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Abstract 

The algorithms handling the problems of inventory control have already been developed 
relatively early; the realization of the optimal inventory policy for big production systems 
and for the trading is helped by known mathematical models. Creation of a mathematical 
model produces the constraints determining the limits of its validity. If the constraints 
correspond to the system to be modelled, the parameters of the system can be set on the 
base of the model. 

What happens if the conditions determined during the modelling process are not 
fulfilled or there is no a priori knowledge of the effects influencing the system? This 
question occurs when the store supply cannot be scheduled and/or the change of the 
demand is unknown, even the distribution cannot be determined in advance. 

In the paper we are dealing with a possible solution for the problem of stock manage­
ment in the case of unknown and/or unidentifiable input and output effects. The method 
proposed is the stochastic approximation. Its application possibility will be shown for a 
periodic stochastic stock control model provided the stationarity of the processes. The 
requirement of periodicity and stationarity is not strict. The principle of generating the 
model can be used for other cases, too, e. g. for the solution of non periodic problems. We 
will show how the method can be applied for following the slow changes in nonstationary 
cases. 
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Problem of Inventory Control, Periodic Models 

For following the generalization of the method, we define the primary ob­
jective of inventory control. A an example a periodic store management 
will be shown, where the store revision is done with a given periodicity. (In 
other cases the repeat orders are not emitted periodically, but the events 
depend on a threshold; it can easily be seen that adaptive modelling is 
possible in that case, too.) 

For simplicity there is only one product in the stock, and the storage 
is not limited either in space or in time. The detailed models can be found 
in the literature [HADLEY and WHITIN (1963)],[BENASSY (1991)]. 
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Kst = le J r(t) dt, 

T+ 

where: r(t) describes the stock (called 'stock net'), 
le is the cost coefficient of storing, 
T + is the interval of positive stock net. 

The shortages mean losses according to the quantity and often to the time, 
therefore these losses can be expressed by the negative area and/or by the 
maximum of the shortage: 

KJo = -IT J r(t) dt - IT' J >.(t) dt, 
T_ T-

where: >.(t) describes the demand, 
IT and IT' are the cost coefficients of the shortages, 
T- is the interval of negative stock net. 

The cost of control can be generally considered to be constant: 

Kco = J. 

The handling cost of the repeat order is independent of the quantity and it 
is present, when a supply was initialized: 

Krep = A sgn( Q) , 

where: sgn(Q) notifies the indicator function of a repeat order Q. 

The structure of costs and the estimation of cost coefficients are de­
tailed in the literature [B EN ASSY (1991)]. 

The cost (averaged to the time unit) according to the above is as 
follows (the costs can be completed by other components if necessary): 

J A If' J Il J Il' J K(x, u) = T + Tsgn(Q) +:; r(t)dt - T r(t)dt - T >.(t)dt. (1) 
T+ T_ T_ 

The 'stock net' of an < R, T > periodic model is shown in Fig. 1. In this 
model the repeat order determined at the time of revision completes the 
stock up to level R. The supply arrives with a certain delay. 
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Fig. 1. Stock net of the < R, T > model 

In the majority of the systems the aim is the minimization of the 
costs. In some cases it means an exact solution. In stochastic cases the 
expected values should be minimized. 

min 
J(u) = Ex {K(x, un - , 

u 
(2) 

x: one of the state vectors, 
u: the vector of the control parameters. 

In most cases the solution in the literature presumes the knowledge of the 
distribution functions of the random effects for the determination of this 
expected value. 

Optimization without a priori Knowledges 

One of the methods in identification of stochastic systems, in recognition 
of signals and forms, in filtring and in optimization is the stochastic ap­
proximation; its detailed analysis can be found in the literature [TSYPKIN 
(1973)], [BENVENISTE et aI, (1987)J. 

This adaptive algorithm approaches the vector of parameters to be 
optimized (or to be identified, etc.), in general: 

urn] = urn - IJ + ,[n]H(u[n - IJ, x[n]) + ,z[nJe:(u[n - 1], x[n]) , (3) 

where ,[nJ: the gain of the process, 



134 M. MOLNAR 

H (U, X): the function determining how the control parameters 
should be updated in the bases of the observations, 

c(u, x): a residual low noise. 

This iteration results in a series of elements converging to the desired 
optimal u* value (if certain conditions not detailed here are met). 

The updating function H(u, x) depends on the aim of the optimiza­
tion (or the criterion of identification, etc.). Evidently the gradient of the 
cost function (or a function related to the gradient) can be chosen as up­
dating function. Thus the learning algorithm (not considering the noise): 

urn] = urn - 1]- -y[n]'VuK(u[n - 1], x[n]). (4) 

For optimizing in stationary cases a diminishing gain -y[n] can be used and 
tracking the slow variations is possible with a constant gain. 

An example of Adaptive Stock Control: 
Adaptive Model < R, T > 

For demonstration the already mentioned model < R, T > is chosen. To 
describe the cost function the geometrical approximations are used, which 
are known in the literature [HADLEY and \VHITIN (1963)] (i.e. the stock 
net function is approximated by straight lines, therefore the integrals can 
be replaced by triangles and trapezoids). We can distinguish three cases 
(cf. Fig. 2): 

a) some positive stock is left over, 
b) a shortage is produced in the period, 
c) the delivery supplies only the deficiency. 

If the mean loss of shortage is proportional to the time of shortage, 
then the cost function of such a model is as follows (averaged to time unit): 



where: 
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K(R, T,).., J-L) 

a) if R ~ )"T + J-L 

b) if J-L $ R < )"T + J-L, (5) 

L=J+T, 
).. 

J-L 

c) if R < J-L 

constant cost of control and handling, 
is the mean of demands, 
notifies the sum of demands during the delay of 
supply. 

Fig. 2. Behaviour of variables according to the expression (5) 

In stochastic cases the delay of supply and the demands are random 
variables. For us the interesting circumstances are, when the distribution 
of these variables is unknown or their handling is difficult (e. g. it is mul­
timodal). In that case J-L and )"T are unknown random variables. 

The stock management applying < R, T > policy can set the system 
by the parameters Rand T, the vector of the control parameters is: 

UT = (R,T). (6) 

Knowledges of the state of the system can be obtained by observing the 
random variables J-L and )"T: 
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(7) 

In the practice the period T is often fixed, in the paper only the algorithm 
determining the level R will be shown in more details (optimization for T 
can be performed in the same way). 

Because of the cost function (5) can be derived in pieces and for 
defining the optimal level R* the projection of gradient by R is sufficient: 

(8) 

Examples for Searching the Optimum by Learning 

For demonstrating the optimization of stochastic stock control models by 
the stochastic approximation method and without a priori knowledges, a 
simulator program has been developed. The simulator can generate ran­
dom signals for the input and output of the stock model, the variables of 
the state vector can be observed in the course of process simulation, and op­
timal setting of control parameters can be done using adaptive algorithms. 

The first example was taken from the book containing the basic mod­
els [HADLEY and WHITIN (1963)]. In this case a company stores bicycle 
wheels and uses the < R, T > strategy. In our case a period·is 3 months long 
and the supply arrives within 6 months after the repeat order. The yearly 
distribution of the demands can be characterized as normal, its expected 
value is 600 units, its variance is 900. The price of a wheel is 15$, the cost 
rate of store is 20$ and the shortage of a wheel means the cost of 25$. The 
costs of the revision and the repeat order are 30$. Applying the method of 
the authors (on the basis of normal distribution) the optimal level of R: 

R* '" 499 units. 

Although according to the theorem of central distribution limit, the com­
mon distribution is approximate normal, nevertheless the case was opti­
mized by the above method, too, generating different daily distribution at 
the output of the simulator. 

Creating the daily development of the demands on the basis of normal 
distribution the iteration starting on different initial values and using a 
hyperbolic gain can be seen in Fig. 3. The common limit of the curves 
results in the same value of 
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R* f'V 499 units. 

It can be seen that in the domain of gravity the series (4) reaches its final 
value rather fast (in 10 - 15 steps or even, sometimes 5 - 6 steps) by the 
above algorithm (in the paper the choice of the initial value and gain of 
the process are not detailed). 

I 
10 

I 
20 

Fig. 3. Case of daily normal distribution 

I ... 
30 

The level of the stock is diminishing, if the daily demands are generated 
on the base of uniform distribution. The method of stochastic gradient 
approaches the approximate value of 

R* f'V 469 units. 

The simulator makes it possible to compare the real costs at different values 
of R. Taking into account the cost of 100 periods simulated randomly, the 
following comparison table for the two methods: 

Model 
HADLEY-WHITIN 

adaptive 

R* 
479 
469 

Costs 
222.2 
215 

Profit 

3.2% 

In the third case a bimodal was applied at the output of the stock 
which keeps the daily expected value unchanged. It could be realized by 
mixing two normal distributions with the expected values 1 and 3, and the 
variances 0.5 and 1.5, respectively. Here the stochastic approximation gives 
an optimal value equal to 470. 

The results of program runs of 100 periods and of identical input and 
output can be seen in the following table: 
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Model 
HADLEy-WHITIN 

adaptive 

M. MOLNAR 

R* 
493 
470 

Costs 
231.4 
215 

Profit 

6.9% 

Adaptation in the Case of Random Supply and 
Random Demands 

In the next example the joint case of random supply and random demands 
is investigated. The supply delays are determined by a random number 
generator (in our case with normal distribution), in the same way the de­
mands are changed randomly (with uniform distribution). Fig. 4 shows 
the convergence of such a system starting with different initial values. 
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Fig. 4. Case of random supply and random demands 

Fig. 5 illustrates the ability of the model for learning at changing condi­
tions. Here the variance of the random number generator of the delays 
is changed, and the following conclusion can be stated: the bigger the 
variance (the supply is more uncertain), the bigger the value of R*. 

The above examples prove that the learning algorithms set the system 
parameters according to the 'conclusions' gained from the given samples. 

Tracking Slow Variations 

The method mentioned earlier can be applied in non-stationary cases, too 
[BENVENISTE et al. (1987)]. We have investigated the case, when the 
demands change as a function of time. Fig. 6 illustrates the situation 
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10 20 30 

Fig. 5. Changes of variance of supply delay 

Fig. 6. Mean of demands change according to a sine-wave 
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when the mean of demands changes according to a sine-wave. It can be 
seen that the algorithm is capable to follow the variations of the mean. 

Conclusions 

The problems of inventory control can be handled in those cases, when 
unknown effects occur at the input and output of the stock. As learn­
ing algorithm we applied the stochastic approximation, more precisely the 
method of stochastic gradient for the above task. 

The method can be effectively applied for optimization of inventory 
control having carefully set up the cost function. 

The algorithms converge fast by choosing the convergency coefficient 
properly. Considering that there are few measuring data for determination 
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of inventory control strategy, it is important to reach the optimum relatively 
fast by the method. Our example shows that in most cases it can be 
achieved within 5 - 10 periods. 

Significant cost savings can be expected in case of a control parameter 
defined by adaptive algorithm, relative to the well known solution of the 
stochastic < R, T> model. 

Using constant gain in the iterations, the algorithms are capable of 
following the changes of the system in time; although in this solution the 
elimination of statistical noises can only be achieved by processing many 
measurement data. 
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