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Abstract 

A method is presented to measure and identify a linear system in the presence of nonlinear 
distortions. The method is based on a two-step approach. In the first step the influence 
of nonlinear systems up to degree 4 is eliminated. In the second step the remaining linear 
system is identified using a weighted least squares method. The kernel of the proposed 
technique is the excitation of the system with a pure sinusoid. Special attention is paid to 
the elimination of higher harmonics in the excitation signal which are due to the nonlinear 
load of the generator. 
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Intro d uction 

Identification is a powerful technique for building accurate models of com
plex systems from noisy data (EYKHOFF, 1974; NORTON, 1986; SORENSON, 
1980). In this article we will focus on the identification of dynamic systems. 
Among all possible systems, linear systems form an important class due to 
their well-known properties and their mathematical suitability. A large 
number of identification methods have been developed to deal with linear 
systems in the time domain (LJUNG and SODERSTROM, 1983; LJUNG, 1986) 
and in the frequency domain (SCHOUEENS and PINTALON, 1991). There 
are also toolboxes available which allow the less experienced user to apply 
the identification methods to his specific problem (KOLL.-\R et al., 1991; 
LJUNG,1986). However, in practice most systems are only approximately 
linear, which will introduce model errors due to the nonlinear contributions. 
A first possibility to deal with this problem is to apply small excitations 
around a working point and to fit the linear model which approximates 
best the nonlinear behaviour in some sense (BENDAT, 1990). A second ap-

1 This research is supported by the National Fund for Scientific Research, the Belgian 
Community (IUAP 50) and the Flemish Community (GOA IMMI). 



186 1. SCHOUKENS et al. 

proach is to model the nonlinear system as a Volterra system (SCHETZEN, 
1980) to eliminate the higher-order nonlinear contributions and to model 
the remaining underlying linear system. If the major interest is in the 
global behaviour of the system for a specific class of excitations (e.g. noise 
excitation) the first approach is preferred, but if the estimates are used to 
make a physical interpretation of the results based on a linear model, it 
is obvious that the second approach is required. In this article the second 
approach is studied. In Section 2 it is shown how the higher-order nonlin
ear contributions can be eliminated and the influence of the measurement 
noise is analyzed. In Section 3 a robust identification method is presented 
to model the underlying linear model. Finally, the proposed method is 
verified in Section 4. 

2. Elimination of the Nonlinear Contributions 

2.1. Measurement of the Underlying Linear System 
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Fig. 1. Model setup with noise OIl the measured excitation and response 

Consider the setup in Fig. 1. A linear system with a nonlinear distortion 
is excited with an excitation signal x(t). The corresponding response is 
y(t). The measurements of these signals Xm(t) and Ym(t) are disturbed 
by noise nx and n y. The data processing is performed in the frequency 
domain. We assume that the excitation x(t) is periodic and, for simplicity, 
an entire number of periods is measured. Under these conditions the dis
crete Fourier transform allows to calculate the Fourier coefficients X (f) and 
Y(f) without introducing systematic errors. The noises Nx(f) and Ny(f) 
on the Fourier coefficients are assumed to be zero mean complex normal 
distributed with independent real and imaginary parts, independent be
tween input and output, and to have variances ai and a~ (the variance 
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equals two times the variance of the real and imaginary parts, under the 
previous assumptions). In BRILLINGER, (1975) it is shown that this noise 
model is valid if the noise is mixing and the length N of the data record is 
increasing. Moreover, it is shown that this noise model gives also a good de
scription, even for quite short data records (SCHOUKENS and RENNEBOOG, 

1986). 
The nonlinear system is described by its Volterra representation, and 

we assume that this series converges. This assumption is not always met 
in practice, but we can always restrict the amplitude of the excitation to a 
finite band and consider a series which describes the system in some least 
squares sense. In this article a method is proposed which eliminates the 
contributions up to degree 4, but it is possible to generalize the technique 
in order to eliminate higher-order contributions. 

If the input is restricted to be a pure sinusoid with frequency f and 
complex amplitude X(j) the output can be written as a sum of sinusoids 
with complex amplitudes Y(ik), k = 0,1,2,3. Due to the restriction of 
the nonlinear system to a maximum degree of 4, the maximum output 
frequency is 4f. The contributions at DC and 2f, which are generated by 
the nonlinear contributions of second and fourth degree, do not disturb the 
measurement at frequency f. Consequently, only the contribution of degree 
3 at frequency f will disturb the measurements. The complex amplitude 
Y(j) of the system response can be written as: 

Y(j) = H(j)X(j) + a(j)X2(j)X*(j), (1) 

where * denotes the complex conjugate. Consider two experiments with 
excitation amplitudes XI and X2 and the corresponding output amplitudes 
YI and Y2. Define the scaling values 5i: 

2 * 5i = XiX; 

and the scaled Fourier coefficients 

U = XI 52 - X25j 

/1511 2 + 1521 2 
v = YI 52 - Y251 

/1511 2 + 1521 2 

Eg. (1) shows that the following relation holds: 

V(j) = H(f)U(j). 

(2) 

(3) 

(4) 

From Eg. (4) it is seen that it is possible to eliminate the nonlinear contri
butions of degree 3 by making a combination of two experiments. The first 
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disturbing contribution will be at least of degree 4. Two problems remain 
to be studied: the first one is the study of the influence of the measurement 
noise on the previous result, and the second one is the generation of a pure 
sinusoidal excitation on a nonlinear device. 

The scaling factor in (3) is introduced to simplify the formulation of 
the estimator in Section 3. 

2.2. Study of the Noise Influence on the Measured Transfer Function 

Due to the noise, the measured value of the transfer function will not be 
equal to the true value. Defining 

(5) 

where the index m denotes the measured values, Eq. (4) can be written as 

(6) 

where h is the measurement error due to the noise. For simplicity, we have 
omitted the dependence on the frequency f. An approximated value of h is 
found using the Taylor series of Hm(Zm) around H(Ze) with Ze the exact 
value of Z 

(7) 

A detailed analysis shows that the bias E[h] of Hm is not zero, and contains 
contributions in the complex variances a; and a~. For sufficiently large 
SIN ratios, this bias will completely be masked by the uncertainty on the 
measurements. In the next section we will deal in more detail with the 
systematic errors of the identified models. The complex vanance of h, 
defined as 

a]l = E[(h - E[hlf (h - E[h])] ~ E[h' h] (8) 

is given by 

(9) 

In this expression, it is assumed for simplicity that the noise variance does 
not depend upon the amplitude of the excitation. The expression can also 
be written as 

(10) 
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with O"kCX2) the variance on the non-compensated transfer function mea
surement with amplitude X2 and k = IX21/1Xll. In Fig. 2 it is shown 
how the standard deviation depends on the ratio of IX21/1X11, with a fixed 
amplitude IX21. It is clear that the optimum ratio, resulting in a minimum 
variance, is about 2. In addition, it can be remarked that the variance of 
the compensated measurement will be considerably increased with respect 
to the non-compensated measurement. This increase is due to the intro
duction of the additional complex parameter a in the measurement, and 
it is the price which has to be paid for the elimination of the systematic 
errors due to the nonlinear contribution. 

scaled standard deviation 

o -+O--O~.5---1.;-'5--2--2.'5-""'3--'3:5 IX2I/IX11 

Fig. 2. Evolution of the standard deviation as a function of the ratio of the input am
plitudes. Full line: theoretical value; dots: experimental value 

2.3. Generation of a Pure Sine Wave on a Nonlinear System 

To generate the excitation signals, an arbitrary waveform generator is used, 
which allows to generate a computed waveform X g • Due to the output 
impedance of the generator and the nonlinear input impedance of the de
vice under test, the actually generated signal Xd,1 will not be the desired 
signal Xd. If a pure sine wave is to be generated, also the harmonic com
ponents will be present in Xd,1 due to the nonlinear pull of the system on 
the generator. To deal with this problem, we will use an iteration algo
rithm which will correct the generator signal in order to get the desired 
excitation. In a first step, the transfer function HUd between Xg Ud and 
XdCfk) is measured, assuming that the linear part is dominant. This can 
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be done using the classical transfer function measuring techniques. Next 
the following iteration procedure is followed: 

where Xg,l(Jk) denotes the generator signal in the Zth iteration. To start the 
process, we can choose Xg,O(Jk)=Xd(Jk). The iteration is continued until 
the moment has improves, or a maximum number of iterations is reached. 
This method was checked on experiments and turned out to converge fast, 
even for strongly nonlinear loads. 

M athemaiicaZ interpretation 

The previous problem can be formulated as an optimization problem where 
the following cost function should be minimized with respect to the gener
ator coefficients Xg: 

U sing the Newton optimization algorithm the following iterative procedure 
is found: 

( 
a2 K )-1 aK 

X g,l+l = Xg,1 - ax2 ax' 
g,l g,l 

( 12) 

If the linear term is dominant, the following approximations are valid: 

( 
a2 K ) 2 ax 2 = 2 diag(H (Jd), 

g.l 

(13) 

(14. ) 

Substit ution of these expressions into (ll) finally results in (10). This inter
pretation shows that for strong non-linearities it is possible to improve the 
optimization process (10) by using a better approximation for the deriva
tive or by using the full form (12). It can be remarked that the harmonics 
can be completely suppressed because the number of constraints is equal 
to the number of free frequencies. 
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Fig. 3. Generation of an arbitrary excitation signal 
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Fig. 4. Optimization of the input spectrum 

2.4. Experimental Verification 

191 

Some experiments were made to verify the previous results. In the first 
experiment, the evolution of the input spectrum is shown during the opti
mization process. We intended to generate a pure sinusoid on a linear cir
cuit which was strongly loaded by a nonlinear diode circuit. The spectrum 
is shown in Fig. 4, before optimization and after 1 and after 5 iterations. 

In the second example, a linear circuit disturbed by a nonlinear cir
cuit is measured. Again it was necessary to optimize the input signal in 
order to get a pure sinusoidal excitation. The measurements were made 
for 3 amplitudes of the excitation signal (1.3 V, 1.9 V and 3.8 V). The re
sults are shown in Fig. 5 where the compensated and the noncompensated 
measurements are compared to the measurement of the undisturbed linear 
system. 
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Fig. 5. Measurement of the underlying linear system in the presence of non linear dis
tortions 

3. Identification of the Underlying Linear System 

The identification of the transfer function of the underlying linear system 
is based on a nonlinear weighted least squares method. It is an errors-in
variables method which starts from the measured input and output spec
trum. The difference between the measured and the modelled Fourier co
efficients is minimized. It can be shown that this finally results in the 
minimisation of the following cost function: 

(15) 

The estimates P EV are the values of P which minimize the cost function: 

PEV = arg min K(P). ( 16) 
p 

This is exactly the same expression as the cost function of ELiS, an esti
mator developed to estimate the transfer function of linear systems in the 
frequency domain (SCHOUKENS and PIN"TELO;-';, 1991). Hence it is possible 
to solve this optimization problem using the previously developed routines, 
but replacing the measured Fourier coefficients by the scaled coefficients. 
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Fig. 6. Experimental setup 

4. Experimental Verification 

The previously developed technique is checked on a nonlinear system as 
shown in Fig. 6. Because we have only mini shakers in our lab, we were 
not able to excite a structure sufficiently to get a significantly nonlinear 
behaviour. For this reason, we created a nonlinear system by using a 
double excitation. The excitation signal x(t) is fed to a first mini shaker, 
and after passing through a cubing device, to a second mini shaker. The 
transfer function between the acceleration A and the force F of the first 
mini shaker is modelled considering the acceleration as the driving force. 

F(j) 
H(j) = A(f). (17) 

The excitation signals were designed to force a sinusoidal acceleration as 
explained in Subsection 2.3. Measurements were made at 10 different levels 
with a range of 1 to 50. The nonparametric frequency response function 
obtained before and after compensation is given in Fig. 7. 

A detailed picture is also given of the evolution of the measurements 
at some frequencies. This figure shows clearly that at some frequencies a 
considerable improvement is found, while on other frequencies (for exam
ple at 175 Hz) the method fails. This behaviour will be discussed in some 
more detail later. Starting from this compensated measurement, a transfer 
function is identified. A model order of 6/8 is chosen. Two pole pairs are 
used to describe the two resonance peaks in the considered frequency band, 
while the two other pole pairs are used to model the influence of two neigh
bouring resonances. In Fig. 8 the estimated poles and zeros corresponding 
to the resonances in the frequency band of interest are given for the non
compensated and the compensated measurements. This figure shows that 
the zeros (which are the poles of the transfer function acceleration/force) 
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Fig. 7. Measured transfer function. (a) Amplitude as a function of frequency (b) Evo
lution of the measured (0) and compensated (+) transfer function as a function 
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of the compensated system are much less amplitude dependent than those 
corresponding to the unprocessed data. The zeros can even move to the 
right half plane if no compensation is applied. The compensation did not 
allow to stabilize the poles corresponding to the resonance at 175 Hz. A 
careful analysis shows that the relation between the amplitudes at this fre
quency is of the form y = X

Z with z not an unteger number. For such a 
relationship, the Taylor series and hence the Volterra series do not exist 
at x = O. As a consequence, we cannot define an underlying linear system 
which dominates for small amplitudes, and the method will fail. 
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Fig. 8, Evolution of the poles/zeros in the frequency band of interest as a function of 
the excitation level. 

5. Conclusion 

In this article a method is presented to measure and model the underlying 
linear system of a nonlinear device. Such an underlying linear system, 
which will become dominant for low excitation levels, can only exist if 
the Volterra series exists. To simplify the measurement problem, a pure 
sinusoidal signal is selected as excitation. To avoid the creation of higher
order harmonics due to the nonlinear load of the generator, an iterative 
method is proposed, allowing to get signals with a high harmonic purity. 
A noise analysis of the measured transfer function is made, and a simple 
rule to get a minimum noise sensitivity is proposed. In the second part, 
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a weighted least squares method is developed to model the linear part. 
It turned out that the estimation could be done with ELiS, using scaled 
Fourier coefficients. Because the scaled Fourier coefficients do not satisfy 
the basic noise assumptions of ELiS a bias will be introduced, proportional 
to the variance of the noise. 
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