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Abstract 

Recently a number of publications have proposed alternative methods to apply in least 
mean square (LMS) algorithms in order to improve convergence rate. It has been also 
shown that variable step size methods can provide better convergence speed than the fixed 
step size ones. This paper introduces a new algorithm for the on-going calculation of the 
step size, and investigates its applicability in the training of multilayer neural networks. 
The proposed method seems to be efficient at least in the case of lower level additive input 
noise. 
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1. Introduction 

A number of recent publications on learning systems show that adaptation 
rate issues are still very important research topics since practical problems 
always require higher and higher rates of convergence. This paper concen­
trates on variable step size methods related to the LMS algorithm. The 
LMS algorithm is one of the possible alternatives for solving adaptation 
problems. As it is explained in (BELLANGER, 1992), the current state of 
adaptation algorithms can be characterized by the competition of the LMS 
algorithms with the recursive least squares (RLS) type of algorithms. The 
former one is computationally simple while this latter is more efficient at 
the price of higher computational burden. As it is shown in (WIDROW et 
al., 1984), the LMS algorithm seems to be more appropriate in the case of 
nonstationary inputs, and can be considered as a starting point for many 
algorithms related to nonlinear applications (see e.g. (WIDROW et al., 
1990) ). 

Many quite recent. results show that the application of variable step 
size can considerably improve convergence at a relatively low price. For 
the RLS algorit.hm see e.g. (DINIZ et al., 1992) where the computation 
of an optimal convergence fact.or is proposed for convent.ional transversal 
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FIR filter realization, and for the subband adaptive filtering method. A 
similar example is the work of Kollias (KOLLIAS et al., 1989) where a higher 
order approach together with variable step size has been suggested for the 
training of artificial neural networks. 

In Section 2 of this paper it is shown that for the LMS type algo­
rithms, based on the adaptive linear combine approach of Widrow (see. 
e.g. (VVIDROW et al., (1985)), the coefficient error can be reduced in every 
step optimally if the input is not noisy, and the convergence factor J.L is 
variable. For the variable J.L a simple explicit formula is given. 

In Section 3 the application of this optimal convergence factor is ex­
tended to such 'nonlinear combine as multilayer neural networks. This 
extension is an approximation, however, according to the simulations this 
approximation can improve the efficiency of the training in comparison to 
the conventional backpropagation algorithms even if it is extended with 
the momentum technique (see e.g. WIDROW et al., (1990)). 

2. Optimum Convergence Rate for the LMS Algorithm 

In the LMS-type adaptation schemes the parameters are updated in the 
following form (see e.g. (WIDROW et al., (1985)): 

is the parameter vector of the linear combiner, 
is the input vector of the linear combiner, 
the so-called regression vector, 
stands for the output error: Ck = dk - Yk> where 
is the desired sample, 
is the output sample: Y = W[Xk, and 
is the (possible variable) step size. 

(1) 

The classical solutions for the selection of the step size suggest two 
alternatives {see e.g. (WIDROW et al., 1990)). The first one is the so-called 
J.L-LMS algorithm which operates with a small constant step size. The 
second one is the so-called a-LMS algorithm which applies a time-varying 
step size of the form of 

o < a < 2. (2) 

For practical applications 
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settings are suggested. If we investigate the step size problem through the 
convergence of parameters, we can utilize the stability theory approach 
used in the general convergence analysis of time varying and adaptive sys­
tems (see e.g. JOHNSON, 1984). This relates the convergence problem to 
the behaviour of such a homogeneous system where the state variables cor­
respond to the coefficient errors. If W* stands for the ideal parameter 
vector to be approximated, and ..6. W k = W* - W k denotes the parameter 
error at the kth iteration, then the next step results in a parameter error 
of 

(3) 

At this point let us introduce a generalization of the step size J.L, and replace 
it by a full step size matrix M. This means that the state transition matrix 
in (3) has a form of I - AkX[ where Ak = MXk stands for a vector. 
The investigation of this state transition matrix shows that the maximum 
reduction in the parameter error m (3) can be achieved if M = diag 
< J.L, J.L, ••• J.L >, and 

r 
k 

+ 

Random signal 

+ 

1 
(4) 

d
k 
=2cos(2n:k1N) 

Fig. 1. The adaptive linear combiner example with a random signal added at the input 

It is interesting to note that this result corresponds to the a-LMS algorithm 
with a = 1. Obviously, (4) is a result where the inputs are not considered 
to be noisy observations. For the case of noisy inputs, depending on the 
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noise level, the application of a < 1 is advisable. As a simple example, 
and for comparison we consider the example of Widrow (see WIDROW et 
al., 1985, p. 103). The adaptive system can be seen in Fig. 1. The input is 
a sine wave consisting of N = 16 samples for every period with a random 
signal added as input noise. The desired signal is the cosine waveform. 
For the practical case use of no input noise (the amplitude range of the 
noise is 0.001) the RMS error can be followed in Fig. 2. Two runs were 
accomplished for every step size setting: the name 'upper track' stands 
for the case with initial condition (wo,wI) = (0,0), while the name 'lower 
track' stands for the (wo, wt) = (4, -10) initial condition case. Fig. 3 shows 
the convergence on the parameter plane. 
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Fig. 2. RMS error versus iteration number for the example of Fig. l' with .N = 16, and 
noise amplitude = 0.001 
(a) adaptive J1 'lower track' b) adaptive J1 'upper track' 
(c) J1 = 0.1 'lower track' (d) J1 = 0.1 'upper track' 

In the case of noisy inputs, as it is known from the literature of the 
LMS algorithm (see e.g. VVIDROW et al., 1985), as the algorithm itself does 
not provide proper filtering for the noise, the convergence is more problem. 
atic, and the application of (4) results in noisy parameter estimates: the 
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noise reduction effect of the JI.-LMS algorithm with small JI. over a large 
number of iterations is not present. However, the 'aggressivity' of the rela­
tively large step size may improve convergence possibly with a combination 
of the constant and small JI.-based methods. Figs. 4-6 show the behaviour 
of the two algorithms in the noisy input case. It can be observed that 
the tracks for the variable step size case heavily oscillate, but can reach 
smaller RMS error sooner than the fixed JI. alternatives. If the algorithm 
is followed by an on-line RMS calculation, then it can be easily combined 
with the JI.-LMS algorithm. 
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Fig. 3. Weight value tracks for the example of Fig. 1 with N = 16, noise amplitude = 
0.001 
(a) Jl = 0.1 (b) adaptive Jl 

3. Pseudolinear Regressions with Variable Step Size 

In adaptive HR filtering (see e.g. WIDROW et al., 1985) the adaptation 
mechanism of the parameters is very similar to the case of (1), however, 
there is a considerable difference in the content. In HR adaptive filtering 
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Fig. 4. RMS versus iteration number for the example of Fig. I with N = 16. amplitude 
of noise = 0.34 
(a) adaptive 11 'lower track' (b) adaptive 11 'upper track' 
(c) 11 = 0.1 'upper track' (d) 11 = 0.1 'lower track' 

problems the outputs cannot be regarded as linear regressions, since the 
regression vector has implicit parameter dependencies. For this very reason 
the above development is not directly applicable. However, to improve the 
convergence, the variable step size is a possible alternative even for these 
filters. In the literature several propositions can be found for time varying 
step size matrices (see e.g. MOHAMMAD, 1993). The relation of these 
propositions to the stability theory approach is still an open problem. 

Another direction of generalization of the LMS-type algorithms is the 
training of artificial neural networks. The famous backpropagation algo­
rithm (see e.g. VVIDROW et al., 1990) is a typical example: it follows the 
J.L-LMS rule. The second proposition of this paper is the application of 
result (4) to the backpropagation algorithm, even if due to the nonlinearity 
the parameter error 'propagation' rrtnnot be expressed in the form of (3). 
However, if we apply a step size calculated according to (4), then we ac­
cept an approximation of the error q = b.. W kXk, where Xk stands for the 
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Fig. 5. Weight-value tracks for the LMS algorithm operating as in Fig. 1 

with N = 16, noise amplitude 0.34, and Jl = 0.1 

derivative of Yk in the usual forms of the backpropagation. The properties 
of this approximation are still under investigation, however, the first sim­
ulations show that this approximation results in better convergence, and 
again with the combination of the original algorithm, can provide faster 
convergence with negligible increase of computational complexity. As an 
illustration, first a very simple example is considered (see Fig. 7). The 
function to be approximated with a two layered three neuron network is 
the Y = th (x). During the iteration the error y' has been approximated. 
Fig. 8 shows the result where the superiority of the varying step size can 
be observed. As a more complex, but still simple example is the approx­
imation of the function y = 4 x/Cl + 4 x 2). The network is shown in 
Fig. 9, and the RMS error can be seen in Fig. 10. Simulations based on 
standard backpropagation networks with momentum technique show worse 
behaviour than the varying step size technique does. 
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Fig. 6. Weight-value tracks for the LMS algorithm operating as in Fig. 1 with adaptive 
Ji, N = 16, and noise amplitude 0.34 
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Fig. 7. The adaptive neural lidwork for y = 11, (x) 



EFFICIENT TRAINING OF ARTIFICIAL NEURAL NETWORKS 

100 rL----.----r----.---~----r_--~--~~--~----r_--~~ 

E·. j 

~. ..... 1 
1/\ ~. r\l\fi\ .,' , 
r'- r\f\.·l~ \ h 1 

10"' l G-VT"'''"" ::':";" """"" (b) , 

o 10 

.' . 

(c) 

20 30 40 50 60 70 80 

Fig. 8. RMS error of the example of Fig. 7. 
(a) adaptive p. (b) p. = 0.1 
(c) p. = 0.4 
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Fig. 9, The adaptive neural network for y = 4x/(1 + 4x2
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Fig. 10. The RMS error of the example of Fig. 9 

4. Conclusions 

In this paper a variable step size method has been reported for LMS-type 
learning schemes. The approach seems to be 'aggressive', and efficient 
especially for cases of low input noise. The variable step size suggested 
here for adaptive linear combine-type adaptive systems provides maximum 
parameter error reduction in every iteration step even for that case where 
initially a 'full' step size matrix is considered. In the second part this result 
has been extended to the 'pseudolinear' case, and especially to the training 
of artificial neural networks. The properties of the suggested algorithm in 
the case of larger input noise, and in the 'pseudolinear' case require further 
investigations. 
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