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Abstract 

A concise description of the correlation theory for cyclostationary random signals is given. 
It is based on a time-frequency cyclic correlation function and on a bifrequent spectral 
correlation function (SCF). The relations to conventional stationary correlation, Wigner 
distribution and spectrogram analysis are emphasized. The cyclic transfer properties of 
linear time-invariant and linear periodically time-variant systems are outlined. Simple 
examples give a feeling for performance and applications of spectral correlation measure­
ment. The basic schemes of SCF estimation are mentioned briefly. 
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Introduction 

Signal analysis is performed for various applications in order to detect rele­
vant features that characterize an underlying physical or technical process. 
Above all spectral analysis is used. Algorithms and strategies of their ap­
plication as well as the interpretation of the results strongly depend on the 
type of the signal involved. In the case of stationary random signals, for 
instance, the usual approach to power spectral density (PSD) estimation 
consists of averaging short time spectral estimates that are determined from 
consecutive sections of the recorded signal. But if the statistical parameters 
of the analyzed random process vary with time (this means if some sort 
of nonstationarity is present), this procedure causes the time dependence 
to be averaged out. Therefore, only the stationary part is measured. In 
many cases, however, it is just the time varying feature that carries the 
interesting information. 

There are different time-frequency analysis procedures that are usu­
ally applied to detect the time varying spectral content of a signal. The 
most common representations are the short-time spectrogram and the 
Wigner distribution (HLAWATSCH and BOUDREAux-BARTELS, 1992). These 

1 This work was supported by the Delltsche Forschllllgsgemeinschalf 
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methods work well with deterministic nonstationary signals. They include 
no statistical averaging. In the case of random signals, however, some sort 
of statistical averaging cannot be avoided in order to get a stable estimate. 

This conflicting situation can indeed be resolved for an important type 
of nonstationarity, characterized by periodically time varying moments, 
called cyclostationarity. The resulting theoretical framework of cyclosta­
tionary random processes constitutes a direct extension of common corre­
lation theory of stationary processes. It is based on two-dimensional cyclic 
auto- and cross-correlation and spectral density functions that contain the 
ordinary functions as special cases. It is emphasized that the resulting 
averaging method is well distinguished from sliding time averaging that is 
useful only for quasistationary signals with slowly time dependent para­
meters. The frequency of the periodic time variation discussed here may 
be in the order of the signal bandwidth. 

Correlation Theory of Cyclostationary Processes 

Second-order periodicity. A wide sense cyclostationary random process 
is characterized by periodic second-order moments: 

with period tp2. This second-order periodicity, in general, is not coupled 
to the existence of a superimposed periodic component in x(t) (called first­
order periodicity). It can therefore not be detected as a spectral line in the 
usual way by filtering or Fourier transforming x(t). Therefore, estimation 
of second-order periodicity is a far more subtle problem than the estimation 
of first-order periodicity. 

Cyclic correlation. The dependence on two time variables (t and T) offers 
the possibility to perform two different Fourier transforms. The transform 
with regard of the time lag T produces the instantaneous power spectral 
density which is again periodically time dependent: 

cc 

(t r\ J' / (t ) -j2r.}'d 
1 j) = '1jJx 1 T e T. (2) 

-cc 

The Fourier transform using the other time variable t would indicate the 
involved second-order periodicity as spectral lines at discrete frequencies 
(the cycle spectrum) or, more precisely, as discrete spectral planes since 
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there is still the second dimension r. Because x(t) is a finite-power random 
process, it seems to be more practical, however, to use a modified notation: 

'!f1(c):z:(o:,r) = lim Tl j'!f1:z:(t,r)e-j21ro<tdt. 
T-+cc 

(3) 

T 

This is easily identified as a generalized Fourier coefficient relation that 
treats multiple (incommensurable) periodicities. A further advantage of 
using (3) instead of a Fourier transform is that the physical dimension of 
'!f1:z: (t, r) is retained and the result can be interpreted as a set (indexed by 
0:) of modified time averaged correlation functions. If the members of this 
set do not disappear for discrete frequencies 0: = V0:2 = v jtp2, V i= 0, a 
cyclostationary component with the fundamental-second-order periodicity 
tp2 is present. For 0: = 0 the stationary (simply time averaged) correlation 
arises. '!f1(c):z:(o:,r) is called the cyclic auto correlation function. 

Proceeding from any of the two results (2), (3) the remaining time 
variable can be eliminated by a second (modified) Fourier transform. The 
result is the bispectral cyclic spectrum: 

co 

"iI!(C):z:(O:, f) = j '!f1(C):z:(o:, r)e-i21r!-r dr 
-co (4) 

The relation between the cyclic auto-correlation and the cyclic spectrum is 
called the cyclic Wiener-Khinchine relation. 

The introduced fourfold Fourier transform relationship is summarized 
as: 

'!f1:z:(t, r) 

/T ~~ 
f 0: 

w:z:(t,f) lim '!f1(C):z:(o:, r) 
T-+co 

t 

~~ f/ 
'!T(c):z:(O:, f) 

For the case of one single second-order periodicity, the support region of 
'!f1C):z:(o:, r) (and similarly that of "iI!(C):z:(O:, f)) is given by equidistant lines 
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as indicated in Fig. 1. On these lines the set of correlation functions (or of 
power spectral densities, respectively) is built up. The individual members 
of this set correspond to the different harmonic frequencies of the second­
order periodicity. Additional non harmonic lines would arise if there were 
multiple (incommensurable) second-order periodicities. 

a,T -plane: I' 

a 

Fig. 1. A: Support lines of "v(C)(a:,r) in the a:, r-plane for a single second-order peri­

odicity tp2 

B: r = 0 cross-section of "v(C) (a: , r) 

The unlimited averaging operation in (3) allows the expectation op­
eration contained in 'l/Jx(t, T) to be omitted if the process x(t) can be char­
acterized as cycloergodic (GARDNER, 1987). Now the empirical cyclic au­
to correlation is given as a modified time average: 

( ) . 1 J ( T) * ( T) -j211"a:t 'l/J(C)x 0:, T = }=-.m
oo 

T x t + 2" x t - 2" e dt. (6) 

T 

Obviously, this relation is an extension of common empirical autocorre­
lation that is contained in (6) for 0: = O. A further interpretation is that 
second-order periodicities can be detected as spectral lines in the lag-shifted 
product x(t+T/2)x*(t-T/2). Because of the twiddle factor term involved, 
(6) is sometimes called cyclic averaging. 

Spectral correlation. (6) is further modified by splitting up the twiddle 
factor operation into two parts. With 

(t) (t) - j11"a:t 
xa:/2 = x e (7) 
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the empirical cyclic autocorrelation becomes a cross-correlation between 
oppositely frequency shifted images of the same process: 

Now the well-known framework of PSD estimation can be applied. 
The cyclic spectrum is given directly in the frequency domain as the cross 
power spectral density of the two frequency shifted short time spectra: 

with 
XT(f) = J x(t)e-j27rfidt. 

T 

The usage of finite time-limited process records is necessary in order to 
ensure that the Fourier transform exists. Moreover, it meets practical pur­
poses (finite record length). The limiting operation eliminates the bias of 
the estimate but it would not reduce the variance. Therefore, the expecta­
tion operation is now necessary again. 

The symmetry in notation between (9) and (1) that describes a (time 
dependent) auto-correlation stimulates further the interpretation of 
\f! (C)x (0:, f) as a (frequency dependent) spectral correlation function (SCF) 
(GARDNER, 1987, 1991). It can be concluded that a cyclostationary ran­
dom process contains a second-order periodicity with frequency 0:1 if there 
is a correlation of spectral components that are 0:1 apart in frequency. A 
purely stationary process contains no such correlation. 

Cyclic cross-correlation. So far the cyclic auto-correlation has been 
considered. It is obvious that an extension to cyclic cross-correlation of 
two random processes x(t) and yet) can easily be given. Therefore, only 
the final result, the cross spectral correlation density function, shall be 
mentioned: 

with 
XT(f) = J x(t)e-j27rfidt. 

T 
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Fig. 2. Estimation of spectral correlation functions 

SCF Estimation 

The basic structure for estimating the spectral correlation function at one 
point Vxo, f..Lio, in the 0:, i-plane is given in Fig. 2. It is based on av­
eraging oppositely frequency shifted, complex demodulated and lowpass 
filtered images of the same process. The whole bifrequency plane 0:, i can 
be covered by successively tuning the midfrequency Ilio and the frequency 
distance vo:o. For a bandlimited process x(t) a rhomboid cyclic spectral 
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support region arises, because of the reduced spectral overlap with increas­
ing a (only the positive a-plane is sketched in the figure). But if the process 
is real, or if only the magnitude of the spectral correlation function is of 
interest, one quadrant suffices. In the context of digital signal processing 
the estimation procedure results as averaging of modified cyclic (a-shifted) 
periodograms. However, as compared to stationary-signal PSD estimation, 
special requirements exist, concerning window function design and window 
function overlap in order to avoid cycle leakage and cycle aliasing. 

Wigner Distribution and spectrogram. (2) reveals the strong relation 
to the Wigner distribution theory. Commonly the Wigner distribution 
(WD) is related to deterministic signals. Hence no statistical averaging is 
included, and the Fourier transform of the Wigner distribution is considered 
to be a deterministic energy density spectral correlation function. But if 
the concept of Wigner distribution is to be extended to cover finite power 
random signals, an expectation operation has to be applied. The result is 
just the instantaneous spectrum given by (2). Since expectation cannot 
be approximated in most cases by ensemble averaging, time smoothing is 
usually applied. But the temporal resolution is reduced as a consequence 
(more and more with an increasing averaging time). Cyclic averaging or 
Fourier transforming of a pseudo Wigner distribution (PWD), however, can 
effectively be used for SCF estimation, since the periodic time dependence 
of a cyclostationary process is completely resolved in the cyclic frequency 
domain and the better the resolution the longer the averaging time is. In 
the WD context, spectral correlation is indicated as periodic cross-terms in 
the expected WD (statistical cross-terms, see THOM.A., 1993). Concerning 
the auto-spectrogram it turns out to be a time and frequency smoothed 
\iVD, and therefore it limits cycle frequencies to the low-pass region. Only if 
cross-spectrograms of frequency shifted images are calculated, is the whole 
cycle frequency plane covered. 

Influence of Signal Processing Operations 

Time-invariant linear systems. For convolution-based linear systems 

co 

yet) = get) * x(t) = J get - ,)x(t) dt, (11) 
-co 

the auto-SCF of the output signal follows as 
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The system impulse response function g(t) appears as its Fourier trans­
formed Wigner distribution or deterministic energy density spectral corre­
lation function. For a = 0 (12) reduces to the well-known input/output 
relation for stationary signals in the PSD domain. The cross-SOF between 
input and output results as 

(13) 

Frequency-invariant linear systems. This class of linear systems covers 
memoryless time-variant systems described by product modulation 

y(t) = x(t) m(t). (14) 

The output auto-SOF results from the two-dimensional convolution of the 
SOFs of the input x(t) and the modulating function m(t) (m(t) and x(t) 
are independent): 

co co 

'It(c)y(a,f) = J J 'It(c)x(,6,q'J) 'It(C)m(a-,6,j-cp)d,6dcp 
-co-co 

(15) 

Frequency- and time-variant linear systems can often by described by chain­
ing (12) and (15). Periodically time-variant linear systems are of special 
importance (e. g. modulator and filter; filter and sampler; digital filter and 
decimator). Then the modulating functions are periodic signals (typically 
complex exponentials, sinusoids, pulse trains, etc.) with discrete SOF. Gen­
erally, these modulating functions shift the original SOF in the a, j-plane. 
In most cases new cyclostationarities are introduced and spectral corre­
lated signal components are superimposed (if there are any in the input 
signal). Simple analysis of such systems on the basis of common stationary 
correlation analysis would neglect these effects and may therefore produce 
wrong results. 

Signal superposition. If the analyzed signal is represented as an additive 
superposition of individual terms, e. g.: 

x(t) = Xl(t) + X2(t), (16) 

the resulting SOF follows as the sum of the single component auto-SOFs 
and all possible cross-SOFs: 

'It (C)x (a, f) 'It (C)Xj (a, f) + 'It (C)X2 (a, f) + 'It (C)XjX2 (a, f) + 'It (C)X2Xj (a, f). 
(17) 

(17) is called the quadratic superposition principle. 
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Examples 

Product modulation is performed by multiplying a given stationary pro­
cess x(t) and a suitable modulating function met), e.g. in the case of a 
sinusoidal function: yet) = x(t) met) = x(t) cos(21r!It + 'PI). From 

and 

using (15): 

for a = 0 

for a = ±2!I 

otherwise 

for a = 0 

for a # 0 

{ 

:lWx(f + !I) + :lWx(f -!I) for a = 0 

W(C)y(a, f) = :le±j2
'Plwx(f) for a = ±2!I 

o otherwise. 

(18) 

(19) 

(20) 

The upper part of Fig. 3 shows the SCF of met) (positive a-half 
only). Because of the periodic deterministic nature of m( t) it consists of 
spectral lines with 100% spectral correlation. Since x(t) is stationary, it 
shows no spectral correlation, but the modulated signal reveals spectral 
correlation. A signal with the same PSD can be generated, if a white sta­
tionary noise is appropriately bandpass filtered. Certainly, this signal is 
again stationary and will therefore show no spectral correlation. A con­
ventional FFT analyzer could not distinguish between the two cases, since 
it measures the averaged PSD only that maps to the a = 0 intersection 
of the SCF. Moreover, if there were possibly frequency overlapping signals 
with different modulation frequencies, they could be well identified in the 
SCF domain. 

Identification of periodically time variant systems. Such systems 
occur e.g. in digital signal processing as multirate systems. Examples 
are decimating and interpolating filters, halfband and QMF filters. Since 
the involved bandlimiting operations will usually not perform in an ideal 
way, some aliasing occurs. If the system transfer function is measured 
using the conventional cross-spectral averaging approach, the aliased com­
ponents are superimposed and can therefore not be identified separately. 
But spectral correlation analysis allows the transfer function to be resolved 
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Fig. 3. SCF analysis of a sinusoidal product modulated process 
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\G(a ,/)\ 

"'/ 
Fig. 4. Bifrequent cyclic transfer function estimate of a two stage QMF filter branch 

into the aliased components. A bifrequent cyclic system transfer function 
is introduced for that purpose as 

G( f) = W(C)yx(o:, I) 
0:, Wx(f)' (21) 

The input signal x(t) is chosen as a stationary signal. If a random-phase 
multisinus signal is used for system excitation no special window function is 
applied and there are no problems concerning cycle frequency leakage and 
cycle frequency aliasing. The estimate shows spectral correlation (for 0: fJ) 
only if there are residual aliasing components. For 0: = 0 (21) reduces to the 
conventional transfer function estimate. As an example, a single branch of a 
two stage QMF filter bank as given in Fig. 4 was analyzed. The estimated 
IG(o:,1)1 clearly shows the residual aliasing. The main diagonal of the 
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matrix represents the conventional stationary frequency response. If the 
decimating and interpolating factors are known in advance it is sufficient 
to estimate only the interesting cross-sections of 1 G (0:, f) I. 

Conclusions 

Cyclic spectral analysis is especially useful if random signals are given that 
are modified by some periodic operation such as periodic sampling, multi­
rate filtering, sinusoidal modulation or demodulation etc. Different sources 
of cyclostationary can be identified and distinguished from each other and 
from stationary parts that could not be resolved by standard spectrum 
analysis methods. Areas of application for example are detection and iden­
tification of modulated signals (even in the case of spread spectrum sig­
nals) and time delay of arrival analysis of signals (resolution of signals that 
join common band and direction but offer different modulation frequency 
and type). In system analysis spectral correlation can be used to identify 
periodically time varying systems. The well directed usage of cyclostation­
ary test signals allows the identification of nonlinear systems in terms of 
Volterra kernels. Even the standard identification problem of linear time 
invariant systems can be refined: using (13) stationary input and output 
interference signals can be separated and bias error is therefore avoided if 
cyclostationary test signals are used. 

Concerning measurement and estimation of spectral correlation, dif­
ferent concepts can be adopted and extended from traditional spectrum 
analysis. But because of its two-dimensional nature, spectral correlation 
is an expensive procedure and acceptable computation times can only be 
achieved if fast DSP computing is used. 
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