
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 37, NO. 2, PP. 131-142 (1993) 

CONSTRAINTS: A PROGRAMMING PARADIGM 
AND A MODELLING METHODOLOGY 

Gyula ROMAN and Tadeusz DOBROWIECKI 

Department of Measurement and Instrument Engineering 
Technical University of Budapest 

H-1521 Budapest, Hungary 
email: roman@mmt.bme.hu 

Phone and Fax: +36 1 166-4938 

Received: September 20, 1993 

Abstract 

Constraints are often used as a formal approach to problems, because the very essence 
of the problem can be grasped by them. A lot of problems can be viewed as a set 
of variables and a set of relations on them. From this point of view the problem can 
be mapped naturally to a constraint network (the nodes of the network represent the 
variables; and the constraints in the network represent the relations between the variables 
of the problem); and this gives great significance to the research on constraints. An 
additional advantage is that they achieve global consistency through local computations. 

Constraints and the Constraint Satisfaction Problem (CSP) can be classified by 
various criteria. The most significant classification is based on the type of the values 
assigned to the nodes. 

Another possible classification of CSP is based on the kind of the required solution. 
Significant effort was invested in developing general constraint programming lan­

guages (CPL) to provide an environment where the only thing a user has to do is to 
declare what she/he wants, not bothering how it is done. Though these languages aimed 
at generality, due to the limited ability of data abstraction and higher order constraints 
they could not fully achieve their goal. If the main stress is on the efficiency, dedicated 
solutions claim their place with their unique data structures and specialised constraint 
satisfaction algorithms. 

The main goal of this paper is to give an overview of constraints as a flexible 
knowledge representation tool; to draw attention to the problems of representation and 
to methods of finding the solutions of the different types of constraint networks. 

K eywol'ds: constraint, CSP, discrete and continuous domain, optimal solution. 

1. Introduction 

In the early 60's constraints were introduced in the field of Artificial Intel­
ligence (AI) as a new knowledge representation tool and were used mainly 
in graphical applications and in solving numerical problems. Since the first 
applications proved fruitful, more and more effort was invested in research 
of the field and it was found that though CSPs share common propertieF 
in general, they strongly differ in nature depending on their purpose and 
the type of values they handle. 



132 Gy. ROMAN and T. DOBROWIECKI 

In addition to its good modelling power, CSPs show other useful 
properties: 

1. they degrade gradually under time limitations; interrupting the pro­
cess before normal termination gives partial but useful information; 

2. they are well suited to incremental system development; constraints 
may be added incrementally by incorporating it in the network, up­
dating its arguments and propagating its effects (DAVIS, 1987); 

3. they achieve global consistency through local computation. 

The general definition of CSPs and some important definitions are 
given in Section 2. In Section 3 CSPs are classified by various criteria; 
the problems of each class of CS Ps are outlined and some algorithms are 
presented. Section 4 deals with methods that try to solve very difficult or 
time consuming CSPs. In Section 5 the constraint programming languages 
are compared to dedicated solutions and Section 6 suggests some directions 
of development. 

2. Basic Notions 

Constraint satisfaction systems represent a declarative approach to prob­
lem solving. In such systems only the desired goal is specified, and the 
underlying constraint satisfaction algorithm is responsible for finding the 
solution. As a result, it is easy to represent problems, and as an additional 
advantage, this nonprocedural nature has potential for parallel implemen­
tation. Before the exact definition of the CSP consider a simple example 
of a constraint network. The statement 

C=A+B (1) 

from a procedural point of view means that the sum of A and B is assigned 
to C. This equation holds just for the moment of assignment, though C 
will not follow subsequent changes of A and B. In procedural languages 
there are two different operators for the assignment and the logical equa.tioIl 
expressing the different nature of the two operations. From a declarative 
point of view this difference does not exist, the system ensures that the 
constraints are satisfied. In the case of (1), it is rather a relation among 
three variables and the system tnes to maintain the consistency of values 
or it reports a value conflict. 



A PROGRAMMING PARADIGM AND A MODELLING METHODOLOGY 133 

2.1. The Constraint Satisfaction Problem 

A constraint satisfaction problem involves a set of n variables Xl, . .. , Xn; 
all variables are associated with their domains DI, ... , Dn containing the 
allowed values RI, ... , Rn; and a set of constraints C. The cO!1straint 
Ci(XiI. ... , Xij) is a subset of the Cartesian product Ri! x ... X Rij, that 
specifies which values of the variables are compatible with each other. (Ci 

is a k-ary constraint if it is imposed on k variables.) A solution is an 
assignment of values to the variables so that all the constraints are satisfied, 
that is, the constraint network is globally consistent (DECHTER et aI, 1988). 
Consistency can also be defined on a smaller scale, for parts of the network. 
The following definitions are given by (MACKWORTH, 1977): 

1. Node consistency 
node i is node consistent iff for any value x E Di, Pi(X) holds, where 
Pi (x) is a unary constraint. 

2. Arc consistency 
Arc (i,j) is arc consistent iff for any value x E Di such that P;(x), 
there is a value y E Dj such that Pj(Y) and Pij(X, y) where Pij(x, y) 
is a binary constraint between x and y. 

3. Path consistency 
A path of length m through nodes (io, iI, ... , i m ) is path consistent iff 
for any values x E Dio and y E Dim such that Pio (x) and Pim (y) and 
Pioim(X,y), there is a sequence of values Zl E D1, ... ,Zm-l E D71l - 1 

such that 
(i) Pij(zr) and ... Pim_j(Zm-l), 

(ii) Pioij(X,Zl) and Piji2(Zl,Z2) and ... and Pim_jim(Zm-I,Y). 

2.2. Representation 

The representation of the problem is very important, because it greatly 
influences the efficiency of finding the solution. Networks of binary con­
straints are often represented by graphs where the nodes are the variables, 
and the arcs are the constraints. Networks consisting of k-ary constraints 
can be represented by hypergraphs (MONTANARI et aI, 1991). 

An ordered constraint graph is a constraint graph in which the nodes 
are linearly ordered to reflect the sequence of variable assignments executed 
by the backtrack search (DECHTER et aI, 1985). Quite a few theorems have 
been stated and proved for constraint graphs of which some are of great 
importance: 



134 Gy. ROMAN and T. DOBROWIECKI 

1. An acyclic graph is globally consistent iff it IS locally consistent 
(HYVONEN, 1991). 

2. If the constraint graph has width 1 (it is a tree), and if it is arc 
consistent than the solution can be found without backtracking. 

3. If the width of the constraint graph is 2 and it is arc and path consis­
tent than the solution can be found without backtracking (FREUDER, 
1982). 

The importance of these theorems is that if the above conditions are 
met, or their cycles can be eliminated, than through applying existing 
efficient methods to accomplish local consistency (which can be done in 
polynomial time), global consistency can be achieved. With (1) and (2) 
the main problem is that the algorithms achieving consistency may increase 
the width of the graph. 

3. Classification of CSPs 

Constraint satisfaction problems can be classified by many criteria, how­
ever, the most important ones are: 

- the type of solution sought; 
- the type of the variable domains (finite, infinite); 
- the type of values it handles (symbolic, numeric). 

Depending on the nature of the CSP different algorithms are used 
to find the solution and usually these algorithms must be tailored to the 
actual problem to gain performance. 

3.1. The Types of Solution 

Formulating the problem as CSP the user may have different goals. In 
most of the cases only a single consistent solution is required. In some 
cases it is not sufficient, and more complicated criteria must be satisfied. 
Depending on the type of solution required the user faces the following 
problems (HYVONEN, 1991): 

- satisfiability problem - the user's goal is to know whether a solution 
exists; 

- finding one (any) solution; 
- finding all the solutions (not ordered, but exhaustive); 
- finding an optimal solution - denoted as the Constraint Optimisation 

Problem (COP). 



A PROGRAMMING PARADIGM AND A MODELLING METHODOLOGY 135 

3.2. Variables with Finite and Infinite Domains 

Various real life problems lead to different representations. The difference is 
usually incorporated in the variables. In some cases the number of possible 
value assignments is limited; in other cases the domains of the variables 
are intervals containing a continuum of possible values. It is obvious that 
these two types of CSPs cannot be solved with the same algorithms. For 
problems with finite domain variables the backtrack algorithm has been 
developed. The backtrack search traverses the variables in a predetermined 
order, assigning consistent values to a subsequence (Xl, ... ,Xi) of variables 
and attempts to assign a value to a new variable Xi+l such that the whole 
set is consistent (DECHTER et aI, 1987a). If no such value can be chosen the 
algorithm backtracks to the most recently instantiated variable and tries to 
assign a new value to it. This procedure is carried out until all the variables 
are instantiated and a consistent state is reached or the possible choices 
are exhausted. In the latter case the system reports failure. Considering 
the graph representation of CSPs this algorithm operates as the depth-first 
algorithm well known from the AI literature. To improve backtracking 
during the search two main modifications were made (HYVONEN, 1991): 

Look-ahead scheme 

a) variable ordering: instantiate first the variable that constrains the 
possible solutions maximally (the variable participating in the highest 
number of constraints); 

b) value ordering: choose the value that maximises the number of op­
tions; 

Look-back scheme 

a) go back to the source of failure: find the first variable that has influ­
ence on the failure and choose the next value for that variable; 

b) constraint recording (learning): the reasons of the failure are recorded, 
the repeated appearance of the situation can be recognized, the same 
problem can be avoided. 

The four methods above could be grouped on the bases of the infor­
mation they use: the first three utilise information coded in the structure, 
while the last uses heuristics to guide its operation. The most important 
problem area that involves continuous infinite domains is numeric equation 
solving, which can also be considered as a CSP. When solving an equation 
two major approaches are used: 

1. exact value, and 
2. interval based systems. 



136 Gy. ROMAN and T. DOBROWIECKI 

The exact value approach has some significant limitations (HYVONEN, 
1991): 

a lot of problems have noisy, uncertain inputs, and the result should 
reflect this property; 
in many cases it is impossible to distinguish between inputs and out­
puts beforehand, the variables should be handled dynamically; 
an exact value system cannot handle families of solutions (e.g. an 
interval); 
numerical constraint propagation systems based on exact values are 
often incomplete, the solution is not guaranteed even if one exists, or 
only one solution is found, though there exist more. 

Interval based systems offer solution to the last problem, though it also has 
!"()rr)(' drawbacks: 

too many and too detailed solutions; 
computational inefficiency; 

- it deals with infinite domains, which introduces additional difficulties. 

From these points it follows that the notion of solution has to be 
abstracted to an interval solution, i.e. the solution also has to be sought 
as an interval (handling the groups of solutions). 

The plublems involving symbolic data processing can be mapped to 
cSPs with finite, discrete variable domain; the algorithms discussed above 
can be applied. 

4. Algorithms and Methods 

To sul,e a given esp, different algorithms are needed. Though the main 
stress is on finding a solution, the resources needed. for the action cannot 
be neglected. Montanari showed that the general CSP is NP complete 
PJONTANARI, 1974). Then it follows that the worst case time complexity 
of finding a solution is exponential in the number of variables. This phe­
nomenon is also known in the field of AI and in graph theory in connection 
with graph traversing; and is often denoted as combinatorial explosion. 
Researchers aim at finding methods that under special circumstances, de­
crease the complexity of finding a solution (FREUDER, 1982), (DECHTER 

et al., 1991). Efforts are made to make the search backtrack-free. The 
rationale for this goal is that the complexity of generating the exact-value 
solutions by a backtrack-free search is linear with respect to the number of 
variables (HYVO;\'EN, 1991). 



A PROGRAMMING PARADIGM AND A MODELLING METHODOLOGY 137 

4.1. Consistency Algorithms 

While the goal of search algorithms is to find consistent solutions, the 
consistency algorithms aim at the removing of inconsistencies from the 
network, because such inconsistencies may result in costly recomputations. 
First Mackworth drew the attention to the importance of the consistency 
algorithms and gave the definitions of node, arc and path consistency 
(MONTANARI, 1974), (MACKWORTH, 1977) and developed algorithms to 
exclude inconsistent situations. These algorithms are pre-processing tech­
niques that transform a given constraint network into a more explicit rep­
resentation before it is subjected to a backtrack algorithm (DECHTER et 
al., 1989). Using consistency algorithms a lot of unnecessary recomputa­
tion can be avoided, speeding up the solution of the problem. Since in 
numerous applications the use of consistency algorithms proved to be use­
ful, a lot of effort was directed toward the improvement of their efficiency 
(MACKWORTH et al., 1985), (lVloHR et al., 1986). If the graph is ordered, 
the 'directed' version of the consistency algorithms can be used, that is, 
the consistency is only checked along the given ordering. If the order in 
which the backtrack algorithm will eventually search the problem is taken 
into account, the processing of many constraints which are unnecessary for 
the search can be avoided (DECHTER et al., 1989). 

4.2. Using Easy Problems to Formulate and Solve More Difficult Ones 

Sometimes the user faces problems which are not solvable or impractical to 
solve due to the huge amount of time they require. In such cases the user 
may decide on solving a 'weaker' version of the problem (Partial CSP), 
hoping to receive some aid to solve the original problem (FREUDER, 1989). 
This draws attention to a space of alternative problems, some of which 
may be both solvable, and 'close enough' to the original one. For this 
approach a metric has to be defined on the problem space to be able to 
decide whether a solution in the alternative space is close enough to the 
original problem's solution. On the other hand, it should be possible to 
manipulate the representation of a difficult problem until it is transformed 
into a simpler one, solve that problem, then use the solution to guide the 
search for the original problem. Before going further, the easy problem has 
to be defined more precisely. 

In general, a problem is considered easy when its representation per­
mits a solution in polynomial time. Since variable instantiation and pre­
processing can be done in polynomial time, but backtracking cannot, prob­
lems that c"n be solved without backtracking are considered (DECHTER et 



138 Gy. ROMAN and T. DOBROWIECKI 

al., 1987a). This property is strongly dependent on the topology of the 
constraint graph. 

To utilise the easy problem approach three major steps are required: 

simplification; 
solution; 
advice generation. 

4.3. Redundancies in the Network 

Though consistency algorithms remove inconsistencies from the network, 
they introduce redundancies to the system (there is more than one piece 
of data in the data base prohibiting certain actions). This has two major 
disadvantages: 

1. such representations might be excessive in storage space, 
2. redundancies might hide some important properties of the constraint 

graph that could be exploited in the search for solutions. 

The connective structure of the constraint graph is of particular importance 
possessing great influence on the tractability of the problem 
(DECHTER et al., 1987). The structure of the constraint graph and the 
complexity of the solution are strongly related. Freuder proved that if the 
graph is a tree then the backtrack-free search is guaranteed (FREUDER, 
1982). 

Thus, if the problem, (i.e. its graph) shows some desirable properties, 
it might be beneficial to preserve them to guarantee a simpler solution. It 
was found that the amount of improvement is directly related to the sparse­
ness of the constraint graph. So, the removal of redundant constraints, (i.e. 
their corresponding edges in the graph) has a potential for improving the 
performance of backjumping. Though the advantage of this method is 
obvious, its application generally increases the search space, which may 
override its benefits. 

5. Applications of Constraints: 
Constraint Languages and Dedicated Systems 

With the development of constraint systems it was recognised that there are 
classes of problems with similar structure which can be solved by the same 
algorithms. This idea has led to the implementation of constraint program­
ming languages, which aim at specific problem areas, but provide the user 
with general tools, and permit him formulate his problem in a declarative 



A PROGRAMMING PARADIGM AND A MODELLING METHODOLOGY 139 

way. Quite a few languages were developed {e.g. Sutherland's Sketch­
pad, Borning's ThingLab, Nelson's Juno or Van Wyk's IDEAL (LELER, 
1988)). There are several advantages of CPLs for the user. Since a CPL 
is declarative in nature, the programmer just specifies his goal and lets 
the underlying algorithm to accomplish the task. As a result, constraint 
programs are easy to build and modify, no traditional programming ex­
pertise is needed. Though with such languages it is easy to specify the 
problems correctly, it might be difficult to solve the CSP. To overcome this 
problem the constraint satisfaction algorithm must be designed with great 
care. With imperative languages when a problem is formulated, it is easy 
to solve, but in complicated cases it might be very difficult to formulate it. 

5.1. Constraint Satisfaction Mechanisms Used in CPLs 

In existing CPLs different mechanisms are used to find the solution. The 
most important ones are (LELER, 1988): 

Local propagation - if there is enough information available (values) 
to inference a new value then a rule is fired, the new value is prop­
agated through the network. If there are more rules available these 
constitute a conflict set, a conflict resolution algorithm has to be used 
to decide which one to fire. A significant advantage of this method 
is that the system can keep trace of fired rules; this information can 
provide useful help to generate explanation. However, this method 
lacks the ability to recognize cycles, because no global information is 
available about the network. 
Relaxation - this method was developed for objects with continuous 
numeric values, and error estimates are used to guide the process. To 
make a new guess the system perturbs the value of each object in 
turn and watches the effect of this perturbation on error estimates. 
This method can be seen as a kind of heuristic search in continuous 
numeric domain. The Newton-Raphson method is widely used to 
iteratively compute new values. 
Propagating degrees of freedom in some cases the value of a vari­
able can easily be computed if another one, whose value is difficult to 
determine, is already known. In such cases the constraint solver does 
not deal with the former variable first, it determines the values of the 
'difficult' variables (these might be part of a cycle), and finally the 
values of the 'easy' variables are simply computed. Parts of the con­
straint network containing such 'easy' variables can be precompiled 
to speed up the computation. 



140 Gy. ROMAN and T. DOBROWIECKI 

Redundant views - with introducing redundant views into the rep­
resentation of the problem global information is introduced, which 
can guide the search when the information locally available is not 
sufficient. 
Graph transformation (term rewriting) the constraints are repre­
sented as a graph. Cycles present in the graph can be eliminated 
by applying term rewriting rules such as sUbstituting 2X for X + X 
(X + X might have introduced a cycle in the graph). 

5.2. Limitations of CPLs 

Problem-solving systems are typically very difficult to implement, and con­
straint satisfaction systems are no exceptions. Though constraint languages 
were around for over twenty years, relatively few systems have been built in 
that time. Furthermore, the existing systems are very application specific, 
though some of them provide some tools to extend their abilities. However, 
in most of these systems the user needs programming skills since he has 
to drop one level and use the implementational language's primitives to 
achieve the desired extensions. 

The main problems, the existing CPLs suffer from, are (LELER, 1988): 
General problem-solving techniques are weak, and constraint satis­
faction systems must use application specific techniques. It is usually 
difficult to modify the implemented algorithms to suit the needs of 
other, significantly different applications. Most of the systems capa­
ble of adjusting their algorithms to serve different problems do it by 
dropping one level of abstraction and by using the primitives of the 
implementationallanguage (e.g. Borning's ThingLab). 

- Some of the languages do not support extendability, it is inconvenient 
to introduce new aspects. 
Many constraint satisfaction systems use iterative numeric techniques 

such as relaxation. These techniques may have stability problems; such a 
system might fail to terminate even when there is a solution. The an­
swer might depend on the order in which the constraints are solved, which 
effectively destroys any declarative semantics. 

To overcome these limitations a general purpose language called 
Bertran was developed, which allows new constraints to be defined and it 
also has a form of abstract data type (LELER, 1988). 

5.3. Dedicated Solutions 

General problem solving tools are very efficient when a new problem 
is to be solved because the effort needed for the solution in terms of pro-



A PROGRAMMING PARADIGM AND A MODELLING METHODOLOGY 141 

gramming is small, though the user has to make the abstractions to raise 
the problem's abstraction level to match that of the general constraint 
solver. However, in the case of problems where the time required to find 
the solution is limited and this time limit is very strict, dedicated solutions 
still claim their place. In an algorithm fully tailored to the actual prob­
lem, the special properties can be fully exploited (e.g. the causal relations 
(DECHTER et al., 1991)) thus speeding up the solution and making the 
operation of the system more effective. For example, in test generation 
for digital combinational circuits no numerical computation is needed, so 
a general problem solver capable of handling numeric values is redundant, 
the general data representation does not allow to reach the maximal perfor­
mance. A test generator for combinational circuits tailored to the problem 
is described in (TILLY et aI, 1993). 

6. Conclusion 

In the last three decades a lot of effort has been invested in the research of 
constraint satisfaction problems, and quite a few efficient algorithms have 
been developed. However, in most of the cases researchers concentrated on 
problems with purely finite or infinite domain variables. Although the algo­
rithms developed so far promise good results in certain applications, most 
of them cannot cope with engineering problems, because in real life situa­
tions the problems to be solved are complex, and they cannot be mapped 
to CSPs with variables of one type, or such a mapping needs significant 
simplification, which degrades the solution. Moreover, in some cases the 
CSP constitutes a compact system, and it is a part of a larger system; the 
resources available for it are limited due to the fact that the CSP is just 
a part of the problem to be solved and the resources are allocated to the 
global problem. In such cases one has to be satisfied with an approximate 
solution though emphasis has to be put on the quality of approximation. 
The advantageous property of CSPs, i.e. that they degrade well under 
resource limitations, should be better exploited. In addition to the above 
problem of complex systems different knowledge rep1'esentations have to 
be efficiently integrated into a uniform system which needs further explo­
ration, because the overall performance of the system strongly depends on 
the interaction between the parts. 

Another problem that should be addressed is the constraint optimi­
sation problem. To find an optimal solution by searching for all possible 
solutions and then ordering them is very time consuming. Dechter investi­
gated this problem and found that the optimisation task does not require 
exhaustive search among all consistent solutions, but can rather be natu-



142 Gy. ROMAN and T. DOBROWIECKI 

rally incorporated into the process of finding a consistent solution. In many 
cases the computational complexity of finding a solution is not increased 
by the objective function; and when it is, this increased complexity can be 
estimated beforehand (DECHTER, 1990). 

Developing solutions to the above problems need further research, 
however, these solutions can be beneficial in future engineer applications. 

References 

DAVIS, E. (1987): Constraint Propagation with Interval Labels, Artificial Intelligence, 
Vol. 32, pp. 281-231. 

DECHTER., R. - PEARL, J. (1987a): Network-based Heuristic for Constraint Satisfaction 
Problems. Artificial Intelligence, Vol. 34, pp. 1-38. 

DECHTER, R. (1990): Optimisation in Constraint Networks. Influence Diagrams, Belief 
Nets and Decision Analysis, Chapter 18, John WHey &, Sons Ltd. 

DECHTER, A. - DECHTER, R. (1987b): Removing Redundancies in Constraint Networks. 
Proc. AAAI-87, pp. 105-109. 

DECHTER., R. - PEARL, J. (1991): Directed Constraint Networks: A Relational Frame­
work for Causal Modelling. Proc. IJCAI-91, pp. 1164-1170. 

DECHTER, R. - MEIRI, I. (1989): Experimental Evaluation of Preprocessing Techniques 
in Constraint Satisfaction Problems, Proc. IJCAI-89, pp. 271-277. 

DECHTER., R. - PEARL, J. (1985): The Anatomy of Easy Problems: A Constraint Satis­
faction Formulation, Proc. IJCAI-85, pp. 1066-1072. 

DECHTER, R. - PEARL, J.(1988): Tree-clustering Schemes for Constraint Processing, 
Proc. AAAI-88, pp. 150-154. 

FREUDER, E. C. (1982): A sufficient condition of backtrack-free search. J. AGM Vol. 29 
(1) pp. 24-32. 

FREUDER, E. C., (1989): Partial Constraint Satisfaction, Proc. of the 11th IJCAI, pp. 
278-283. 

RYVONEN, E., (1991): Constraint Reasoning with Incomplete Knowledge. The Toler­
ance Propagation Approach. Technical Research Center of Finland, Publications 
72, VTT, Espoo, 1991. 

LELER, W. (1988): Constraint Programming Languages, Addison-Wesley Publishing 
Company. 

MACKWORTH, A. K. (1977): Consistency in Networks of Relations, Artificial Intelligence, 
Vol. 8, pp. 99-118. 

MACKWORTH, A. K. - FREUDER, E. C. (1985): The Complexity of Some Polynomial 
Network Consistency Algorithms for Constraint Satisfaction Problems. Artificial 
Intelligence, Vol. 25, pp. 65-74. 

MOHR, R. - RENDERSON, C. (1986): Arc and Path Consistency Revisited. Artificial 
Intelligence, Vol. 28, pp. 225-233. 

MONTANARI, U. (1974): Networks of Constraints: Fundamental Properties and Applica­
tion to Picture Processing. Inf. Sci. Vol. 7, pp. 95-132. 

MONTANARI, U. - ROSSI, F. (1991): Constraint Relaxation may be Perfect. Artificial 
Intelligence, Vol. 48, pp. 143-170. 

TILLY, K. - SURJAN, L. - ROMAN, Gy. (1993): Automatic Test Pattern Generation can 
be Solved as a Constraint Satisfaction Problem, Proc. of EUROMICRO '93, pp. 
715-722, Barcelona, 1993. 


