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Abstract 

The perceptron is essentially an adaptive linear combiner with the output quantized to 
one of two possible states, it is the basic building block of multilayer, feedforward neural 
networks. This paper describes the learning algorithms for the perceptron. Each algorithm 
is viewed as a steepest descent method, where the algorithm iteratively minimizes an 
instantaneous performance function. A new performance function is introduced, and a 
new algorithm is developed that increases the learning speed. Advantages of the new 
algorithm are demonstrated in computer experiments. 

Keywords: neural networks, adaptive linear element, error correction rules, steepest de­
scent rules. 

Introduction 

The perceptron can be represented schematica.lly in the form of an array 
of multipliers and summing junction (WIDROW and LEHR, 1991; AMARI, 
1990). In the case of a single node perceptron, the weighted sum of the 
input vector X = {Xl, X2, ... ,XN} is computed, or in other words we scalar 
product the input vector X and the weight vector W. The output Y q is 
determined by passing the linear output Y through a hard limiting non­
linearity. 

The perceptron essentially operates as a pattern classification device. 
It has the ability to learn to discriminate between input vectors. As shown 
in Fig. 1, it can decide between two classes A and .B depending upon 
the value of the output. The perceptron can perform linear classification, 
however, the single layer perceptron is limited in its ability to perform 
certain 

Yq = f (t,WiXi -e) 
t=l 

where f(x) = { 1, 
-1, 

if X> 0 

if X < 0 
(1) 
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Fig. 1. (a) The perceptron, (b) Decision boundary in the case of a two dimensional 
input vector 

classifications. The weight modification is done by different rules, which 
will be described later. This main building block is also referred to as the 
adaptive linear element, usually abbreviated as Adaline. 

Training Algorithms for the Single Element 

The rules for updating the weight vector W until all the input pattern 
vectors X are classified correctly is done by iterative methods. For the 
single element we have three techniques which are the perceptron conver­
gence procedure, the Widrow-Hoff algorithm, and Mays's rule. They all try 
adapt to minimize the error for the current training pattern, with minimal 
disturbance to responses already learned. 

The Perceptron Learning Rule 

The procedure is to start by initializing the connection weights by small 
values, or sometimes they are chosen to be zeros (LIPPMANN, 1987). After 
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we present the input vector X to the network, we update the weight vector 
Wby: 

where 
k : Time index 

Y kq : Quantized output 
W k+1 : New weight vector 

W k : Present weight vector 
Xk : Input vector 
dk : Desired response 

17 : Learning rate. 

(2) 

If we denote the quantized error (difference between the desired response 
and the quantized linear output) by (e) then we can write Eq. (2) in the 
form 

Wk+l = Wk + 17ekX k, 

D. Wk = 17ekXk' (3) 

The iteration continues until the weight W converges to some final value. 
As we see from Eq. (3) the modification procedure is simply to add a 
fraction of the input vector X to the weight vector W until the input 
patterns are classified correctly. This fraction depends upon the quantized 
error (e) which is zero when the input vectors are classified correctly. The 
learning rate (17) controls the adaptation rate, it usually ranges from zero 
to one. Smaller values of (17) means smaller values of the step size of the 
weight vector W. The perceptron learning rule stops adapting weights 
when the input vectors are classified correctly. This can be reached only 
if the input vectors are linearly separable. If the input vectors are not 
linearly separable, then the algorithm will not stop adapting the weights, 
and it will go on forever. 

Widrow-Hoff Algorithm 

It is the weight modification applied to the Adaline (WIDROW and WINTER, 

1988), it is also called the a-LMS algorithm. It is given by Eq. (4) 

Wk+1, Wk, and Xk are as given by Eq. (2), and W~ is the transpose of 
the weight vector. (€k) is the linear error which is the difference between 
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the desired response dk and the output Y k. Eq. (4) can be written in the 
form 

(5) 

We can define a normalized data set according to 

(6) 

We can write the update equation as 

(7) 

Mays's Algorithm 

This algorithm makes use of the increment adaptation rule (WIDROW and 
LEHR, 1990). Increment adaptation involves the use of a dead zone for 
the linear output y, this dead zone is from -, to +,. If the linear output 
falls outside the dead zone, adaptation follows a normalized variant of the 
perceptron rule. If the linear output falls within the dead zone, regardless 
of the output correct or not, the weights are updated by the normalized 
variant of the fixed increment perceptron rule. The weight update equation 
is given by: 

(8) 

where each quantity is as defined in Eq. (2). If the training patterns are 
linearly separable, then increment adaptation wili always converge in a 
finite number of steps, also the use of a dead zone reduces sensitivity to 
weight changes. If the input patterns are not linearly separable, then the 
algorithm performs better than the perceptron rule, in this case the weight 
vector remains in a region associated with low average error. 

The other version of the algorithm makes use of the quantized error 
(c). If the quantized error is equal to zero and the linear output Y falls 
outside the dead zone then there will be no adaptation. In the other case 
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when we have the wrong output or the linear output falls inside the dead 
zone, then adaptation follows the same ways as in the a-LMS algorithm. 

(9) 

Performance Functions 

In this Section we shall describe an instantaneous performance function for 
each algorithm given in previous section. These functions will be denoted 
by (ek), and their instantaneous gradient will be denoted by (V' k). We 
shall show that in each algorithm the steepest descent approach is used to 
move along the error surface. The method of the steepest descent can be 
described by the equation . 

(10) 

where (1]) is the learning rate, and (V'k) is the value of the gradient of the 
error surface at a point corresponding to W = W k, it is given by: 

(11) 

A - For the perceptron learning rule the performance function will be 
given by 

eperk = IYkl- dk Yk 

And in this case the gradient is given by: 

(12) 

V'perk = sgn(Yk)Xk - dkXk' = - (dk - sgn(Yk)) Xk' = -(ek)Xk. (13) 

Substituting Eq. (13) in Eq. (10) we get the algorithm in (2). 

B - For the Widrow-Hoff algorithm the performance function is given by 
(SHYNK, 1990; SHYNK and SUMIT, 1990) 

1 2 
ewidk = 21 X kl 2 (dk - Yk) (14) 

and the gradient is given by Eq. (15). 

(15) 
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Substituting Eq. (15) into Eq. (10) we get the algorithm in (4). 

C - For Mays's algorithm the performance function is given by: 

{ 21~k12 (lY .. 1 - d. Y k), if IYkl ~ 1 

~mayslk = dk (16) 

-IX kI2 Yk, otherwise. 

And the gradient is given by 

Vm .,,!, = { 
Xk 

if IYkl ~ 1 21X kl2 (dk - Y q.J, 
dk 

otherwise -IX kI2Xk, 

(17) 

={ 
Xk 

if IYkl ~ 1 -ek2lXkl2 ' 

Xk 
otherwise. -dkIXkI2' 

Substituting Eq. (17) into (10) we get the algorithm in (8). 

- For the other form of the Mays's algorithm we get the following 
performance function 

{ 

C, 

~mays2k = 1 (d _ Y )2 
21X kl2 k k, 

if c = 0 and IYk I ~ 1 

otherwise. 
(18) 

The gradient is given by: 

if e = 0 and IY k I ~ 1 

otherwise. 
(19) 

Substituting Eq. (19) into Eq. (10) we get the algorithm in Eq. (9). 
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New Algorithm for the Single Element 

PROPOSITION. The convergence will be faster if we use the following per­
formance function 

~k = ~(1 - Ykdk),B ifYkdk < 0 

wheredk = ±1, -1:S; Yk:S; 1. (20) 

The value of the desired response (dk) is restricted to either +1 or -1 
because the output is quantized to two possible states. Now based upon 
the performance function given by Eq. (20), we shall derive the update 
equations for a new learning rule for the single element. The instantaneous 
gradient of the performance function given in Eq. (20) is given by: 

'h = { -Xkdk(l- dkYk}B-l, if dkYk < 0 
0, otherwise. 

(21) 

The above equation can be approximated to take the form 

(22) 

Using Eq. (10), we can write this new learning algorithm for the single 
perceptron 

(23) 

If we use a normalized training set as defined by Eq. (6) then the update 
equation will be 

(24) 

= { Wk + jlXk(dk) - (13 - l)W~Xk)' if Ykdk < 0 
Wk, otherwise 
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Fig. 2. Weight adaptation for the single element 

Optimal Weight Vector for the New Rule 

The performance function given by Eq. (20) can be expressed into Taylor's 
series as 

~ = ~ (1 - {3Ykdk + {3({32~ 1) (Ykdk)2 _ {3({3 - 11/{3 - 2) (Ykdk)3 + ... ) . 
(25) 

We can approximate Eq. (25) to become 

(26) 

where 
dk = =+1 

Yk =W~.Xk 
Xk : the input vector 
W~ : the transpose of the weight vector 
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We can write the performance function in the form 

(27) 

We take the expected value of (27) assuming 
- The input vectors are statistically stationary independent vectors. 
- The weight vector is independent of the input vector Xk. 

E(Xk.xD: R Input correlation matrix 

E(dkX~): pTis the crosscorrelation between the 

desired response dk and the input vector. 

Now we can write 

t: =.!. + (13 -1)WTRW _ pTW 
"a 13 2 

= ~ + (13; I)WTRW _ WTp. 

The gradient is given by: 

'\7 = (13 - I)RW - P. 

(28) 

(29) 

(30) 

We can obtain the optimal weight vector W* by letting the gradient equal 
to zero and then solve for W, 

(13 - I)R W* - P = 0 

or 

(31) 
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We can find the minimum value of the performance function by: 

The above equation can be written in form 

1 1 TW* 
earnin = /3 - '2 P . (33) 

The Convergence Condition of the Weight Vector 

The update equation is given by: 

Wk+l = Wk + fJ-Xk(dk - ({3 - 1)Yk) 

= Wk + fJ-(dkXk - ({3 - 1)Xk Y k) (34) 

= Wk + fJ-(dkXk - ({3 - 1)XkX~Wk)' 

Taking the expected value of Eq. (34) we get 

E[Wk+lJ = E[WkJ + fJ-(E[dkXkJ- ({3 - 1)E[XkX~Wk]) 

= E[WkJ + fJ-(P - ({3 - 1)RE[Wk])' 

Eq. (35) can be written in terms of the optimal weight vector W* 

E[Wk+lJ = E[WkJ + fJ- (({3 - 1)RW* - ({3 - 1)RE[Wk]) 

= (1 - fJ-({3 - 1)R)E[WkJ + fJ-({3 -l)RW*. 

(35) 

(36) 

The correlation matrix R could be diagonalized as (\VIDROW and STEARNS, 

1985) 

A = QTRQ, 

Q = [q1, q2,.··, qn], 
. h ·th . f R qi : IS t e t elgenvector 0 • (37) 
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We translate from W to a new coordinate V using 

V=W-W*. (38) 

Then Eq. (36) becomes 

E[Wk+lJ- W* = E[WkJ- W* + J.L(f3 - 1)R(W* - E[Wk]) , 

E[Vk+lJ = E[VkJ- J.L(f3 - 1)RE[VkJ (39) 

= (I - J.L(f3 - 1)R)E[VkJ. 

We rotate to the principle axes using 

V=QV. (40) 

Then Eq. (39) becomes 

(41) 

Multiplying both sides of Eq. (41) by Q-l we obtain 

or 
E[Vk+lJ = (Q-1IQ - J.L(f3 -1)Q- 1RQ)E[VkJ. (42) 

Since we have Q-l = QT, Eq. (42) could be written in the form 

(43) 

The solution of Eq. (43) is 

(44) 

where Vo is the initial Weight vector in the principle axis. 
Convergence is guaranteed if 

Hm (I - J.L(f3 - 1)A)k = O. 
k-oo 

(45) 

Since A is a diagonal matrix, we can write Eq. (45) as a set of n equations 

lim (1 - J.L(f3 - 1)>'dk = 0, 1 ~ i ~ n. 
k-oo 

(46) 
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The condition to converge can be written as 

Since we have 

11 - p,({3 - l)Ail < 1, 

0< p,({3 - l)Ai < 2, 

0< ({3 - 1)p, < 1 1 <_ i <_ n. 
2 Ai' 

Ai ~ Amax ~ tr[Rl, 

(47) 

where (Amax) is the largest eigenvalue of R, and tr[Rl is the trace of R, we 
can write the convergence condition as 

o ({3 - 1)p, 1 
< 2 < -,-, 

Amax 

o p,({3 - 1) 1 
< 2 < tr[Rl 

(48) 

Computer Simulations 

Table 1 
N umber of learning cycles needed to converge with different size of input patterns. 

Learning rate = 0.9. 

Iterations required to converge 
The size of 
the input The The Widrow- Mays's The 

vectors perceptron Hoff rule rule new 
rule rule 

2 8 5 5 4 
5 49 22 22 7 
10 60 48 49 15 
20 248 264 264 26 
40 226 362 362 19 
60 642 417 417 83 
80 812 672 798 128 

100 1390 1172 1152 131 
120 1536 1295 1295 167 
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Fig. 3. Learning curves for the four algorithms, (a) The Widrow-Hoff algorithm, 
(b) The new algorithm, (c) The perceptron tra.ining rule, (d) Mays's algorithm 

In order to have an empirical validation, extensive performance compar­
isons between the perceptron learning rule, the a-LMS, Mays's rule and the 
new learning rule by the author have been conducted. In every case the 
new learning rule converges faster than the remaining rules. Table 1 shows 
some examples of simulation results for different size of the input vectors. 
Normalized training set was used to train the networks. There were ten 
trials, and each entry in the Table 1 is the average of these trials. The 
learning rate was the same for all rules, it was equal to (0.9). The same 
initial weights were used for all algorithms. The results in Table 1 show 
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that the rule converges faster than any of the other rules. Fig. 3 shows the 
learning curves for the four rules. No attempt was made to optimize the 
new rule, only f3 = 1.7 value was conducted. 
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