
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 37, NO. 2, PP. 111-118 (1993) 

EMULATION TOOL FOR TESTING FAULT 
TOLERANCE 

Andras P. SOMOGYI 

Department of Measurement and Instrument Engineering 
Technical University of Budapest 

H-1521 Budapest, Hungary 
email: somogyi@mmt.bme.hu 

Phone and Fax: +36 1 166-4938 

Received: September 20, 1993 

Abstract 

The aim of this paper is to show a possible adaptation of the well known microprocessor 
emulation method for testing fault tolerance, and to examine the advantages of the adap­
tation. First a survey on test methods and their application will be given with respect 
to the possibilities for testing fault tolerant architectures. It will be followed by a short 
overview of different microprocessor fault models, and the fault injection routines based 
on the fault models. The injection routines require some hardware extension of the con­
ventional microprocessor in-circuit emulator. The necessary extensions are shown on a 
MC68000 based in-circuit emulator. Finally, some improvement possibilities are discussed. 

Keywords: fault injection, in-circuit emulator, automatic test, fault model of micropro­
cessors. 

1. Introduction 

Extensive investigations have already been carried out to develop compre­
hensive and easily adaptable test methods. Also many publications have 
dealt with various methods of designing fault tolerant computer architec­
tures. Considerably less attention has been directed towards testing fault 
tolerant architectures. The primary difference between testing fault toler­
ant and conventional computer architectures is that the correct functioning 
of an architecture without fault tolerance can be tested through its avail­
able I/O ports, while testing a fault tolerant architecture necessitates the 
access and handling of internal signs. 

2. Simulation or Emulation 

The various test methods can be arranged into four groups based on their 
basic strategies: whether the test method uses the existing device under 
test (DUT) and/or its environment, or whether these components are sub­
sti tuted using simulation. 



112 A. P. SOMOGYI 

Normally, simulation assures much easier supervision of the internal 
points of the system (declared by the model) with respect to both access­
ing and modifying an internal line. Modifying internal signs of a system 
requires a more detailed model. The more detailed model used, the more 
complex supervision can be achieved over the nUT and the more compu­
tational capacity is required for executing the test. As a general rule, the 
function of the nUT containing microprocessor ({LP) cannot be efficiently 
simulated at the {LP internal logic level. Therefore simulating its function 
offers restricted possibility for testing. Since the environment of a nUT is 
not the target of the test, the environment can be simulated based on its 
top model. 

Testing a system is always carried out either to locate a certain failure, 
or to check the correct operation of the system. In case of locating a failure 
and in case of verification, the nUT cannot be simulated. Hence it is 
unavoidable to develop methods of testing physically existing systems. 

The classical ways of a physical test are the 'pin-pad' and the In­
Circuit Emulation (ICE) methods. Pin-pad has many disadvantages com­
pared to the ICE, as contact faults, driver problems, different pads for 
different nUT's, etc. At the same time, ICE can ensure more detailed ob­
servability, but only in connection with the emulated part of the nUT. For 
that purpose, the {LP of the nUT is emulated, promising the observability 
of the most important system parameters. 

For the same reason it seems to be obvious to use the {LP emulation 
for injecting fault, first of all into the activity of the {LP. Emulation of {LP 
functions makes it possible to emulate faulty processors. To achieve this, 
the test model of the {LP should be discussed. 

3. Fault Model of Microprocessors 

A fault model description of a {LP cannot be built upon the internal physical 
structure of the {LP, since that kind of information is not published. The 
user-created fault model of a {LP can only be established on the basis of 
the functional description of the {LP. 

It is, however, obvious that generally used {LP'S contain nearly the 
same function units (THATTE et al, 1980). All fault models treated in the 
literature use these elements as starting-point. These are: 

- registers, 
- register decoder, 
- instruction decoder and controller, 
- datapaths and data manipulation units. 



EMULATION TOOL FOR TESTING FAULT TOLERANCE 113 

Data contained in the registers of a CPU completely specify the state 
of the processor. The instruction decoder together with the controller are 
responsible for controlling the transitions between states. 

The main emphasis is therefore on the fault model of registers and 
the instruction decoder. If a register fails to operate correctly, it prevents 
the processor from storing its state correctly which may cause (in case of 
special function registers) unrecoverable errors. If the instruction decoder 
and/ or the control unit of the CPU is faulty, it will prevent the processor 
from executing certain state-transitions. All faults of the datapaths can 
be mapped onto these units, therefore it is not necessary to deal with the 
fault model of the internal datapath. The internal datapath structure of 
the processor is usually unknown, thus it is impossible to describe the effect 
of an internal bus fault. 

Fault models of j.LP registers and the register decoder are similar to 
those of memory arrays (NAIR et al., 1978; MARINESCU, 1982): each bitcell 
of a register can 

have stuck-at-x, 
have stuck-open, 
have transient, 
have multiple access, 
have data retention fault, 
be state coupled to another cell. 

Typical register decoder faults are: 
no register selected, 

- one or more registers selected instead of the required, 
- one or more registers selected in addition to the required. 

Generally defined: In case of a register decoder fault instead of a register 
Ri a set of registers are selected, where the set can be empty, or may, or 
may not contain the original register Ri. Based on their functional effect 
the bitcell faults, like multiple access, and state coupled cells cannot be 
distinguished from decoder faults. Some of these faults can also be data 
dependent. Our analysis is done only for data-independent faults. 

Executing an instruction with a faulty instruction decoder can cause 
no instruction to be executed, 
or another instruction to be executed instead of the required, 
or other instruction(s) to be executed additionally to the required. 
This model (THATTE et al., 1980) uses the easily accessible instruc-

tion level of the CPU, thus it is easy to use. However, it is not suitable 
for modelling partially executed instructions. Faults like partially exe­
cuted instructions occur in all kinds of today's j.LP'S, since executing an 
instruction in these j.LP's always means sequential execution of several so-



114 A. P. SOMOGYI 

called microinstructions, where executing a micro instruction means paral­
lel execution of more microorders. Fault models dealing with that problem 
should be based on the possible micro orders and microinstructions of the 
f..Lp (ABRAHAM et al., 1984; FRENZEL et aI, 1984). Since no documentation 
of the CPU on this level is published, determining these collections cannot 
be done deterministically. 

4. Fault Injection of Microprocessors 

The faulty operation of the emulated CPU should be simulated according 
to the discussed fault models. Because of the complexity of the f..LP's, the 
f..LP emulating device usually uses the same type of f..LP as the original, 
or a type compatible with it. Through emulating the f..LP with the same 
type of processor, the only possible effect level is the instruction level of 
the f..LP. All fault models described above should be implemented by using 
instructions of the processor. 

4.1. The Global Algorithm 

The global algorithm of simulating a faulty processor is the following: 
- While the processor is executing the original instructions of the DUT, 

the simulator should determine for each instruction, whether the sim­
ulated fault does or does not have any effect on the correct instruction. 
A fault does affect an instruction if the result state after executing the 
instruction in case of a faulty processor differs from the result state of 
a fault-free processor (if both processors were in the same state before 
executing the instruction). 
If the fault does not have any effect on the current instruction, no 
intervention is needed. 

- If the fault does have some effect on the current instruction, the exe­
cution should be interrupted in order to ensure saving and preparing 
the processor state for the faulty execution. This part of the simula­
tion is called injection pre-routine. After the pre-routine the original 
instruction can be executed. It is possible, however, to omit the orig­
inal instruction. It will be defined by the implementation of the fault 
model. 

- After executing the pre-routine and the original instruction, another 
routine should be activated to shape the result state of the processor 
in accordance with the executed instruction and 1 he simulated fault. 
This routine is called the post-routine. 



EMULATION TOOL FOR TESTING FAULT TOLERANCE 115 

Implementing the necessary fault models means defining the pre- and 
post-routines for each fault and instruction. n instructions and k fault 
models result in k x n pre- and post-routines. It will be shown, however, 
that many of these routines are the same. 

4.2. Implementation 

The fault model for the JLP registers and the register decoder will re­
sult in approximately only as many pre- and post-routines as many different 
types of faults are defined: 

Bitcell faults of register Ri as stuck-at, stuck-open or transient faults: 
all instructions writing to ~ should be extended by the specific pre­
and post-routines. The task of these routines is to compensate the 
write instruction for the faulty cell. The whole instruction cannot be 
omitted since it may have effect on other cells. The pre~routine will 
save the content of Ri before the instruction, and after the execution 
of the write instruction the post-routine will restore the content of 
the specific cell. 
Bitcell faults of register Ri as data retention faults: this type of fault 
can be simulated through executing a specific routine once only, not 
associated with any instruction, but associated e.g. with time. The 
task of this routine is to reset the faulty cell. 
Register decoder fault: All types of these faults can be simulated 
by injecting routines of similar construction. Two sets of injection 
routines should be implemented. One for all instructions trying to 
write Ri (i.e. Ri is the destination), and one for all instructions trying 
to read Ri (Ri is the source). In case of write-type instructions, 
the pre-routine must save the content of ~, and the post-routine 
should restore it and overwrite all the registers affected by the decoder 
fault. In case of read-type instructions, the pre-routine should save 
the content of Ri, then overwrite it with a specific logical combination 
of the contents of the registers affected by the register decoder fault. 
The post-routine will in that case do not more than restore the original 
content of Ri. 

Special problems arise, however, when simulating a faulty program­
counter register. That fault affects each instruction execution, since the 
PC register is modified after each instruction. It will cause all instructions 
to be indicated as affected ones. Injecting routines before and after each 
instruction will slow down the system to an unacceptable extent. This 
problem can be solved by some hardware extension. A fault affecting all 
bitcells of the PC-register of the CPU (e.g. the register cannot be selected), 



116 A. P. SOMOGYJ 

is a catastrophic fault from the point of view of the system. If the fault 
affects only one or some of the bit cells of the PC, then an injection routine 
is only needed if the faulty cells are changed, hence the ftP reads instruction 
from address matching a given bitmap. If the breakpoint unit of the ICE 
can catch these cycles, it is unnecessary to interrupt the program execution 
after each instruction. 

The implementation of instruction decoder and control faults is not 
so obvious. For the basic fault model (when instead of instruction Ii a set 
of instructions are executed where the set can be empty, or mayor may not 
contain the original instruction Ii) a general implementation can be given: 
the execution of the original instruction should be omitted, and all the 
instructions in the set should be executed. (Because of omitting the origi­
nal instruction, the pre- and post-routines are merged.) For implementing 
faults causing partially executed instructions, the set of micro orders and 
microinstructions and their effect(s) on the processor state should be deter­
mined and described in a library. The information necessary for that can 
be gathered from the instruction manual of the ftP, although it is not de­
scribed directly (ABRAHAM, 1984). The tasks of the pre- and post-routines 
for specific fault models can be determined on the basis of this library. 

5. Hardware Requirements 

The hardware requirement of the method of simulating processor faults as 
described above is that the emulation of the processor should be interrupt­
able at any arbitrary specified set of instructions. 

5.1. The Function of ICE 

Let us consider a ftP ICE for emulating the processor MC68000 with 
the same type of processor (SOMOGYI, 1988). ftP- ICE's using the same 
type of processor as that of the emulated one, have got two operation 
modes: host mode and target mode. The emulation is performed in target 
mode: the processor executes the instructions fetched from the DUT. If 
a breakpoint occurs the emulation is aborted, and the ICE is switched to 
the host mode. In host mode the CPU executes instructions from the ICE 
memory. This mode is necessary to ensure observabilit.y of the processor's 
internal state. The breakpoint unit of a conventional ICE does not support 
the possibility of interrupting the emulation at an arbitrary specified set. 
of instructions for two reasons: it would need much more memory, and t.he 
identification of the next in turn instruction code based solely on the pP 
bus sign would be impossible. 



EMULATION TOOL FOR TESTING FAULT TOLERANCE 117 

Since the MC68000 cannot have more than 65536 instructions, a mem­
ory of 64 kbit is needed to store the information whether an instruction 
should or should not cause breakpoint. 

5.2. Identification of the Next Instruction 

The identification of the next instruction is prevented by the pipeline 
feature of the /-LP, and by the fact that no sign of the /-LP bus indicates the 
first word of a fetch cycle. 

To eliminate these difficulties the following procedure is applied: 
Whenever the data bus of the /-LP contains data equal to the code of an 
instruction where injection should be done, a non maskable interrupt is 
performed. The interruption causes the processor to save its state, includ­
ing the address of the next instruction to be executed. If that address is 
equal to the address of the data causing the interrupt, then that data is 
a code of an instruction where injection should be done. In this case, the 
pre-routine is activated. If the address of the next instruction is not equal 
to that of the data, then the data is either not an instruction code, or IS 

not the following instruction (pipeline!). 

5.3. Other Problems 

In case of newly developed processors, such as the 68030, another 
problem arises. The processor type 68030 contains instruction cache, mak­
ing the instruction fetch order unobservable. This problem can be solved 
by separating the fault tolerance test against cache faults and faults in the 
conventional part of the /-LP. 

6. The User Platform 

The user platform of the fault injector supports the implementation of the 
fault models discussed above. It means that the user need not specify the 
details of injecting a given fault, but the required fault should be selected 
from the injection library. Furthermore, it is possible for the user to de­
scribe special faults and add them to the library. The description follows 
the injection method described above: for defining a new fault injection, 
first the instructions should be listed which are affected by that fault. For 
simple usage, all indicated instructions use the same pre- and post-routines. 
For advanced applications, special routines can also be defined for different 
instructions within the same fault. With this construction, nearly all types 
of microprocessor faults can be simulated. 



118 A. P. SOMOGYI 

After choosing the appropriate fault(s) from the library, the conditions 
of the injection should be set. The available condition options are derived 
from the occurrence mode of the real fault. Such options are: transient 
or permanent faults. In case of transient error the triggering condition: 
random, time, cycle-time, data, etc. 

The evaluation of the experiment is carried out on the basis of the 
trace diary and with the aid of the fault detection feedback. Since most 
single processor devices implement fault detection only, where the detection 
is done by adding some special hardware (e.g. watch-dog), it is necessary to 
ensure an external feedback between the DUT and the ICE. The collected 
data are stored in the experiment diary for later (off-line) analysis. 

7. Conclusions and Improvement Possibilities 

The presented method is developed for testing the fault tolerance of 
the /LP controlled devices against /LP faults. For most of the typical faults 
of /LPS, algorithms can be given for injecting these faults. For the remaining 
cases, a general Mainframe is defined for the user to develop his own fault 
injection algorithm. 

The set of faults which can be injected by the emulator can be ex­
tended over other units of DUT connected with the P bus, e.g. memories. 
It should be noted, however, that this extension is only effective if no fault­
masking is performed between the processor and the unit. The effect of 
all faults of the unit should be mapped onto the /LP bus. Special injection 
routines should be activated around all the instructions which address the 
unit under discussion. 

The developed fault tolerance test tool is suitable not only for final 
verification of fault tolerance, but can also be effective in the development 
phase, since debugging is also aided through the trace diary. 

References 

NAIR, R. - THATTE, S.M. - ABRAHAM, J.A. (1978): Efficient Algorithms for Testing 
Semiconductor Random-access Memories. IEEE Transactions on Computer, June 
1978, pp. 572-576. 

MARINESCU, M. (1982): Simple and Efficient Algorithms for Functioanl RAM Testing. 
IEEE Test Conference 1982, pp. 236-239. 

THATTE, S.M. - ABRAHAM, J.A. (1980): Test Generation for Microprocessor. IEEE 
Transactions on Computer, June 1980, pp. 429-441. 

ABRAHAM, J.A. - BRAHME, D. (1984): Functional Testing of Microprocessor. IEEE 
Transactions on Computer, June 1984, pp. 475-485. 

FRENZEL, J.F. - MARINOS, P.N. (1984): Functional Testing of Microprocessor in a 
User Environment. IEEE Fault Tolerance Conference 2984, pp. 219-224. 

SO~!OGYI. A. P. (1988): MC68000 In-Circuit Emulator. Stud. P. Contest of TUB. 1988. 


