
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 37, NO. 3, PP. 237-250 (1993)

TRAINING ALGORITHMS FOR THE SINGLE LAYER
PERCEPTRON

Noury ELHADI and Klara CSEFALVAY

Department of Electromagnetic Theory
Technical University of Budapest

H-1521 Budapest, Hungary

Received: Sept. 20, 1993

Abstract

The perceptron is essentially an adaptive linear combiner with the output quantized to
one of two possible states, it is the basic building block of multilayer, feedforward neural
networks. This paper describes the learning algorithms for the perceptron. Each algorithm
is viewed as a steepest descent method, where the algorithm iteratively minimizes an
instantaneous performance function. A new performance function is introduced, and a
new algorithm is developed that increases the learning speed. Advantages of the new
algorithm are demonstrated in computer experiments.

Keywords: neural networks, adaptive linear element, error correction rules, steepest de­
scent rules.

Introduction

The perceptron can be represented schematica.lly in the form of an array
of multipliers and summing junction (WIDROW and LEHR, 1991; AMARI,
1990). In the case of a single node perceptron, the weighted sum of the
input vector X = {Xl, X2, ... ,XN} is computed, or in other words we scalar
product the input vector X and the weight vector W. The output Y q is
determined by passing the linear output Y through a hard limiting non­
linearity.

The perceptron essentially operates as a pattern classification device.
It has the ability to learn to discriminate between input vectors. As shown
in Fig. 1, it can decide between two classes A and .B depending upon
the value of the output. The perceptron can perform linear classification,
however, the single layer perceptron is limited in its ability to perform
certain

Yq = f (t,WiXi -e)
t=l

where f(x) = { 1,
-1,

if X> 0

if X < 0
(1)

238 N. ELHADI and K. CSEFALVAY

(+)

Class A

(-)

Class B

(b)

Fig. 1. (a) The perceptron, (b) Decision boundary in the case of a two dimensional
input vector

classifications. The weight modification is done by different rules, which
will be described later. This main building block is also referred to as the
adaptive linear element, usually abbreviated as Adaline.

Training Algorithms for the Single Element

The rules for updating the weight vector W until all the input pattern
vectors X are classified correctly is done by iterative methods. For the
single element we have three techniques which are the perceptron conver­
gence procedure, the Widrow-Hoff algorithm, and Mays's rule. They all try
adapt to minimize the error for the current training pattern, with minimal
disturbance to responses already learned.

The Perceptron Learning Rule

The procedure is to start by initializing the connection weights by small
values, or sometimes they are chosen to be zeros (LIPPMANN, 1987). After

TRAINING ALGORITHMS 239

we present the input vector X to the network, we update the weight vector
Wby:

where
k : Time index

Y kq : Quantized output
W k+1 : New weight vector

W k : Present weight vector
Xk : Input vector
dk : Desired response

17 : Learning rate.

(2)

If we denote the quantized error (difference between the desired response
and the quantized linear output) by (e) then we can write Eq. (2) in the
form

Wk+l = Wk + 17ekX k,

D. Wk = 17ekXk' (3)

The iteration continues until the weight W converges to some final value.
As we see from Eq. (3) the modification procedure is simply to add a
fraction of the input vector X to the weight vector W until the input
patterns are classified correctly. This fraction depends upon the quantized
error (e) which is zero when the input vectors are classified correctly. The
learning rate (17) controls the adaptation rate, it usually ranges from zero
to one. Smaller values of (17) means smaller values of the step size of the
weight vector W. The perceptron learning rule stops adapting weights
when the input vectors are classified correctly. This can be reached only
if the input vectors are linearly separable. If the input vectors are not
linearly separable, then the algorithm will not stop adapting the weights,
and it will go on forever.

Widrow-Hoff Algorithm

It is the weight modification applied to the Adaline (WIDROW and WINTER,

1988), it is also called the a-LMS algorithm. It is given by Eq. (4)

Wk+1, Wk, and Xk are as given by Eq. (2), and W~ is the transpose of
the weight vector. (€k) is the linear error which is the difference between

240 N. ELHADI and K. CSEFALVAY

the desired response dk and the output Y k. Eq. (4) can be written in the
form

(5)

We can define a normalized data set according to

(6)

We can write the update equation as

(7)

Mays's Algorithm

This algorithm makes use of the increment adaptation rule (WIDROW and
LEHR, 1990). Increment adaptation involves the use of a dead zone for
the linear output y, this dead zone is from -, to +,. If the linear output
falls outside the dead zone, adaptation follows a normalized variant of the
perceptron rule. If the linear output falls within the dead zone, regardless
of the output correct or not, the weights are updated by the normalized
variant of the fixed increment perceptron rule. The weight update equation
is given by:

(8)

where each quantity is as defined in Eq. (2). If the training patterns are
linearly separable, then increment adaptation wili always converge in a
finite number of steps, also the use of a dead zone reduces sensitivity to
weight changes. If the input patterns are not linearly separable, then the
algorithm performs better than the perceptron rule, in this case the weight
vector remains in a region associated with low average error.

The other version of the algorithm makes use of the quantized error
(c). If the quantized error is equal to zero and the linear output Y falls
outside the dead zone then there will be no adaptation. In the other case

TRAINING ALGORITHMS 241

when we have the wrong output or the linear output falls inside the dead
zone, then adaptation follows the same ways as in the a-LMS algorithm.

(9)

Performance Functions

In this Section we shall describe an instantaneous performance function for
each algorithm given in previous section. These functions will be denoted
by (ek), and their instantaneous gradient will be denoted by (V' k). We
shall show that in each algorithm the steepest descent approach is used to
move along the error surface. The method of the steepest descent can be
described by the equation .

(10)

where (1]) is the learning rate, and (V'k) is the value of the gradient of the
error surface at a point corresponding to W = W k, it is given by:

(11)

A - For the perceptron learning rule the performance function will be
given by

eperk = IYkl- dk Yk

And in this case the gradient is given by:

(12)

V'perk = sgn(Yk)Xk - dkXk' = - (dk - sgn(Yk)) Xk' = -(ek)Xk. (13)

Substituting Eq. (13) in Eq. (10) we get the algorithm in (2).

B - For the Widrow-Hoff algorithm the performance function is given by
(SHYNK, 1990; SHYNK and SUMIT, 1990)

1 2
ewidk = 21 X kl 2 (dk - Yk) (14)

and the gradient is given by Eq. (15).

(15)

242 N. BLHAD! and K. CSEFALVAY

Substituting Eq. (15) into Eq. (10) we get the algorithm in (4).

C - For Mays's algorithm the performance function is given by:

{ 21~k12 (lY .. 1 - d. Y k), if IYkl ~ 1

~mayslk = dk (16)

-IX kI2 Yk, otherwise.

And the gradient is given by

Vm .,,!, = {
Xk

if IYkl ~ 1 21X kl2 (dk - Y q.J,
dk

otherwise -IX kI2Xk,

(17)

={
Xk

if IYkl ~ 1 -ek2lXkl2 '

Xk
otherwise. -dkIXkI2'

Substituting Eq. (17) into (10) we get the algorithm in (8).

- For the other form of the Mays's algorithm we get the following
performance function

{

C,

~mays2k = 1 (d _ Y)2
21X kl2 k k,

if c = 0 and IYk I ~ 1

otherwise.
(18)

The gradient is given by:

if e = 0 and IY k I ~ 1

otherwise.
(19)

Substituting Eq. (19) into Eq. (10) we get the algorithm in Eq. (9).

TRAINING ALGORITHMS 243

New Algorithm for the Single Element

PROPOSITION. The convergence will be faster if we use the following per­
formance function

~k = ~(1 - Ykdk),B ifYkdk < 0

wheredk = ±1, -1:S; Yk:S; 1. (20)

The value of the desired response (dk) is restricted to either +1 or -1
because the output is quantized to two possible states. Now based upon
the performance function given by Eq. (20), we shall derive the update
equations for a new learning rule for the single element. The instantaneous
gradient of the performance function given in Eq. (20) is given by:

'h = { -Xkdk(l- dkYk}B-l, if dkYk < 0
0, otherwise.

(21)

The above equation can be approximated to take the form

(22)

Using Eq. (10), we can write this new learning algorithm for the single
perceptron

(23)

If we use a normalized training set as defined by Eq. (6) then the update
equation will be

(24)

= { Wk + jlXk(dk) - (13 - l)W~Xk)' if Ykdk < 0
Wk, otherwise

244

Xl

X 2

XNI
I
I
I
I
I
I
I
I
I

N. ELHADI and K. CSEFALVAY

Fig. 2. Weight adaptation for the single element

Optimal Weight Vector for the New Rule

The performance function given by Eq. (20) can be expressed into Taylor's
series as

~ = ~ (1 - {3Ykdk + {3({32~ 1) (Ykdk)2 _ {3({3 - 11/{3 - 2) (Ykdk)3 + ...) .
(25)

We can approximate Eq. (25) to become

(26)

where
dk = =+1

Yk =W~.Xk
Xk : the input vector
W~ : the transpose of the weight vector

TRAINING ALGORITHMS 245

We can write the performance function in the form

(27)

We take the expected value of (27) assuming
- The input vectors are statistically stationary independent vectors.
- The weight vector is independent of the input vector Xk.

E(Xk.xD: R Input correlation matrix

E(dkX~): pTis the crosscorrelation between the

desired response dk and the input vector.

Now we can write

t: =.!. + (13 -1)WTRW _ pTW
"a 13 2

= ~ + (13; I)WTRW _ WTp.

The gradient is given by:

'\7 = (13 - I)RW - P.

(28)

(29)

(30)

We can obtain the optimal weight vector W* by letting the gradient equal
to zero and then solve for W,

(13 - I)R W* - P = 0

or

(31)

246 N. ELHADI and K. CSEFALVAY

We can find the minimum value of the performance function by:

The above equation can be written in form

1 1 TW*
earnin = /3 - '2 P . (33)

The Convergence Condition of the Weight Vector

The update equation is given by:

Wk+l = Wk + fJ-Xk(dk - ({3 - 1)Yk)

= Wk + fJ-(dkXk - ({3 - 1)Xk Y k) (34)

= Wk + fJ-(dkXk - ({3 - 1)XkX~Wk)'

Taking the expected value of Eq. (34) we get

E[Wk+lJ = E[WkJ + fJ-(E[dkXkJ- ({3 - 1)E[XkX~Wk])

= E[WkJ + fJ-(P - ({3 - 1)RE[Wk])'

Eq. (35) can be written in terms of the optimal weight vector W*

E[Wk+lJ = E[WkJ + fJ- (({3 - 1)RW* - ({3 - 1)RE[Wk])

= (1 - fJ-({3 - 1)R)E[WkJ + fJ-({3 -l)RW*.

(35)

(36)

The correlation matrix R could be diagonalized as (\VIDROW and STEARNS,

1985)

A = QTRQ,

Q = [q1, q2,.··, qn],
. h ·th . f R qi : IS t e t elgenvector 0 • (37)

TRAINING ALGORITHMS 247

We translate from W to a new coordinate V using

V=W-W*. (38)

Then Eq. (36) becomes

E[Wk+lJ- W* = E[WkJ- W* + J.L(f3 - 1)R(W* - E[Wk]) ,

E[Vk+lJ = E[VkJ- J.L(f3 - 1)RE[VkJ (39)

= (I - J.L(f3 - 1)R)E[VkJ.

We rotate to the principle axes using

V=QV. (40)

Then Eq. (39) becomes

(41)

Multiplying both sides of Eq. (41) by Q-l we obtain

or
E[Vk+lJ = (Q-1IQ - J.L(f3 -1)Q- 1RQ)E[VkJ. (42)

Since we have Q-l = QT, Eq. (42) could be written in the form

(43)

The solution of Eq. (43) is

(44)

where Vo is the initial Weight vector in the principle axis.
Convergence is guaranteed if

Hm (I - J.L(f3 - 1)A)k = O.
k-oo

(45)

Since A is a diagonal matrix, we can write Eq. (45) as a set of n equations

lim (1 - J.L(f3 - 1)>'dk = 0, 1 ~ i ~ n.
k-oo

(46)

248 N. ELHADI Gnd K. CSEFALVAY

The condition to converge can be written as

Since we have

11 - p,({3 - l)Ail < 1,

0< p,({3 - l)Ai < 2,

0< ({3 - 1)p, < 1 1 <_ i <_ n.
2 Ai'

Ai ~ Amax ~ tr[Rl,

(47)

where (Amax) is the largest eigenvalue of R, and tr[Rl is the trace of R, we
can write the convergence condition as

o ({3 - 1)p, 1
< 2 < -,-,

Amax

o p,({3 - 1) 1
< 2 < tr[Rl

(48)

Computer Simulations

Table 1
N umber of learning cycles needed to converge with different size of input patterns.

Learning rate = 0.9.

Iterations required to converge
The size of
the input The The Widrow- Mays's The

vectors perceptron Hoff rule rule new
rule rule

2 8 5 5 4
5 49 22 22 7
10 60 48 49 15
20 248 264 264 26
40 226 362 362 19
60 642 417 417 83
80 812 672 798 128

100 1390 1172 1152 131
120 1536 1295 1295 167

TRAINING ALGORITHMS 249

EII_
EiI_ 1 -

1

0.8
o.

0.8
0.'

0.'
0 .•

0.2 0.2

0
0 100 200 - 400 &00 - 100 ao 40 00 eo 100 120 140 ISO

LEARNING CYCLES LEARNING CYCLES

(a) (b)

ERROII
ERROR 1

T' o.
0.0 ..

0.'
0.'

0.'
0.4

0.2 o.a

0
0 200 400 lOO lOO 1000 200 400 eoo eoo 1000

LEARNING CYCLES LEARNING CYCLES

(c)
(d)

Fig. 3. Learning curves for the four algorithms, (a) The Widrow-Hoff algorithm,
(b) The new algorithm, (c) The perceptron tra.ining rule, (d) Mays's algorithm

In order to have an empirical validation, extensive performance compar­
isons between the perceptron learning rule, the a-LMS, Mays's rule and the
new learning rule by the author have been conducted. In every case the
new learning rule converges faster than the remaining rules. Table 1 shows
some examples of simulation results for different size of the input vectors.
Normalized training set was used to train the networks. There were ten
trials, and each entry in the Table 1 is the average of these trials. The
learning rate was the same for all rules, it was equal to (0.9). The same
initial weights were used for all algorithms. The results in Table 1 show

250 N. ELHADI and K. CSEFALVAY

that the rule converges faster than any of the other rules. Fig. 3 shows the
learning curves for the four rules. No attempt was made to optimize the
new rule, only f3 = 1.7 value was conducted.

References

WIDROW, B. - LEHR, M. (1990): 30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation, Proceedings of the IEEE, Vo!. 78, No. 9, pp. 1415-
1441.

AMARI, S. C. (1990): Mathematical Foundation of Neurocomputing, Proceedings of the
IEEE, Vo!. 78, No. 9, pp. 1443-1463.

WIDROW, B. - WINTER, R. G. (1988): Neural Nets for Adaptive Filtering and Adaptive
Pattern Recognition, IEEE Comp. Mar. pp. 25-39.

LIPPMANN, R. P.(1978): An Introduction to the Computing with Neural Nets, IEEE
Transactions on Acoustics, Speech, and Signal Processing Magazine.

SHYNK, J. (1990): Performance Surfaces of a Single-layer Perceptron, IEEE Transactions
on Neural Networks, Vo!. 1, No. 3. pp. 268-274.

SHYNK, J. - SUMIT, R. (1990): Convergence Properties and Stationary Points of a Per­
ceptron Learning Algorithm. Proceedings of the IEEE, Vo!. 78, No. 10, October,
pp. 1599-1604.

WIDROW, B. - STEARNS, S. D. (1985): Adaptive Signal Processing. Englewood Cliffs,
NJ: Prentice-hall, 1985.

