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Abstract 

This paper introduces a Simplified Hyperstable SEquential Regression (SHSER) adap­
tive algorithm designed for use with Infinite Impulse Response (HR) digital filters, which 
offers a reduced computational load since it avoids direct matrix inversions, fulfills the 
hyperstability condition under certain circumstances, and has a high convergence rate. 
The proposed SHSER algorithm is a combination of the Simplified Hyperstable Adaptive 
Recursive Filters (SHARF) algorithm and the recursive version of the SEquential Regres­
sion (SER) algorithm for IIR adaptive filters. Some important comments associated with 
the proposed algorithm including the SPR condition, and the step size are briefly given. 
Simulation results are included comparing the proposed SHSER algorithm to the SHARF 
algorithm and SER algorithm with respect to the convergence rate behaviour. 

Keywords: adaptive HR digital filters, hyperstable digital filters. 

Introduction 

The most widely used adaptive filtering algorithm is Widrow's (WIDROW, 
1985) Least Mean Squared (LMS) algorithm, which is relevant to FIR fil­
ters. The related formulation involves a steepest descent approach which 
has been extended to recursive filters by Stearns (STEARNS, 1976). In the 
case of noisy conditions (i. e. the noisy gradient) the LMS/Newton method 
has been proposed, which is generally superior to the LMS algorithm 
(WIDROW, 1985). In this paper the recursive version of the LMS/Newton 
algorithm will be discussed in combination with the SHARF algorithm 
(LARIMORE, 1980). When the environment is nonstationary the inverse 
of the input correlation matrix needs to be calculated at each iteration in 
the coefficients updating equation. To decrease the computational efforts 
and to improve the convergence rate (see Section 1) the correlation matrix 
will be evaluated recursively, similarly as in the case of the SER algorithm 
(AHMED, 1977), and combined with the prefiltering error mechanism of 
the SHARF algorithm (LARIMORE, 1980), resulting in the Simplified Hy­
perstable SEquential Regression (SHSER) adaptive filter algorithm. In 
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this SHSER algorithm the sequential regression formula is used to esti­
mate sequentially the inverse of input correlation matrix and updating it 
at each iteration by using the inverse matrix lemma (GRAUPE, 1972) so the 
matrix inversions are avoided. The SHSER algorithm is an output error 
realization, thus it does not generate biased estimates (JoHNSON, 1979) in 
updating the feedback coefficients but the output error is clearly a nonlin­
ear function of the coefficients. This type of realization is called in many 
references as a Pseudo linear regression (LJUNG, 1983), for which the solu­
tions may be suboptimal (i. e. having local minima) unless a certain transfer 
function is Strictly Positive Real (SPR) (JOHNsoN, 1979). These local min­
ima can be avoided under certain conditions (SODERSTROM, 1982). The 
convergence to the global minimum is achieved by prefiltering the error 
(i. e. smoothed version of the output error) according to specific smoothing 
coefficients vector C (LARIMORE, 1980). 
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Fig. 1. The recursive filter structure 

Consider the recursive digital filter structure in Fig. 1. The output signal 
of the filter can be expressed: 

N-J N-J 

Yk = L bj,kYk-j + L aj,kXk-j, (1) 
j=J j=O 

Defining the vectors: 
where, {bkand ad are the adjustable coefficients. 

and 
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equation (1) can be rewritten: 

(2) 

The error signal is calculated: 

(3) 

where dk is the kth data point of desired output. 
Consider first the LMS algorithm (WIDROW, 1985) to estimate the 

recursive gradient as: 

(4) 

It has been shown that, because Yk is now a recursive function, it can be 
obtained re cursively (STEARNS, 1976): 

N-1 N-1 
<Pn,k = 8(yd/8(an) = Yk-n + L bl 8(Yk-1)/8(an) = Yk-n + L <Pn,k-1, 

1=1 1=1 
(5a) 

N-1 N-1 
f3n,k = 8(Yk)/8(bn) = Xk-n + L bl 8(Yk-d/8(bn) = xk-n + L f3n,k-1. 

1=1 1=1 
(5b) 

Thus, ~ k in (4) can be expressed as: 

~ k = -2 €k· [f3o,k, ... ,f3(N-l),b <Pl,k, ... , <P(N-l),kl (6) 

for convenience (6) can be rewritten as: 

(7) 

where nk = [f3o,k, ... ,f3(N-l),k,<P1,k, ... ,<P(N-l),kl. 
With this simple estimate of the gradient, the LMS algorithm for 

updating the filter coefficients is expressed as follows: 

(8) 

where M is a diagonal step-size matrix (see Section 3). 
If the input correlation matrix R is known, a more efficient step-size 

matrix can be composed. A widely used technique is the LMS/Newton 
algorithm (\VIDROW, 1985) which is expressed as follows: 

(9) 
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where .Aav is the mean of eigenvalues of Rand R -1 is the inverse of the 
correlation matrix R, which reduces to (8), if .Aav R- 1 =1, where I is the 
identity matrix. 

AHMED (1977) has discussed the LMS/Newton algorithm (9) in terms 
of the SER algorithm, where R is expressed using a re cursively calculated 
Q matrix as follows: 

(10) 

where 'l/J is the so called forgetting factor, chosen such that the half life of 
exponential function is equal to the number of iterations over which the 
input is stationary. Typically, 'l/J would have the value between 0.9 and 0.99 
corresponding to an effective memory between 10 samples and 100 samples, 
respectively (GRAUPE, 1972): 

0.9 < 'l/J = 2- 1
/

LSO < 0.99, 

where LSO is the stationarity length of the input signal. 
It follows from further calculations (GRAUPE, 1972; AHMED, 1979) 

that Q;l can be computed recursively: 

Q;~l = (1/'l/J) {Q;l - [((Q;lUk)(Q;luk)T) / ('l/J + uk (Q;lud)]) . 
(11) 

Note that the vector Sk = Q;l . Uk is used three times in (11), and would 
be computed first in the algorithm and also the denominator term in (11) 
is scalar therefore would be computed separately (see Table 1). 

In (LARIMORE, 1980) the recursive calculation of the derivative in (6) 
has been avoided by approximation flk with Uk, and a smoothed version of 
Ek is used in calculating the gradient: 

p-l 

Ik = 2:..:: CnEk-n, 

n=O 

(12) 

where the vector C has been defined as: C = [co, Cl, ... ,Cp_ d with Co 
equal to one, vector C is chosen such that the SPR condition is fulfilled 
(see Section 2). 

In our experience it is worth combine into the SER and SHARF al­
gorithms. This combination means that (9) will be expressed as: 
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Fig. 2. The structure of the SHSER algorithm 

where V k in (13) takes the form: 

111 

(14) 

We refer to the equations (ll) and (13) as the SHSER algorithm (see 
Table 1), where, Qk1 is computed re cursively in (ll), the initial value QOl 
is necessary to be observed before determining Qk1 in (ll), QOl typically 
equal to the identity matrix I, ).av in (13) can be estimated from actual 
data, and kept fixed during the adaptation process with a value typically 
between 0.05 and .1 when signal statistics are unknown. The structure of 
the SHSER algorithm is shown in Fig. 2. 

2. Hyperstability and SPR Condition 

The Hyperstable Adaptive Recursive Filter algorithm (HARF) has been in­
troduced by Johnson (JOHNsoN, 1979). It was shown by Larimore 
(LARIMORE, 1980), that the HARF algorithm may not converge to a mini­
mum unless the transfer function is Strictly Positive Real (SPR). Treichler 
(TREICHLER, 1978) has introduced the SHARF algorithm, which is hyper­
stable only for slow rate of adaptation, and the output error can be filtered 
by a simple moving average technique. 

The SHARF algorithm has been applied in the proposed SHSER al­
gorithm. The SHARF algorithm requires that the transfer function of a 
specific linear time-invariant system: 

G(z) = C(z)jB(z) = (1 + ~ C[ z-I) j (1- ''I=1 bl z-l) (15) 
1=1 1=1 
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fulfills the SPR condition, i. e. Re{G(z)} > 0 for all Izl = 1. Note that 
(15) applies only to points on the unit circle. In the SHSER algorithm in 
modelling applications the denominator polynomial of G(z) is B(z). The 
components of C are selected to meet the SPR condition. This corre­
sponds to the filtering of Ek in (12), however, the choice of C given by (15) 
already assumes a great deal of a priori knowledge of model parameters. 
Unfortunately, this is not always possible to achieve in practice since the 
coefficients of the system are unknown in applications such as modelling 
configuration. An alternate approach has been applied on the SHSER al­
gorithm, which allows recursive estimation of the C coefficients (PARIKH, 
1979). This problem is still a subject of research in HR adaptive filter 
theory CWIDROW, 1985). 

3. Step-size Matrix 

In non-recursive adaptive filter the LMS algorithm is updated the coeffi­
cients as (\¥IDROW, 1985): 

(16) 

which is the same as in (8), but replace Uk by Xk, and M by J-L (see Sec­
tion 1). The parameter J-L in (16) is a step size constant that governs 
stability and the rate of convergence. In the recursive adaptive filter of 
(8), for updating the coefficients, the constant J-L has been replaced by the 
following diagonal matrix 

M = diag[J-L, J-L," • ,J-L, VI, V2,'" , vN-d· (17) 

Thus, due to the nonquadratic error (\VIDROW, 1985) surface, a common 
convergence parameter J-L is obtained for each numerator coefficient and 
different convergence factors are obtained for the denominator coefficients 
(see Table 1). The chosen value of J-L is the same as in the non-recursive 
case (16) (\VIDROW, 1985), and from practical experience for choosing 
VI ... VN-I in applications such as system identification and in inverse fil­
tering (i. e. equalizing), the following hints are given: the ratios between 
vi(i.e. VdV2 VdV3 vN-dvN-d are equal to the ratio of the denomi­
nator plant coefficients (i.e. bdbl'" bN jbN - d, respectively. This choice 
improves the speed of the convergence but, unfortunately, there is no gen­
eral way yet to prove this. 

Since, the SER algorithm (Am.IED, 1979) is applied in the proposed 
algorithm to estimate the correlation matrix R recursively equation (11), 
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this allows us to increase the step-size matrix M in equation (13) (PARIKH, 

1978). In our experience, to increase the convergence rate the large positive 
value of M is selected and slightly reduced through the adaptation process 
by dividing the matrix M by a factor a > 1, so M is constrained to be 
between the initial step-size matrix Mini and the final step-size matrix Mt, 
the filter in this case remains stable under the condition that R always be 
positive definite. This experience must have justification, the convergency 
of the SHSER algorithm is under investigation. 

4. Simulation Results 

input 
signal '-+--i 

Fig. 3. The system identification structure 

A simple system identification problem shown in Fig. 3 is considered, where 
the fixed filter is denoted by H (z) and the adaptive filter is denoted by 
H(z). The adaptive algorithm applied on this configuration is one of the 
following: 1) SER algorithm; 2) SHARF algorithm; 3) SHSER algorithm. 
The smoothing error coefficients C, the step-size matrix M, and the matrix 
reduction 0: are set due to Sections 2 and 3. In examples 1 and 2 the 
comparison is made between the SHARF and SHSER algorithms and also 
between SER and SHSER algorithms in terms of parameter convergence, 
and Mean Square Error (MSE) convergence. In example 3 the modelling 
system is driven by the special type of nonstationary signal which is a 
single sinusoid with sinusoidally varying frequency, for which the SHARF 
and SER algorithms have failed to converge either to a local minimum or 
the global minimum while the SHSER does. 
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Example 1 

The identification system shown in Fig. 3 is considered consisting of the 
fixed filter: 

H(z) = 1/(1 - 1.2z-1 + 0.6z-2
) 

and the adaptive HR filter: 

where H(z) is used to minimize the MSE. The input signal is nonstationary 
sinusoidal, its magnitude and phase change randomly. The forgetting factor 
1jJ has been set according to Section 1 as 0.95. Fig. 4a shows the comparison 
of coefficients and MSE convergence between the SER algorithm (PARIKH, 

1978) and the proposed algorithm SHSER, while Fig. 4b shows the above 
comparison but between the SHARF algorithm (JOHNSON, 1979) and the 
proposed algorithm SHSER. 

Example 2 

The problem in (PARIKH, 1978) is considered where the fixed filter as: 

H( ) .34444 - .34444z-2 

z = 1 + .55697z-1 + .31121z-2 

and the adaptive HR filter has the form of 

The system is driven by white noise, 1jJ is set to 0.93. Fig. 5a shows the 
same comparison in Example 1 between the SER algorithm and SHSER 
algorithm, while Fig. 5b shows the comparison between the SHARF algo­
rithm and the SHSER algorithm. 

Example 3 

We consider again the identification system in Example 1 with the same 
H(z) and H(z) but we apply in this example a special nonstationary input 
signal which is a single sinusoid with sinusoidally varying frequency as : 

x( t) = sin(27r{0.25 + 0.02 sin{O.Olt) )t) 
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Fig. 4. (a) Comparison of the convergence between SER and SHSER algorithms 
(b) The same comparison between SHARF and SHSER algorithms 
continuous lines:SHSER 
dotted iines:SER 

and 'ljJ is set to 0.99. C contains the same values as in Example 1. The 
convergence is failed when we apply this signal to the SHARF and SER 
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algorithms, while the proposed SHSER algorithm well converged. Fig. 6 
shows the convergence of coefficients of the adaptive filter and the conver­
gence of the MSE by the SHSER algorithm. 

It is evident from these simulations that the SHSER algorithm yielded 
the superior rate of convergence under the conditions previously described. 
Maintaining stability during the adaptive process was found to be the pri­
mary limiting factor for both SER and SHARF if the step-size matrix M 
is not small enough (WIDROW, 1985; LARIMORE, 1980). Further exper­
imental results obtained, related to this work indicate that the SHSER 
algorithm is promising candidate for adaptive filtering in a nonstationary 
environment. 
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Table 1 
The SHSER algorithm 

Initialization 

QOl =0·1 
aj,O = bj,o = 0 
Xk-(N-l) = Yk-(N-l) = 0 
Wo starting weight vector=O 

Vector and Scaler Definition 

Uk = [Xb Xk-l,'" , Xk-(N-l)' Yk-l, Yk-2,' .. , Yk-(N-I)f 

Wk = [ao,b al,b··· , a(N-l),b bl,b b2,b" ., b(N_l),k]T 

M = diag [p, ... ,p,Vl,V2,'" ,vN-Il 
1/; = 0.9 < 2- 1

/
LSO < 0.99 

LSO = Length of stationary input signal 
dk = kth data point of desired output 

For Iteration K ~ 1 
Yk = wI Uk 

Q-l 
Sk = k uk 

( = 1/; + uI Sk 

Q;~l = ON) (Q;l - (Sk sI/O) 
Ek = dk - Yk 

P-l 

~fk = 2:= en Ek-n 
n=O 

Vk =-2ik Uk 

Wk+l = Wk - M Aav[(l _1/;k+l)/(l -1/;)] Q;l Vk 
M = M/a, where a > 1 and Mf < M < Mini 

Conclusion 

A simplified hyperstable adaptive filter algorithm based on the sequential 
regression formula is proposed. The algorithm has fast convergence rate, 
computationally simple, hyperstable under certain circumstances, and suit­
able for filtering applications. In this paper we have some propositions in 
choosing the smoothing error coefficients and the step-size matrix which 
improves the rate of convergence under the stability condition. 

According to the examples, substantial improvement in convergence 
has been achieved in comparison with SER algorithm and with SHARF 
algorithm. The experimental results presented in this paper indicate that 
the SHSER algorithm under nonstationary environment is promising. 
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