself. Because of the
unportability of the hardware fault injection based system evaluation we
selected the second solution.

FAULT INJECTION BASED DEPENDABILITY ANALYSIS 105

4.3. The Method of Master-checker Simulation

In the simulation of the master-checker mode a special type of simula­
tion was applied: The real system has been utilized in normal configura­
tion running a strictly deterministic, and therefore repeatable process as
benchmark.

At the beginning of the dependability analysis a reference run was
made. Storing the information consisting of the system states descriptions
during this reference run a reference data base describing the error-free sys­
tem operation was generated. In the forthcoming experiments the compar­
ison functions of the master-checker mode were simulated by subsequently
performing step by step comparisons between the actual and stored system
states. In the case when the comparison results in a discrepancy of the
states a master-checker fault event was detected.

The main idea in this modelling approach is the approximation of the
immediate error detection of the master-checker mode by the sequence of
checks of sampled system states. It should be pointed out that a sufficiently
high frequency of the checks of the system state assures a statistically
reasonable approximation even for the error latency measurement.

4.4. The Realization of M aster-checker Simulation

MEMSY is based on the MVME188 system containing one or two MC88100
central processor units and some MC88200 cache/memory management
units depending on the system configuration [3], [7], [9]. The basic structure
of the system is shown in Fig. 4. In case of a MVME188 system the
duplicated part of the system is the computation kernel: the CPU and the
corresponding MMU s.

In the real master-checker mode the corresponding M-bus signals of
this units are compared at the beginning of each clock-cycle. Based on
practical considerations some simplifications were applied in the simulation:

The memory contents were compared rather than M-bus signals.
- The check frequency was lower than in master-checker mode, as de­

scribed above. (In the actual implementation one checkpoint was
inserted after each C instruction.)

- Only the data lines of the system were compared.
Considering the first and third simplifications the simulation model

based estimator of the fault coverage is lower than in the real master­
checker mode. Because of the second simplification the error latency mea­
S ,.1 red by the simulation model will be longer than in the real case.

106 B. BEN,'O and A. PATARICZA

M
Control E

B M
U 0
S R

Y

Fig. 4. MC88200 system configuration

In summary: the result of the dependability evaluation utilizing the
implemented simulation model of the master-checker mode is a pessimistic
estimation of the real system dependability.

In the first reference run of the benchmark in every check-point the
current memory state (or the compacted memory content) was saved. After
this in the sample runs at each checkpoint the current memory state was
compared with the saved reference. In case of a discrepancy a master­
checker error was registered.

The method is illustrated in Fig. 5.

5. Experimental Results

As described earlier, in this phase of the development the primary target
of the experiments was the validation of the simulation methodology of the
master-checker configuration rather than the evaluation of dependability
in all details.

In order to prepare a comparison with other fault-tolerance techniques
such as watch-dog processors performing a control-flow check with a high
level instruction resolution, the checkpoint number was utilized in the eval­
uation of the master-checker mode rather than real time of the checkpoint

check­
points

FAULT INJECTION BASED DEPENDABILITY ANALYSIS

Benchmark
flow

Fig. 5. Master-checker simulation method

107

as a time stamp. In this way a rough estimation of the error latency is
produced.

In the experiments a copyback memory update policy was applied.
(For the description of the MC88200 CMMU see [10]). In a different case
of injected type of f'HIlt, 2000 repetitions of the experiment were done. The
effected area was the whole cache: the address tags, the status information
and the data area as well.

The results are summarized in Table 1.

Table 1
Experimental results

Injected fault Masked Detected

.5 single stuck at 0 fault 62% 38%

1 double stuck at 0 fault 54% 46%

.) double stuck at 0 fault 18% 82%

• In portion of the total run time.

Latency·

38%

42%

40%

Even this rather simplified exppriment shows the value of the approach
in the qualitative evaluation of fault-tolerant systems.

108 B. BENYO and A. PATARICZA

The value of fault coverage approximately equals its expected value.
The majority of the faults are masked by the later operations. These
experimental results nearly coincide with the corresponding ones in the
literature [8]. The number of masked errors decreases below 50% only in
the case of serious, non-realistic fault model.

The long fault latency compared with the total run time shows that
the memory area used by the benchmark fits into the cache and the errors
were detected only near to the finishing phase of the benchmark run, during
the copyback operation of the computed results into the main memory.
Accordingly, the injected fault set does not affect significantly the fault
latency.

6. Summary

6.1. Results

A portable dependability evaluation system called DEEP, Dependability
Evaluation Experimental Package is developed containing the hardware in­
dependent parts of a fault injection based dependability analysis system
and provides well-defined interfaces for the implementation of hardware
dependent parts. The system contains approximately of 1000 lines of C
source code.

A new, simulation based dependability evaluation method was created
for the master-checker mode working computer systems. The simulation
algorithm was validated by implementing it in the MEMSY system.

6.2. Further Work

The continuation of the work, on the one hand, should be the full de­
pendability evaluation of the MEMSY system in master-checker mode. We
should make experiments in the case of various fault models. By exper­
iments in different cache policies different system configurations can be
compared with respect to dependability.

On the other hand, an important addition to DEEP will be the inte­
gration of statistical routines in order to adaptively control the number of
the experiments in order to assure a proper confidence level of the measure­
ment results, and a perspective goal will be the integration of this simulated
data acquisition system to an intelligent model generation and verification
system.

A current diploma project aims the implementation of DEEP for ed­
ucational purposes on PC.

FAULT INJECTION BASED DEPENDABILITY ANALYSIS 109

References

1. LAPRIE, J.C. (ed.) (1991): Dependability: Basic Concepts and Terminology in English,
French, German, Italian and Japanese, IFIP WG 10.4 Dependable Computing and
Fault Tolerance, Springer-Verlag, Wien, New York.

2. JAIN, R. (1991): The Art of Computer System Performance Analysis (Techniques
for Experimental Design, Measurement, Simulation and Modelling), John Vviley &
Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, \Viley cop. 1991.

3. PATARICZA, A. (1991): Hardware Testing Concept for the MEMSY Computing Nodes,
Friedrich-Alexander University of Erlangen-Nurnberg, lnst. of Computer Science,
Internal Report No. 6/91.

4. DAL CIN, M. - GRYGIER, A. - HEssENAuER, H. - HILDEBRAND, U. - HONIG, J. -
HORL, W. - MICREL, E. - PATARICZA, A. (1993): Fault Tolerance in Distributed
Shared Memory Multiprocessors. To appear in Springer LNCS, 1993.

5. DAL CIN, M. - HORL, W. - MICREL, E.- PATARICZA, A.(1993): Error Detection
Mechanisms for Massively Parallel Multiprocessors. Proc. Eurom-icro Workshop on
Parallel and Distributed Processing, Gran Canaria, 27 - 29. Jan.]993, pp. 401-408.

6. HORL, Vl. - MICREL, E. - PATARICZA A. (1993): Hardware Support for Error Detec­
tion in Multiprocessor Systems - A Case Study, Microprocessors and Microsystems,
Vo!. 17, No 4, May 1993, pp. 201-206.

7. BENYO, B. (1991): Fault Injection Based Dependability Evaluation, Diploma Thesis,
Erlangen-Budapest, Jun. 1991.

8. CHOI, G. S. - IER, R.K. - CARRENO, V.A. (1990): Simulated Fault Injection: A
methodology to Evaluate Fault Tolerant Microprocessor Architectures, IEEE Trans­
action on Reliability, Vo!. 39, No. 4, October 1990.

9. MOTOROLA (1989a): 1l'fVME188 VMEmodule RISC Microcomputer User's Manual,
Preliminary; September 1989.

10. MOTOROLA (1989b): MC88200 Cache/Memory Management Unit Users Manual,
Prentice Hall, Englewood Cliffs, New Jersey 07632.

