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Abstract 

The paper deals with the identification of FIR linear systems by time-domain least squares 
methods. Fast algorithms for solving the least squares problem are introduced. based on 
the notion of quasi- Toeplitz matrices. The estimation problem is solved by embedding it 
into a linear prediction one. and it is shown that the algorithms also allow the efficient 
solution of constrained least squares problems in a very common case. The iterative 
approach to constrained least squares identification is briefly considered. followed by the 
presentation of the applications considered by the authors. Finally. a few comments are 
made about the performances of the methods discussed. 
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Introduction 

A large number of signal processing problems is solved by means of statis­
tical signal processing algorithms. Particularly, the method of minimum 
variance estimation is often applied in solving linear prediction and system 
identification problems. A more general approach is based on the principle 
of maximum likelihood. 

In some cases, for instance, when dealing with transient signals, such 
methods may be difficult to pursue. Statistical descriptions of the signals, 
considered as random processes, could possibly not be known, or might 
be difficult to infer from experimental observations. In such cases a non­
stochastic approach to signal processing may be preferable. 

The deterministic counterpart of the criterion of minimum variance 
is the \vell-known principle of least squares. The algorithms t.hat can be 
obtained by applying the two criteria exhibit some striking similarities, 
although different properties exist in the stochastic and in the deterministic 
case. 

In the identification of linear systems from noisy data, taking distur­
bances into account usually helps to improve accuracy; often, it is the only 
way by which a reasonable solution can be obtained. One possible approach 
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is then to recast the original problem as a constrained least squares one; its 
solution will depend on the values of so-called regularisation parameters. 
Optimization of these parameters can be obtained by an iterative proce­
dure, in which case the availability of a fast algorithm is very important to 
ensure computational efficiency. 

The purpose of this paper is to discuss the use of recursive least 
squares algorithms in the identification of linear systems. The application 
to constrained least squares will be emphasised, showing how fast algo­
rithms can be employed in the iterative solution of constrained problems. 

Finally, their application in some practical cases will be briefly con­
sidered. 

Fast Least Squares 

The pro blem of identifying a linear system from discrete-time input / out put 
measurements can be presented in different ways. In the time domain, iden­
tification of a finite duration impulse response could be stated as follows: 
given the two sequences x(nT) and y(nT) of samples of the input and out­
put signals, with n an integer, find the sequence h( mT), 0 ::; m ::; M, such 
that: 

AI 
y(nT) = L h(mT)x[(n - m)T]. (1) 

m=O 

The range of variation for n has been deliberately left undefined, but obvi­
ously it will be limited in all practical cases. Implicitly, it has been assumed 
that the sampling interval is the same for the two sequences, and, for the 
sake of simplicity, T \vill be henceforth set to 1. Furthermore, samples must 
be aligned in time: the absence of timing skews is an important but not so 
obvious requirement for correct identification. 

Considering the solution of (1) for different values of n results in a 
set of linear equations which in most cases are overdetermined, requiring 
a least squares solution. Applying the orthogonality principle, and using a 
vector-matrix notation, the estimate h = [h(O), .. . ,h(M)]T can be shown 
to be the solution of the equation: 

(2) 

where r Yx is an (M + I)-dimensional vector whose elements are defined by: 

rYX(j) = Ly(k)x(k - j) j = 0,1, ... , M, (3) 
k 
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while the elements of the (M + 1) x (M + 1) matrix R xx are given by: 

rXX (j, i) = L x(k - i)x(k - j) 
k 

j, i = 0,1, ... , M. 
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(4) 

R XX can be called the data auto correlation matrix of the sequence x(n), 
while it is easily shown that r Yx is the first column of the data cross­
correlation matrix between yen) and x(n). 

It can be noticed that, if -00 < k < +00, and assuming x( n) and 
yen) to be the samples of a realisation of an ergodic process, Eqs. (3) and 
(4) define stochastic correlation matrices. In this case the actual impulse 
response could be obtained; furthermore, the auto correlation (or covari­
ance, if the process x has zero mean) matrix has the important structural 
property of being Toeplitz. This feature is the basis for the well known 
and efficient Levinson-Durbin recursive algorithm for the solution of iden­
tification and linear prediction problems. 

In a least squares setting, the finite range of variation of the index 
k in expressions (3) and (4) must be specified for expression (2) to be 
meaningful. Usually, the sequences x(n) and yen) are assumed to have 
the same duration, i.e., S ::; n ::; N for both; several possibilities can be 
considered for the range of k, which result in different properties of the 
matrix RXx. 

If k is allowed to vary between S + M and N, each element of R XX 

results from the sum of the same number of product terms x(k - i)x(k - n. 
No hypotheses are required on the behaviour of the two data sequences 
outside the interval S ::; n ::; N, a situation which is referred to as un­
windowed data, or, somewhat improperly, covariance case. The samples 
of y( n) for S ::; n ::; S + M-I are not employed in the estimation of h. 
Unfortunately, in this case the matrix R XX is not Toeplitz. 

Very often, the assumption is made that S ::; k ::; N + M, and that 
x(n) and yen) are zero outside the interval S ::; n::; N: the reason for this 
choice lis in the fact that the resulting matrix R xx preserves the Toeplitz 
structure and enables the use of efficient algorithms. However, a hypothesis 
has been made about the signals, which is often unrealistic and may affect 
the accuracy in the estimation of h. In fact, ideally infinite data sequences 
have been supposed to be zero, i.e., windowed, outside the observation 
interval. Extensive studies can be found in the literature on the subject of 
the choice of appropriate wind owing schemes. 

Finally, further two possibilities exist, one being to assume that S ::; 
k ::; N, which requires x (n) = 0 for n < S and is called the pre-wind owed 
case; the other is S + M ::; k ::; N + M, for which x(n) = 0, yen) = 0 for 
n > N must be assumed, resulting in post-windowed data sequences. In 
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both cases the resulting matrix R xx is non-Toeplitz. It could be observed 
that the processing of transient signals, which usually start from a constant 
steady state, can be realised in pre-windO\yed form without introducing any 
truncation error. 

In the following discussion it will be supposed that data sequences 
begin at time 0, hence S = O. To evidence the dependence on the length 
of the sequences the final index 1'1 will be indicated in parentheses, e.g. 
RXX(1'1). 

The identification problem represented by Eq. (2) can be solved re­
cursively by different computing schemes, namely, order recursions, time 
recursions, and time and order recursions. The former is the typical Levin­
son recursion, while time recursions are useful for on line identification 
purposes, or for adaptive filtering applications. 

The first examples of fast recursive least squares algorithms were de­
veloped about fifteen years ago (FRIEDL\:\DER et al., 1978, LJu:\G et al., 
1978). They originate from the consideration that in practice the matrix 
R xx, although not Toeplitz, is in some way close to it. It was thought 
that the structure of a quasi- Toeplitz matrix could be exploited to obtain 
algorithms for matrix inversion, the solution of linear prediction problems, 
the computation of Kalman gains, etc., which would resemble those for 
Toeplitz matrices and prove nearly as efficient. 

Given the matrix R xx, the ]\11 X 1\1 matrix 5R XX) is defined as follows: 

S:(RXX)-r XX("') XX(" I 1" I 1.)1 U - J' ), L - r ) T ,1 T " i,j = 0,1, ... , 1vl - 1. (5) 

It can be seen that 5(RXJ") is obtained as the difference between the two 
1\11 x 1\;1 principal minors of . If is Toeplitz, then 5 (R Xl:) is a 
null matrix, hence its rank is 0; for a generic matrix A, 5(A) may have 
any form and its rank can be at most k1. The rank of this matrix, called 
the displacement matrix, is taken as an indication of the closeness to the 
Toeplitz case. 

In all the cases considered above for linear estimation the following 
conditions hold: 

i) <5 (R XX) is symmetric; 
ii) the rank P of 5(RXX) is low; 

iii) 5(RXX) can be factorised in the form: 

(6) 

where D is an 1\1 X P matrix and B is a P x P signature matrix (i.e., its 
elements are either 1, 0 or -1), with P :::; lvl. 

For instance, the correlation matrix obtained with unwindowed data 
generates the following displacement matrix: 
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[ 
N N ] 

8(RXX(N))= L x(k-i)x(k-j)- L x(k-i-I)x(k-j-I) .. ' (7) 
k=},[ k=lH ),1 

from which, in a straight forward manner, one gets: 

8(RXX(N)) = [X(N - i)x(N - j) - x(.M - 1- i)x(lvI - 1 - j)]... (8) 
),1 

Defining the two _M-dimensional vectors x(N) and x(M - 1) as: 

xT (N) = [X(N)X(N - 1) ... x(N -lv1 + 1)] 

xT (i'VJ - 1) = [X(lVI - I)x(lv1- 2) ... x(O)], 

the AI x .lv1 matrix 8 (R xx (i"l)) can be written as follows: 

(9) 

w'hich is exactly the factorised form given in Eq. (6). This property is 
important, since it allows to find some useful partitions of R xx and time 
update their expressions. Among the possible definitions of R xx considered 
above, that for the unwindowed case has the displacement matrix with the 
highest rank, being P = 2. 

The problem that is considered in this paper is the identification of 
a finite impulse response (FIR) linear system by a sequential least squares 
approach. In this case the system order lv1 is given, so that the estimated 
impulse response is represented by the (1\11 + I)-element vector h. The 
estimate of h must be updated each time new samples of the two sequences 
x and y are acquired; the aim is to find a recursive procedure to obtain 
h(N + 1) given h(N). Obviously, h(N + 1) must satisfy the time-updated 
least squares equation: 

(11) 

and it can be seen, by considering how the elements of R xx and r Yx are 
defined, that: 
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(12) 

An updating relationship for h may be found by introducing the vector 
keN + 1), that is 

(13) 

thus: 

heN + 1) = heN) + keN + 1) (Y(N + 1) - [x(N + l)::x? (N)]h(N)). (14) 

A recursive algorithm can be obtained if indications are given as to how the 
vector k is updated. It should be noticed that, according to its definition, 
k is equivalent to the Kalman gain for the matrix R xx. 

The problem of the iterative calculation of k C<1n be embedded into 
the recursive solution of a linear prediction problem, i.e., computing the 
one-step forward and backward linear predictors of order M, given the data 
sequence x(n) (MARPLE, 1981). Let the forward predictor be defined by 
the M X 1 coefficient vector a=[a(l) ... a(M)]T and the backward predictor 
by b=[b(M) ... b(l)]T ; then, assuming: 

, T T 
a(N) = [1: - a (N)] , (15) 

one has: 

where o-f and o-b are the sums of squared forward and backward prediction 
errors up to time N. 

It is interesting to note that R XX can always be partitioned as follows: 

(17) 

where * denotes a scalar, Rh and Rf are 11;1 x lvI matrices and the following 
relationships hold: 

f f r =Ra, (18) 

Since R band Rf are the two principal minors of R IX one may also write 
O(RIX)=Rh_Rf; if R IX is a Toeplitz data correlation matrix o(a-rx

) = 0, 
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hence R b = Rf and, since rb = rf, the forward and backward predictor 
must coincide, which is a well known fact. 

When the new sample x(N + 1) is acquired, the updated displacement 
matrix satisfies the equality: 

(T(RXX(N + 1)) = [X(N + l):x(M - 1)] . [~ ~1]· [X(N + l);x(M -1) r, 
(19) 

and, combining (10) with (17) and (19), some useful relationships can be 
obtained: 

Rf(N + 1) = Rf(N) + x(N)xT (N), 

Rf(N + 1) = Rb(N) + x(M - l)xT (M - 1), 

Rb(N + 1) = Rb(N) + x(N + l)xT (N + 1). (20) 

To carry out the updatings, three auxiliary NI x 1 vectors c, d, and e need 
to be introduced and defined as follows: 

Rf(N + l)c(N + 1) = x(N), 

Rf(N + l)d(N) = x(M - 1), 

Rf(N + l)e(N + 1) = x(N + 1). (21) 

A full derivation of the recursive algorithm for the unwindowed case is 
presented in (HALKIAS et al., 1982). Its steps are summarised here: 

1) compute the forward prediction error e before updating the predictor: 

ef (N + 1) = x(N + 1) - aT (N)x(N), 

2) update the forward predictor: 

a(N + 1) = a(N) + c(N + l)e f(N + 1), 

3) compute the updated forward prediction error e:f : 

e:f(N + 1) = x(N + 1) - aT (N + l)x(N), 

4) compute the sum: 

(Tf(N + 1) = (Tf(N) + /(N + l)/(N + 1), 
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5) update the vector k: 

[ 
0 ] cf(N + 1) k(N + 1) = - - - - - - - - + c a(N + 1), 

c(N + 1) (J'l(N + 1) 

6) update the estimated impulse response according to Eq. (14). 

For the auxiliary terms the following recursions are needed: 

7) compute the backward prediction error eb before updating the pre­
dictor: 

eb(N + 1) = x(N - M + 1) - bT(N)x(N + 1), 

8) partition the vector k: 

_ [rn(N+l)] k(N + 1) = - - -, -_ - - - -- . 
J-L(N + 1) , 

9) update e: 
(N -L 1) = rn(N + 1) + J-L(N + l)b(N) 

e - I 1 _ eb(N + 1)J-L(N + 1) 

10) update the backward predictor b: 

b(N + 1) = b(N) + e(N + l)eb (N + 1), 

11) update c: 

e(N + 1) - [xT(l'iI -1)e(N)]d(N) 
c( N + 2) = ---;o-----==-----~---=---__:;_ 

1- [xTUVI - l)e(N + I)J [xT(N)d(N)]' 

It should be noticed from the definition of c given in (21) that com­
puting this vector requires all data samples except the most recent 
one. This explains why it can actually be determined in advance. 

12) update d: 

d(N + 1) = d(N) - [xT (N)d(N)] c(N + 2). 

The most important feature of this algorithm is that the number of oper­
ations per step is proportional to Iv1, whereas conventional recursive least 
squares algorithms require a number of operations proportional to 1\;12

. 

The algorithm must be initialised properly to obtain correct results. 
This aspect will be discussed in the next section, after introducing con­
strained least squares problems. 
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Constrained Least Squares 

The identification of a linear system can be obtained by processing the re­
sults of an input/output experiment. The relevant data sequences must be 
acquired by a sampling instrument, and processed according to Eq. (2) to 
obtain an estimate of the FIR impulse response h. Unfortunately, uncer­
tainties and errors are introduced, both in the measurement process and 
in modelling the linear system; to reflect this, the input and output data 
sequences should be rewritten in the form x(n) + ex(n) and yen) + even), 
respectively. The presence of uncertainties can be expected to affect the 
accuracy of the estimate. 

Very often, it is assumed that input uncertainties, represented by 
ex(n), are negligible, so that only the term even) is taken into account. 
From (2) one gets the following estimate: 

(22) 

where in the covariance case R xx (N) and rYx (N) are defined according to 
(3) and (4) with M ~ k ~ N and, similarly, the elements of r ex (N) satisfy: 

N 

rex(j) = L ey(k)x(k - j) j = 0,1, ... , M. (23) 
k=J'.J 

The inverse solution of a convolution integral is known to be an ill-posed 
problem; consequently, if data are acquired from noisy signals, or uncer­
tainties are present, the estimate given by (22) can be expected to be 
inaccurate, owing to the effect of the term rex. Often, an excessively noisy 
or oscillating solution is found. 

A classical approach to this problem is to introduce bounds on the 
solution, which typically means to limit the maximum energy of h, i.e., 
h T h ~ E, with E > 0 and real, or of some derivative of it. In general, 
expressing by the matrix C a linear operator on h, the bound takes the 
form: 

(24) 

The solution of this constrained least squares problem is quite straight­
forward and can be obtained, for instance, by using Lagrange multipliers: 

where I is the inverse of the Lagrange multiplier. For the problem to be 
completely solved, the optimum value of this parameter must be found. 
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Unfortunately, expressing I in closed form is nearly impossible, at 
least in a deterministic approach. One way to circumvent this difficulty 
is to obtain I by iteratively solving the constrained least squares problem 
until an optimal, or at least suboptimal estimate of h is found (TWOMEY, 
1965, HUNT, 1971). 

Such a procedure may be long and computationally demanding, since 
several iterations could be necessary. Therefore, it is particularly useful 
in this case to investigate the applicability of fast recursive least squares 
algorithms. Fortunately, in the most common constrained case all that is 
required is an appropriate initialisation of the algorithm already discussed. 

Considering that before data are gathered all sums in the defining 
equation (4) yield zero, it is necessary to avoid starting with a singular 
matrix. The simplest and most common way to do this is to assume 
RXX(M - 1) = 01, where I is an (lvI + 1) x (lvI + 1) identity matrix, and 8 
is a scalar. To obtain this, the algorithm should be initialised as follows: 

a (M - 1) = b (.LvI - 1) = 0, 

(jf(M - 1) = 8, 

. -1 

d(M - 1) = c(.M) = x(M - 1) [5 + xT (M - l)x(.M - 1)] 

It should be noticed that in fast algorithms the data correlation matrix R XJ' 

is never calculated explicitly. Rather, it is implicitly defined by Eq. (13), 
that is, by the expression for k. Since this vector is updated by using the 
recursive relationships (20), it suffices to determine R XX at anyone time 
step to verify its expression. 

U sing the recursions given in the previous section, it is relatively 
simple to obtain the expression of k(.lvI): 

( 
x(M) l(' ')-1 

k(M) = 5c-(~vY~ -l\J (j'(M) 

[ 
x(l'v1) ] '.T T[ x(M) ])-1 :. - - - - - - - (5 + [x(M) x (M - 1)] -.- - - - - - --

x(M - 1) , x(M - 1) 
(26) 

Further, by applying the matrix inversion lemma, and making use of the 
matrix identity I-B(A+B)-l = A(A+B)-1, one gets: 

[ ]

-1 
. x(M) .'. T . T I x(M) 

k(M) = ['': - - - - - - -] [x(A1) x (AI - 1)] T 5I [-.- - - - - - - -], 
x(M - 1)' x(M - 1) 

(27) 
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This equation shows that the matrix implicitly defined by k(M) is in fact 
(R xx (M) + 81). If a straight forward least squares problem is to be solved, 8 
should be kept as small as possible, compatibly with the numerical stability 
of the algorithm. 

However, the same matrix also appears in the most common form 
of constrained estimate of h, namely when the energy of the estimate is 
bounded to be h Th 2:: E, so that the matrix C in Eq. (25) becomes 
an identity. This implies that the least squares algorithm detailed in the 
previous section allows the fast solution of the problem, provided 8 = ,. 

The availability of an algorithm that requires O(M) operations per 
step, instead of O(M2) as traditional iterative algorithms do, makes the 
iterative approach particularly attractive. 

To develop an effective mean for solving identification problems, a 
criterion must also be given to find the optimum value of the parameter ,. 
This proves to be quite difficult, since very often, even though the condi­
tion h Th ::; E is specified, no actual value can be given for the constant E. 
On the other hand, the least squares criterion tries to minimise the trace 
of the data correlation matrix for the output reconstruction error, but this 
condition seldom corresponds with the most accurate estimate of h. Unfor­
tunately, a general criterion has not been found so far; several approaches 
have been proposed, depending on the nature of the system under analysis 
and of the test signals used to identify it. 

When the system is band-limited and step-like waveforms are used to 
test it, good results can be obtained by imposing that the output mean 
squared error is uniform at all frequencies. Step-like waveforms allow to 
differentiate very easily between portions of the signal which are nearly 
constant and parts where abrupt variations of the signal produce broad­
band spectral contributions. It is therefore very simple, even in the time 
domain, to calculate two distinct error values, a low-frequency and a high­
frequency one, compare them and change the value of , until the optimal 
condition is found where the two approximately coincide. 

This method provides a condition that is very easily detected; results 
obtained so far, and presented in (BERTOCCO et al., 1991), showed that it 
performs well in many conditions. 

Applications 

There are many possibilities to employ linear identification algorithms. The 
time domain least squares approach that has been presented in this paper 
originated from the need to identify linear systems from input/output ex­
periments, using broad-band transient signals. Although frequency analysis 
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using sinusoidal waveforms has long been standard practice in electronic 
engineering, it is not always possible to characterise linear systems in this 
way. A simple alternative is the analysis of the step response which, in 
practice, is often the response to a step-like waveform. Particular care in 
processing measured data is needed if an acceptable degree of accuracy is 
to be obtained. For instance, even with very clean signals the presence 
of quantisation noise may require attention and suggest the use of a con­
strained least squares procedure. 

Fast algorithms have been used for the identification of a number of 
linear systems. So far, it has been shown that the frequency response ob­
tained from the Fourier transform of the estimated impulse response differs 
from the measured reference response for no more than ±1 dB in ampli­
tude and ±10 degrees in phase. Some of the results have been presented 
in (NARDUZZI et al., 1991). 

One of the limits of the method is that at present the fast algorithm 
can be applied to just one of the possible linear constraints, that is, the case 
when h Th::; E, and C = I. In step response tests, this kind of constraint 
tends to emphasize the low pass nature of the system under test, thus 
distorting the results. It is expected that by choosing more appropriate 
constraining operators the accuracy of results can be improved further, 
and it seems reasonable to predict that it will be possible to determine a 
system response to ±1 % within its passband. 

The low-pass emphasis affects adversely the attempts to synthesize 
compensating filters for bandwidth enhancement of low-pass systems. It 
is quite simple to reverse the roles of the input and output data sequence 
and employ the identification algorithm to obtain an inverse filter. Con­
strained estimation is essential in this case, since signal components within 
the system dead band, or even the transition band, are more strongly af­
fected by noise. However, because of the low-pass effect of the constraint, 
performance of the inverse filter is somewhat limited. An attempt has 
been made to employ this technique for the compensation of high-voltage 
measurement data acquired through a damped capacitive voltage divider 
(NARDUZZI et al., 1989). Results, although encouraging, are not yet up to 
the required accuracy. 

At present, the research on fast algorithms is continuing, concerning 
in particular the possibility to obtain different kinds of linearly constrained 
estimate. It is hoped that, under suitable hypotheses, a proper initialisation 
of the algorithm variables could still enable to achieve this goal. 
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