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Abstract 

The description of non-stationary signals causes problems which are hard to solve with 
conventional methods for spectral analysis. Examples for rather instationary signals are 
starting cycles of machines, transients or measuring of flow speed. If the spectral content 
of a signal changes in time, the periodogram (spectrogram) does not give any possibility 
to connect the presence of certain frequencies properly to a certain point of time. Methods 
such as the Wigner-distribution (WO) that display the signal on a time-frequency plane 
are far better for this purpose. The \VD may be interpreted as the power-density spectrum 
(PDS) of the signal, even though it is not strictly positive for all signals. An interesting 
property of the WO besides its high time and frequency resolution is, that the first moment 
of the WO with respect to the frequency is equal to the derivative of the phase, which 
is to say the instantaneous frequency of the signal. An algorithm to compute the \VD in 
real-time was developed and implemented on a system of four digital signal processors. 
This system is used for the measurement of blood velocity by ultrasound. 

KeYWOTds: time-variant signals, \Vigner-distribution, instantaneous frequency. 

1. Introduction 

N on-stationary time signals appear in many fields of digital signal pro­
cessing. If it is possible to describe the signals as nearly stationary in a 
sufficiently long time-interval, the conventional methods of frequency anal­
ysis (spectrogram, parametric models) can be used. 

If the spectral content of the signals changes rapidly in time, these 
methods fail. In this case, methods which transform the signal into the 
time-frequency plane can help on. The VvD (VVIGNER, 1932) is such a trans­
formation and can be interpreted as the time-varying PDS even though it is 
not positive for all times and frequencies. The definition and properties of 
the WD are known from literature (CLAASEN, MECl\LENBR.ti.UI~ER, 1980) 
and are shortly summarized and demonstrated using a simulated signal. 
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A possibility to suppress the cross-terms appearing at Wigner-analysis is 
demonstrated. 

Besides frequency analysis, signals can be described by their moments. 
For non-stationary signals their moments vary in time as well. It is possible 
to develop them from the WD efficient algorithms for on-line estimation of 
the moments in the time domain. As an example, the first moment of the 
PDS, the mean frequency, is considered. 

In another example, the measurement of blood velocity with ultra­
sound, the power spectra achieved with conventional methods are compared 
to the results of Wigner-analysis in the case of real data. The data were de­
duced at the human arteria brachialis (HUCKER, 1992). The cross-sectional 
average of the velocity corresponds to the first moment of the PDS. 

Here as well the algorithm deduced from the WD is compared to other 
methods for estimating the first moment of the PDS. All in all, the WD is 
a valuable for analyzing the time-varying velocity of human blood flow. 

2.Conventional Methods for Power-Density-Spectrum 
Estimation 

For the estimation of PDS different methods are developed. In general, 
it is not possible to calculate the true PDS of a real signal, because a 
real signal is time limited, disturbed, and in general, varying with time. 
The conventional estimators for PDS are well known and well investigated 
in literature (KAMMEYER, KROSCHEL, 1989. KROf\",rULLER, 1991). Here, 
they are presented in a short summary to indicate their disadvantages in 
the case of time-variant signals and to compare their results with the results 
given by the WD. 

2.1 The PeTiodogram 

The base of PDS-estimation by the periodogram is the theorem of \Viener­
Khinchine (WIENER, 1930, I\:HINCHINE. 1934). According to this theorem, 
the PDS L(f) of an, in general, complex-valued but time-invariant signal 
x(t) is the Fourier transform of the auto correlation function (ACF) v(r) 
of the signal. With the ACF 

v(r) = E{x*(t)x(t + r)} (1) 

(En means the expected value, x*(t) denotes the complex conjugate of 
x(t)) the PDS is as follows: 

x: 

L(f)= J v(r)e- j2 ;:j'dr (2) 
-.x: 
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To/2 

= T!~CO E{\;O J x(t)e-j21rftdtI2}. (3) 

-To/2 

Eqs. (2) and (3) give the two possible ways for calculation: 
1. In Eq. (2), the ACF is to be determined first, then the PDS is the 

Fourier transform of the ACF (TUKEY, BLACKMAN, 1959). 
2. In Eq. (3), the Fourier transform of the signal is to be determined first, 

then the PDS follows from the given expected value (Spectrogram, 
Periodogram (KAMMEYER, KROSCHEL, 1989, KRONMULLER, 1991)). 

These two equations show the problems in the case of realization. In gen­
eral, the probability density of the signal is unknown, therefore it is not 
possible to calculate the expected value. On the other hand, it is neces­
sary to observe the whole signal. Real signals, however, are time-limited 
and, in the case of time-variant signals, they can only be considered as 
time-invariant in a sufficiently short interval. 

The Blackman-Tukey Method is not longer considered, because the 
calculation of the ACF takes much time, and therefore this method is 
unsuitable for on-line applications. On the other hand, the solution of 
Eq. (3) can be approximated in an effective manner by the use of the 
Fast Fourier Transform (FFT). To take the time-variance into account, the 
signal x( t) is multiplied by a time-variant window function: 

w(t - r) = 0 for 
To It - rl > -
2 

(To is the observation time). By this, the treated signal is: 

and the estimated PDS: 

LFFT(j, t) = X ll.(j, t)X~(j, t), 

co To/2 

(4) 

(5) 

(6) 

Xw(j, t) = J xw(r, t)e- j2rr!T dr = e-j21rft J x(r + t)w(r)e-j21rfT dr. 

-co -To/2 

(7) 
Many different \vindow functions are possible. The simplest function is the 
rectangular window. It gives the best frequency resolution. Other window 
functions such as the Bartlett, Hanning, or Dolph-Tchebychev windows 
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and so on suppress the sidelobes caused by the limited observation time in 
the estimated spectrum. The different window functions are well known 
from literature (KAMMEYER, KROSCHEL, 1989). Here, a detailed discussion 
is not necessary. The simple rectangular window is sufficient and is used 
for the calculation of the periodogram, the parametric models and the WD, 
too. 

At the description of the time-variance of a signal, there are two con­
tradictory problems: The frequency resolution is inversely proportional to 
the observation time. High frequency-resolution requires a long observation 
time, high time resolution requires a short observation time. This dilemma 
is shown in Figs. Sa and Sb. 

From the point of view of statistics, the periodogram (Eq. (6)) is a 
biased and non-consistent estimator of the PDS (Eq. (3)), (KRONMULLER, 

1991). If the signal is time-invariant, there is a possibility to estimate 
the PDS as the mean value of periodograms belonging to different time 
intervals. Indeed, this estimator is consistent, but, in the case of time­
variant signals, averaging is not allowed. 

2.2 Parametric Modelling 

The base of PDS estimation with parametric models is the assumption that 
the signal x(t) can be modelled as the output of a linear time-invariant 
(LTI) system excited by white noise with mean value zero. Now the prob­
lem is to estimate the parameters of the LTI system in such a manner 
that the spectrum of the estimated output x(t) corresponds to the spec­
trum of the measured signal x(t). For complex-valued signals, the model 
parameters are complex-valued, too. Therefore, it is not the task to es­
timate different frequencies such as when using the periodogram, but to 
calculate the optimal model parameters. By this the number of estimated 
parameters is much less than by the periodogram. The signal description 
by parametric modelling is well suited for time-variant signals - one can 
say, the ACF is modelled -, and for data reduction, too. 

Here, an autoregressive (AR) model is used, because parameter esti­
mation leads to a linear problem only in the case of the AR-model. Other 
models like moving average or a combination of both are possible. In the 
case of AR-modeling, there is: 

x(n) + aJx(n - 1) + a2x(n - 2) + ... + a/,·x(n - K) = w(n), (8) 



with: 
x(n - k), 

w(n), 
and in the z domain: 

THE WIGNER·DISTRIBUTION 

k = 0, 1, .. . ,K, 
k = 1,2, ... ,K, 

the signal, 

the (in general, complex­
valued) parameters, 

the input, Gaussian white 
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1 
X(z) = A(z) W(z), (9) 

If (1'2 is the variance of noise at the input, then for the estimated PDS 
follows: 

T : the sampling time. (10) 

Different procedures for calculating the optimal parameters from the mea­
sured signal are well known in literature (KAMMEYER, KROSCHEL, 1989, 
KRONNnJLLER, 1991), and efficient algorithms exist for implementation 
(Levinson-Durbin, Lattice-filters). Here only the suitability of paramet­
ric models for PDS-estimation of time-variant signals will be discussed. 

If it is possible to describe the signal by a model of order K, the first 
K values of the ACF are needed for optimal estimation. As the statistics 
of the signal are, in general, not known, these values of the ACF must 
be estimated, too. This is only possible with a finite observation time of 
the signal. If the signal is time-variant, one will choose a time dependent 
observation window. Doing this, the optimal model parameters and by this 
the estimated PDS become functions of time: 

(1'2 I 
LAR(f, t) = .4.(z,t)A.~(z,t) Iz=e j2"jT' (11) 

A(z, t) = 1 + a1 (t)z -1 + a2z(t)-2 + ... + aJ((t)z -K. (12) 

The minimum length of the window depends on the order of the model K, 
this means that a higher order of the model requires a longer observation 
time. The time resolution decreases increasing the model order. 

The necessary order for a correct description of the signal is not known 
a priori. But if the correct order is chosen, and if the real process is an 
AR process indeed, then the error of the estimation becomes white. This 
is the reason why recursive algorithms, handling from order K to K + 1, 
such as e.g. Levinson-Durbin, are preferred. There, the order is increased 
until the error of estimates becomes nearly white. 
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2.3 Mean Frequency of the Power Density Spectrum 

The mean frequency of time-variant signals becomes a function of time, 

too. If the estimated PDS, tu, t) is known, an estimate !PDS(t) for the 
mean frequency J(t) can be calculated by: 

00 • 

J fLU, t)df 
" -00 f PDS (t) = -=::---- (13) 

f tu, t)df 
-00 

The time resolution of the estimated mean frequency is given by the length 
of the used observation window. The index 'PDS' indicates the estimation 
of the mean frequency from the PDS. In Sections 3 and 4 other estimators 
for the mean frequency are presented and tested for measured data. 

3. The Wigner Distribution 

The WD is a method to transform any complex-valued time signal into the 
time-frequency plane. In opposite to the periodogram, the WD does not 
require the calculation of expected values, it uses the local ACF 

W(t,T) = x(t + ~)x*(t -~) (14) 

instead of the ACF. By doing this, the WD is much better suited to describe 
time-variant signals than the periodogram, because the local character of 
the periodogram has to be forced by time windowing. 

3.1 Definition 

In the continuous case, the WD is defined as the Fourier transform of the 
local ACF with respect to the time difference T: 

00 

W (f) J ( ) -j27rF7'd 
x t, = w t, T e T. (15) 

-00 

Because of this definition, the local ACF is often referred to as Wigner 
kernel. 

In the case of equidistantly sampled signals, two possibilities exist 
for each sample to construct the Wigner-kernel, which are the time of 
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sampling itself and the middle between two samples. The discrete Wigner­
distribution (DWD) appears thus sampled twice as fast as the original 
signal: 

DWx(i,F) = 

{ 

2~ k~OO x(n + k)x*(n - k)e-j47rFk 

...L e -j27rF f x(n + k + l)x*(n - k)e-j47rFk 
2T k=-oo 

for i = 2n 

(16) 
for i = 2n + 1. 

F is the frequency normalized with the sampling time, F = fT. 
The DWD is obviously periodic for F = 1/2. This means that the 

calculation of the DWD requires oversampling of at least twice the Nyquist 
rate to avoid aliasing. 

3.2 Properties of the Wigner Distribution 

The WD has some properties, which are inviting to interpret it as a kind 
of PDS in the time-frequency plane. 

The WD is real-valued for arbitrary complex signals, as follows from 
the conjugate symmetry of the Wigner kernel. 

Integration of the WD with respect to frequency for a certain time t 
equals the instantaneous power of the signal, and integration with respect 
to time leads to the known PDS (Eq. (2)). However, the WD is not positive 
for all frequencies, so that it cannot be, strictly speaking, a power density. 

Another property of the WD is rather disturbing for the description 
of signals; it is the appearance of cross-terms for signals that contain more 
than one frequency component at a time. For every two frequencies, which 
are contained additively in the signal, a cross-term appears at the arith­
metic mean of the two frequencies oscillating in time with the difference 
of the two invoking frequencies. The influence of the cross-terms can be 
reduced by smoothing the WD in time-direction. The resolution in time 
decreases as a consequence, but can be easily tolerated as demonstrated in 
Fig. 1. The smoothing is performed using MA-filters. 

If one calculates the first moment of a WD with respect to frequency 
for a certain instant t, one obtains an estimated value for the instantaneous 
frequency of the signal. It can be shown (OSTERTAG, 1991) that this first 
moment of a WD corresponds to the derivative of the phase and thus can 
be calculated using differentiating systems without having to calculate the 
WD itself: 

(17) 
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For example, the use of the Stirling algorithm leads to: 

1 
247T"T Im 

fWD(nT) = 

{ 
x«n - 2)T) - 8x«n - I)T) + 8x«n + I)T) - x«n + 2)T)} 

x(nT) . 
(18) 

3.3 The Analytic Signal 

Processing of real-valued data causes problems for two reasons. The spec­
trum of such data is symmetric, which leads to strong cross-terms around 
the frequency zero. The second reason is that all the information about 
the signal is contained twice in its spectrum, so that the investigation of 
positive frequencies is sufficient. This results in reducing the bandwidth of 
the signal by a factor of two. For these reasons, it is advantageous to create 
the analytic signal connected to the real-valued signal before performing a 
WD. The analytic signal is connected to the real-valued one by its Fourier 
spectrum: 

for 

for 

for 

1>0 
1=0 
1 < 0, 

(19) 

where Xa(f) is the Fourier spectrum of the analytic signal Xa(t) and Xr(f) 
is the Fourier spectrum of the real-valued signal Xr(t). There are several 
ways to obtain the analytic signal (KAMMEYER. KROSCHEL, 1989), usually 
FIR-filtering is used. 

3.4 The Pseudo Wigner Distribution 

To calculate the Wigner kernel according to Eg. (14) and Eg. (16), one 
has to know the signal for all times. As this is impossible in reality, only 
a certain period of time is used to calculate the kernel (and the integra­
tion as well). This time window has the length To and is usually chosen 
symmetric to the time t, which means that it slides along the time axis as 
one calculates the WD. The sliding window has the effect of smoothing the 
WD in the frequency-direction, the distribution obtained this way is the 
Pseudo Wigner Distribution (CLAASEN, MECKLENBRAUKER, 1980). 
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3.5 Calculation of the Discrete Wigner-Distribution 

To calculate the DWD of equidistantly sampled signals, several algorithms 
can be developped, all of them being based on the FFT algorithm (05-
TERTAG, 1991). One of these algorithms allows the calculation of two 
DWDs of the same length using only one complex FFT-calculation. This 
algorithm, which is presented in the following, was implemented to build 
an on-line Wigner-analyzer. 

To take advantage of the N-point FFT algorithm, with N = 2L, N -1 
samples of the time-signal have to be used for calculation. Sampling the 
normalized frequency F with a sampling distance of llF = (2N)-1, Eq. 
(16) for even index i leads to: 

L-1 
1 ""' * j2;r km DWL(n, m) = 2T L.. x(n + k)x (n - k)e- 'N 

k=-L+1 

(20) 

To obtain the standard form for a FFT, the Wigner-kernel w(n, k) = x(n+ 
k)x*(n-k) has to be regarded as a function that is periodic in k with period 
N. Originally, the kernel is constructed for Ikl < L. The element of the 
Wigner-kernel for k = L is set to zero. Changing the summation boundaries 
leads to the following equation for the calculation of DWL(n, m): 

N-I 

DWL(n,m) = ~ L w(n,k)e- j2;rk; 
2 k=O 

(21) 

The Wigner-kernel is conjugate symmetric with respect to k, which means 
that it is not necessary to calculate the whole kernel but only the elements 
with positive k. 

Further reduction of the number of calculations follows from the fact 
that the WD of any signal is real-valued. So it is possible to calculate 
two N-point DWDs using one N-point FFT by forming one new combined 
kernel from two kernels for different time-samples n: . 

(22) 

Calculating the N-point FFT of wcomb(k), Wcomb(m) , it is possible to sep­
arate the DWDs of the original kernels according to: 

w(n2, m) = Im{ Wcomb(m)} (23) 

The algorithm outlined above was implemented using a PC-board with four 
ADSP2101 DSPs and a conventional IBM-AT ,:ompatible PC. The signals 
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were available as real and imaginary part of a complex-valued signal (see 
subsection 4.2) due to orthogonal demodulation of an originally real-valued 
ultrasonic signal. The 4 DSPs work in a cyclic scheme, synchronisation is 
achieved by interrupt-control. 

The preparation of the data for 2-dimensional graphical output is also 
done by the DSPs. It is possible to calculate a 256-point DWD in about 2 
milliseconds this way. 

4. Examples for Time-Variant Signals 

4.1 Simulated Data 

To demonstrate the characteristics and the differences of the various meth­
ods for PDS estimation, the complex-valued and undisturbed signal 

(24) 

is investigated. This signal consists of a linearly and a harmoniously mod­
ulated part. The results of PDS estimation are shown in Fig. 1. 

Fig. la shows the spectrogram. The weakly instationary, linearly 
modulated part of the signal is well represented. The influence of leakage 
can be clearly seen in this part of the signal. Caused by the bad time 
resolution of the spectrogram, it is not possible to recognize the second part. 
To improve the time resolution, a shorter observation window was chosen 
in Fig. 1 b. With zero padding for interpolation in the frequency domain, a 
better time resolution is achieved. But the gain in time resolution results 
in a loss of frequency resolution. 

In Fig. 1 c the results of PDS estimation by AR-modelling (order K 
= 8) are given. The result is not better than the one achieved with the 
spectrogram. 

The WD reproduces both signal parts in a correct manner, but cross­
terms appear, too (Fig. ld). To suppress the cross-terms, the WD was 
smoothed using a MA filter of length 15 (Fig. le). 

4.2 Measured Data 

The data are derived from the human arteria brachialis with a continuous 
wave ultrasonic Doppler velocity meter. A high frequency ultrasound beam, 
reflected by the blood particles flowing with different velocities, is shifted in 
frequency caused by the Doppler effect. After an orthogonal demodulation, 
the complex-valued received signal contains a whole spectrum offrequencies 
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o. 

c. 

Fig. i. PDS-estilllates of a simulated, undisturbed signal 
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proportional to the velocity distribution inside the illuminated volume. 
This signal is time-variant, it is pulsating with the heart cycle (HUCKER, 

1992). 
Fig. 2 shows the results of PDS estimations over the time-frequency 

plane. A part of one heart cycle. is presented, starting with the systolic 
pulse. 

The results of the different methods look very similar in this kind of 3-
dimensional presentation. Spectrogram and WD give very noisy estimates. 
In the case of AR-modelling, the noise is suppressed because of the limited 
model order. 

To illustrate the high time and frequency resolution of the WD, the 
nonzero values of the estimated PDSs are plotted in a 2-dimensional pre­
sentation (Fig. B). 

Fig. Ba and Bb show the results for the spectrogram without and 
with zero padding. Clearly can be seen that the bad time resolution of 
the spectrogram without zero-padding (Fig. Ba) is transformed to a bad 
frequency-resolution of the spectrogram with zero padding (Fig. Bb). 

The homogeneous area in the case of parametric modeling (Fig. Bc) is 
the result of the limited model order (K = 8). Increasing the model order 
up to the number of samples in the observation window makes the result 
similar to the one achieved using the spectrogram. 

The high resolution of the WD is demonstrated in Figs. Bd and Be. 
lt is obvious that the WD is that one of the presented methods, which is 
least affected by the length of the used observation window. Only in the 
case of Wigner analysis, the narrow band increase at time of systole, caused 
by the fiat velocity profile inside the blood vessel at this instant, becomes 
evident. Smoothing the WD (Fig. Be) suppresses the cross-terms caused 
by a non-optimal signal demodulation. 

The mean frequency of the PDS is proportional to the mean velocity, 
which means the average over the cross-sectional area of the blood vessel, 
and is in the case of a time-variant blood fiow a function of time. Fig. 4 
shows the different estimates for the mean frequency. A 

Knowing the PDS, it is possible to calculate its mean frequency !PDS(t) 
using Eq. (13). But algorithms in the time domain such as Eq. (18) 

(fwD(i)) are better suited for on-line applications. Another possibility is 
the correlation based approach (HrCI\ER, 1992) 

" 1 V"'j "'2 (T) ( ) 
fACF(i) = 27l"Tarctan V"'j (T) 25 

with VX1 "'2 (T) the cross-correlation between the real and imaginary parts 
of the signal x(t) = Xl(t) + jX2(t) and V"'l (T) the auto-correlation of the 
real (or imaginary) part, at time T, respectively. 
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: :.sj 

Cl. b. 

t [5] 

c. 

d. e. 

Fig. 2. PDS-estimates of measured data (human blood flow) 
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Fig. 3. A 2-dimensional plot of Fig. 2 
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Fig. 4. Mean frequency 

The most common method for estimating the mean frequency is the 
zero crossing detector. One can show that, in general, the zero crossing 
detector is a .biased estimator for the mean frequency, the estimated value 

is too high (fzCD(t)). 

5. Conclusions 

The description of time-variant signals with the conventional methods for 
frequency analysis is only possible for signals which are only 'varying slowly' 
in time. Otherwise the WD is a suitable tool for time-frequency analysis. 

Not only in the medical field, as presented above, but in many tech­
nical applications, too, the WD is a reasonable alternative for system and 
signal description. 
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