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Abstract 

This paper is concerned with the theory and design of linearly tunable Le oscillators using 
variable transductance elements and linear twoports. The new ideal model introduced 
in the paper can be considered as a generalization of the well-known and widely used 
admittance transistor circuits. The new ideal structure uses linearly tunable transductance 
elements and two linear twoports with Hilbert transform transfer function. The ideal 
model and its approximate non ideal versions are analyzed and the f- V characteristics is 
presented in each case. One of the approximate versions of the general ideal structure can 
easily be implemented by le technology. 

Keywords: tunable oscillators, Le oscillators, veo-s, admittance transistor, Hilbert trans
form. 

Introduction 

PLL's are among the most important components in coherent transmission 
systems. All PLL's require at least one electronically tunable oscillator 
(VeO) (VITERBI, 1966), (LINDSEY, 1972), (LINDSEY, 1978). Transient 
behaviour of the PLL is influenced by a number of factors, e.g. phase 
detector characteristics, transfer characteristics of the loop filter, the tun
ing characteristics of veo. It has long been an aim of practical PLL de
signers to achieve constant loop gain in the whole tuning range. This 
requires among others linear tuning characteristics of the veo, that is, 
an oscillator must be constructed of which the frequency can be linearly 
altered with some electronically tunable parameter. Several solutions have 
been published in the literature and used in practice for this problem 
[(GREBENE, 1972a), (GREBENE, 1984), (YOUNG, 1981), (GREBENE, 1984), 
(EGAN, 1981)]. Among these circuits the relaxation type Re oscillators 
are of widest use (GREBENE, 1972b), (EXAR, 1981). These circuits can be 
tuned linearly over a large range by changing a bias current but their fre
quency is rather sensitive to changes in the environment, i.e. mainly to the 
temperature. This limits severely the applicability of these oscillators in 
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narrowband PLL's especially when false synchronization is possible. Tem
perature dependence can be drastically decreased by utilization of crystals 
but there arise other problems: the tuning range of quartz oscillators is too 
small for most purposes, parasitic modes of oscillation are often present 
and secondary parameters of crystals show a large variance in production. 
Thus an intermediate solution between RC and quartz circuits seems to be 
the right one for our purposes, namely the electronically tunable LC oscilla
tor. Classical circuits (varicap tuning, admittance transistor) have strongly 
nonlinear tuning characteristics that can be compensated by any of the nu
merous known methods (making use of some memoryless nonlinear two- or 
fourpoles) but here again the problems of temperature dependence and pro
duction spread arise and direct our attention to some other constructions 
with inherent linearity. In the present paper a new oscillator model (PAP, 
1990), (PAP, 1991) is introduced and analyzed in which voltage controlled 
transductance devices are used to realize a linear f- V characteristics. Be
tween the above mentioned two extreme solutions the use of this LC based 
oscillator seems to be an appropriate compromise, namely the long term 
stability and the tuning range can be acceptable, and the linearity is fairly 
good. 

l.Ideal Model of the New Linearly Tunable LC Oscillator 
(Linear Oscillation Criterion) 

ul c 
I ~.de (i) 

"Iif 

Is'ae(u) 

d£ :; Operator of the Hilbert 
transform 

:;f,{de} =-jsgn(w) 

Fig. 1. Ideal (linear) model of the novel LC based linearly tunable YCO 

A general theoretical model of the class of oscillator in question is shown 
in Fig. 1. The basic idea is to achieve tuning by linearly changing a gain 
or transfer admittance as this can be readily realized. The differential 
equation describing the network is the following: 
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i CLd2i _.Q.H (di) _ S'LH (di) + dt2 S" dt dt + 

+ ;:,H(H(i)) + (L ~~ - ;" H(i)) (G - S) = O. (1.1) 

Here G is the loss of the Le resonant circuit, S is the transfer admittance 
of the active fourpole, S' and S" are tunable parameters and HO denotes 
Hilbert transformation. Eq. (1.1) can be solved by using a constant am
plitude sinewave trial function. The following equation is produced: 

2 C 
1-CLw - S"wsgn(w) S'Lwsgn(w)-

- ;:,[sgn(w)f + (jLW + l"sgn(w)) (G - S) = 0 (1.2) 

that yields as the so-called linear oscillation criteria the equations: 

2 C , S' 2 
1 - CLw - S"W sgn(w) - S Lw sgn(w) - S" [sgn(w)] = 0, 

(Lw + ;"sgn(w)) (G - S) = O. (1.3) 

The second equation is called the amplitude condition and it yields the 
well-known formula 

(G-S)=O. (1.4) 

By choosing 

S' = S"C d S" 1 an = S* L (1.5) 

the frequency condition can be written in the form 

LIC = w2 + 2wS*sgn(w) + [S*sgn(w)]2 = [w + S*sgn(w)]2, 
1 S* wr = ..;re - . (1.6) 
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It is clear from (1.6) that by linearly varying S* the oscillation frequency 
will change linearly as well. S* can take on positive and negative values. 

In the ideal case linear tuning can be achieved by means of two real 
Hilbert transformer circuits, that cannot be realised (or, to be more pre
cise, the circuits needed have a very high degree of complexity). Simple 
approximate solutions are sought in the following but first the nonlinear 
oscillation criteria will be analysed in the presence of a hard limit er with 
the aid of the simplest harmonic balance equations. 

2. N onlinear Oscillation Criteria of the LC VCO 
(First Order Harmonic Balance Equations) 

lA I s* L fz(3e(i» u= L ~~ - S*L f2(::lC(i» 

u\ C " 
li f, (.) ,f2(') ,f3(') 

f3 (u) i i s*c f,(~(u» Nonlinear functions 

Fig. 2. Nonlinear model of the LC based VCO 

Nonlinear model in question is shown in Fig. 2. The only difference between 
this circuit and the above treated one is that this one contains controlled 
generators with nonlinear characteristics. N onlinearities are described by 
the functions h (-), h (-) and 13 (-). General differential equation of the 
system can be formulated as 

CL~:; - S*LCfit [h(H(i»]- S*Ch (H (L* - S*Lh(H(i»))) + 
+i + GL* - GS* Lh(H(i» - 13 (L* - S* Lh(H(i)) = O. (2.1) 

In the following the functions are supposed to be of the form 

IT 
f(x) = A4"sgn(x) or f(x) = x. (2.2) 
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(2.1) will be solved by applying first order harmonic balance equations. If 

i(t) = I cos(wt), (2.3) 

then 

di I' ( ) dt = - wsm wt , 
d 2i 2 
dt2 = -Iw COS(wt), 1i{i{t)) = I sin{wt). (2.4) 

a. VCO with Linear Frequency Determining Components 

Let us suppose that the frequency determining elements are linear, that is 
h{x) = J2(x) = x and 

II 
!3(u) = Io-;;sgn(u). (2.5) 

In this case the first order harmonic balance equation concerning the main 
harmopjc components takes on the form 

-CLlw2 cos(wt) - S*CLlw cos(wt) - S*CLI(w + S*) cos(wt) + I cos(wt)-

- GLlw sin(wt) - GS* LI sin(wt) + 10 sin(wt) = 0, (2.6) 

that yields 

wr = vb S"', 

= Iobl£ = IoQo . (2.7) 

This means that the amplitude of oscillation is constant and its frequency 
is linearly dependent on S*. 

b. VCO with Nonlinear Frequency Determining Components 

Let !3(u) be given by (2.5) and let the other two functions be nonlinear as 
well: 

IT 
h (x) = Us-;;sgn(x) and (2.8) 
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The harmonic balance equation now is of the form 

-CLlw2 COS(wt) - S*CLIsw COS(wt) - S*CUs COS(wt) + I cos(wt)-

- GLlw sin(wt) - GS* LIs sin(wt) + ID sin(wt) = O. (2.9) 

Simple transformations yield 

ID = GL[wI + S* Is] , 

CLlw2 + CLIsS*w + S*CUs = I. 

Oscillation frequency can be computed from 

[1 _ CLw2] = GCLwS*[wLIs + Us]. 
ID - GLS*Is 

After introducing the following notations: 

l+x 
Wr = VLC x = wrVLC - 1 y = S*VLC 

(2.10) 

(2.11) 

(2.12) 

and performing some transformations we obtained the tuning characteris
tics: 

Notice that if 

y = (1 + x) u,a + ~ . 
la IoQa 

1-(1+x)2 

Is 
IoQo 

the above equation is equivalent to (2.7), that is 

ID 
Y = -x UsG · 

(2.13) 

(2.14) 

(2.15) 

The (2.13) tuning characteristics is shown normalized in Fig. 3 with dif
ferent values of UsG and Is/Qo. If b/a = 0 or b/a = (X) one of the tuning 
controlled generators in Fig. 2 is not needed. 



y= s""VL£ 

x = r 'fi]5-1 
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Fig. 3. Tuning characteristics of the VCO shown in Fig. 2 

3. Approximate Solutions of the Hilbert transformation 

9 

Realizability of the circuit shown in Fig. 1 is basically limited by the pres
ence of the Hilbert transformers. In the following the typical approximate 
solutions will be introduced that fulfil a vital requirement in oscillator cir
cuits: that of simplicity. These are (i) the ideal delay line, (ii) the derivating 
circuit and (iii) the first order all-pass fourpole. 
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a. Computation of the Characteristics in the Case 
of Linear Oscillation Conditions 

If the Hilbert transformers in Fig. 1 are replaced by a general linear fourpole 
with operator A then the following differential equation will describe the 
system: 

i + CL d
2
i _ 2S*CLA(di) + (S*)2CLA(A(i)) 

dt2 dt 

+ ( L ~~ - S* LA( i)) (G - S) = O. (3.1) 

Solving this equation by applying a constant amplitude trial function we 
obtain the general characteristic equation 

1 - CLw2 - 2S*CLjwA(jw) + (S*)2CLA2(jw) 

+ (jwL - S* LA(jw))(G - S) = O. (3.2) 

Here A(jw) denotes transfer function corresponding to the linear operator 
A. The conditions for oscillation are 

1 - CLw2 + 2S*CLwlm(A(jw)) + (S*)2CLRe(A2(jw)) 

-S* LRe(A(jw))(G - S) = 0, 

-2S*C LwRe(A(jw) 

+(S*)2CLlm(A2(jw)) + (wL - S* Llm(A(jw)))(G - S) = O. (3.3) 

After some simple but tedious computations the following tuning charac
teristics are produced: 

- Ideal delay line, T = ¥.JLC: 

A(jw) = exp( -jwT) 

[1-(1+x2)1[(1+x)+ycos(¥x)] -2(1+x)y[y+(1+x)cos(¥x)]-

_y2 [(1 + x) cos(IIx) + y cos (¥x)) = O. (3.4) 

- Derivator, A == -v'LCft: 
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(3.5) 

- First order all-pass fourpole: 

A( 'w) = 1 - jw..;rG 
J 1 + jw..,!LC' 

(1 - (1 + x)2) 3 + y2 (1 _ (1 + x)2) 2 + 4(1 + x)2 (1- (1 + x)2) + 

+2y (1- (1 + x)2) (1 + (1 + x)2) - 4(1 + x)2y (1 + (1 + x)2)_ 

-2l (1 + (1 + x)2)2 - 4y2(1 + x)2 - 2y3 (1 + (1 + x)2) = O. (3.6) 

The notations 

y = S*"'!LC j 
1+x 

Wr = ..,!LC (3.7) 

are the same as in the above treatments. In the case of multiple roots the 
oscillation frequency can be obtained from the main branch of the function 
associated with the trivial (y = 0, x = 0) solution of the implicit equations. 

The practical circuit can be further simplified if the controlled voltage 
generator of Fig. 1 is deleted and only the effective capacitance is controlled 
via the reactance elements. 

b. Linear Oscillation Conditions for the 
Capacitively Tuned One-sided System 

The linear differential equations for the above mentioned system that con
tains no controlled voltage generator can be put as 

i CL
d2i

_S*CLA(di) Ldi(G_S)=O. + dt2 dt + dt (3.8) 

The linear oscillation conditions are 
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2 * ) 1 - CLw + S CLwlm (A(jw) = 0, 

-S*CLwRe(A(jw)) + wL(G - S) = o. (3.9) 

The tuning characteristics in the above analysed cases will be the following: 
- Ideal delay line, r = ¥v'LC: 

A(jw) = exp(-jwr) , 

1-(1+x)2 

y= (l+x)cos(¥x)· 

- Derivator, A == v'LCft: 

A(jw) = -v'LCjw, 

1 - (1 + x)2 
y= (1+x)2 

- First order all-pass fourpole: 

A( ·w) = 1- jwJLC 
J l+jwv'LC' 

_ 1 - (1 + x)4 
y- 2(1+x)2 

(3.10) 

(3.11) 

(3.12) 

These three characteristics can be compared in Fig. 4. It is clear from the 
figure that the all-pass circuit produces the widest linearity range. 

It is worth to note that the characteristics are not influenced by the 
nonlinearity of the function is (.) but in the case of a non ideally 90 degrees 
phase shift A operator the nonlinearity of h (-) and h (-) will drastically 
reduce the linearity range as shown in the next chapter. 

c. Nonlinear Oscillation Conditions for the Capacitively 
Tuned One-sided Systems 

Let us investigate the oscillation conditions of the veo of Fig. 5 when (2.5) 
and (2.8) apply for the functions is (.) and h (.) and only the basic harmonic 
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Fig. 4. Comparison of the YCO circuits described in 3.b. 
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Fig. 5. Nonlinear model of the capacitively tuned YCO 
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Fig. 6. Comparison of the VCO circuits described in 3.c. 

x 

component is considered in the first order harmonic balance equations. The 
system is described by the differential equation 

(3.13) 

The transfer function corresponding to the linear operator A is 

A(jw) = a{w) exp(jcp{w)). (3.14) 
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We obtain for the oscillation conditions: 

I(l - W
2 LC) + S*CUs sin(cp(w)) = 0 

-GLIw + Io + S*CUs cos{cp{w)) = O. 

Oscillation frequency can be easily computed as 

2 Io S* 2 
(I - w LC) GLw = - GLw CUs cos{cp{w))(l - w LC) 

15 

(3.15) 

- S*CUs sin{cp{w)). (3.16) 

(3.16) can be evaluated as before: 
- Ideal delay line, T = ¥v'LC: 

A(jw) = exp( -jwT), 

1 - (1 + x )2 Io 
(1 + x) UsG 

y = ----.,,-2 ~~--!.---=-----. 

l-(l+x) . (II) (II) 
(1 + x) Qosm 2 x + cos 2 x 

- Derivator, A == -v'LCft : 

A(jw) = -v'LCjw, 

1 - (1 + x)2 ID 
y- --

- (1 + x) UsG· 

- First order all-pass fourpole: 

A(jw) = 1 - jw..;rG 
1 + jwv'LC 

cp(w) = -2arctan (wv'LC) , 

ID 
+ UsG Y = ______ --'---;:----'-_-C.-_____ _ 

( 1 - (1 + x )2) (1 + x) 

(1 + x) (1 + (1 + x )2) Qo + 2 (1 + (1 + x )2) 

(3.17) 

(3.18) 

(3.19) 
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co 

I~ Constant 

I~ -5 

Fig. 7. Simplified diagram of a possible realisation of the veo described in 2 and 3. 

The results are illustrated in Fig. 6. It can be seen that in the case of a 
high Qo the characteristics are strongly distorted as compared to Fig. 5 so 
it seems to be sensitive to choose the function h (.) and 12 (.) to be linear. 
Fig. 7 shows a sketch of a circuit that can be realized in integrated form 
with only a few tuning elements. 

4. Conclusions 

In the present contribution a new oscillator model is introduced and ana
lyzed, in which voltage controlled transductance devices are used to realize 
a linear f - V characteristics. This LC oscillator seems to be an appropri
ate compromise between the relaxation type RC circuits with wide tuning 
range and high linearity but poor long term stability and quartz oscillators 
with high stability and poor tunable features. The paper deals with the 
analysis of the new ideal structure and its approximate versions and the 
author compares the performances of different voltage controlled LC struc
tures. In contrast with earlier studies it is obvious that the new method 
is able to enhance the linearity of the circuit. Concluding the paper a 
practical electronic circuit is shown which can easily be implemented by lC 
technology. 
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