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Abstract 

The fed-batch Bakers' yeast fermentation is a nonlinear and time-varying process. A 
simulation model of the process has been made. Three nonlinear structure determination 
techniques have been tested on the simulated process: an extended \Viener-Hammerstein 
cascade model described by Volterra kernels (HABER, 1989), a nonlinear model, which is 
linear in the parameters (BILLINGS et al., 1989) and the Group Method of Data Handling 
(FARLOW, 1984). The objective of the work was to determine the structure and parameters 
of a S1S0 model of the glucose flow (input)- respiratory quotient (output) dynamic 
relation of the nonlinear process. The technique of Billings is found to be most flexible 
with respect to the tuning knobs, the choice of model structure and the estimation of the 
parameters. Note that all techniques can be applied to any other nonlinear process. 

Keywords: structure determination. nOlllinear systems. biotechnology. 

1. Introduction 

In the past, several methods have been elaborated for the modelling of (se­
vere) nonlinear processes. A recent overview of these methods has been 
given by HABER and UNBEHAUE:-i (1990). It is noticed in this paper 
that most of the methods presented in literature assume that the struc­
ture of the process is given a-priori. The algorithms are therefore in real­
ity only parameter estimation algorithms missing the possibility of deter­
mining the structure of the process. However, there are several methods 
known, according to HABER and UNBEHAUEN (1990), that can handle the 
structure determination problem. These methods range from well known 
model structure identification techniques such as block-oriented models us­
ing Volterra kernels (HABER, 1989) to less known techniques as orthogonal 
estimators (BILLINGS et al., 1989). Model structure determination is of­
ten vital for modelling of (severe) nonlinear processes. Simply increasing 
the order and the nonlinear degree of the model in order to achieve a de­
sired accuracy will almost certainly result in an excessively complex model 
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and numerical ill-conditioning. A very complex model is not only com­
putational expensive but has also limited practical use. In this paper we 
will present three techniques that try to determine the correct order of a 
process: Block-oriented models using Volterra kernels, group method of 
data handling (GMDH) and an orthogonal estimator. These techniques 
will be elaborated on the complexIty of the obtained nonlinear model and 
applicability of the techniques to a severe nonlinear problem. 

In this paper, as an example of a severe nonlinear process, a simulation 
model based on the widely accepted theory of SONNLEITNER and KAPPELI 
(1986) of the fed-batch Bakers' yeast production is used. The process is 
highly nonlinear and time-varying. A detailed description of this process 
can be found in chapter 2. The structure identification algorithms selected 
from HABER and UNBEHAUEN (1990) are tested on this severe nonlinear 
process. A short description of the algorithms used is given in chapter 3. 
The stress of this paper is on the application of the algorithms presented 
in chapter 3. The results of these applications will be discussed throughout 
in chapter 4. Here a notification will be given of problems arising with 
several of the applied algorithms, how to avoid them and a classification 
of strong and weak points will be presented. This will be done using the 
process described in chapter 2 as test case. Chapter 5 concludes the found 
results. 

2. The Severe Nonlinear Process 

Thefed-batch Bakers' yeast process is an inherently nonlinear, time-varying 
process. It is normally operated in a way such that a minimal amount of 
glucose (molasses), primary nutrient, is needed for an optimal (maximum) 
production of biomass with no ethanol production and a constraint on the 
available oxygen. 

A simulation model has been made from this process. It is capable 
of describing both steady states and transients of the fermentation. It is 
based on the oxygen limited capacity of the yeast cell (SONNLEITNER and 
KAPPELI, 1986) combined with a regulated enzyme production (SWEERE, 
1988) of the cell and a self containing term. Glucose is the only limiting 
substrate. The hypothesis of SONNLEITNER and KAPPELI, (1986) divides 
the growth of the yeast cells into 3 different pathways: 

pathway 1: Under optimal conditions the yeast performs an oxidative 
reaction with the glucose. 

pathway 2: If the glucose consumption is in excess with the oxidative 
capacity of the cells, a reductive reaction occurs. 
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pathway 3: Ethanol can be metabolized oxidatively if the glucose 
consumption is less than the oxidative capacity. 

The biomass metabolizes according to one or a combination of the 
three above mentioned pathways. Switching between the pathways is reg­
ulated through specific enzyme production, causing the process to be time­
varying and nonlinear. 

The biochemical description has been transformed to an equivalent 
mathematical one. It is based on first order ordinary differential equations 
combined with empirical rules and algebraic expressions. These ODE's 
include oxygen, biomass, glucose and ethanol balances as well as some 
enzyme balances. The model has the following assumptions and limitations: 

e the fermentation takes place in a 10 litre continuous stirred tank. 
e the continuous stirred tank is perfectly mixed, no gradients occur 

within the broth. 
e the temperature and pH are kept constant at 30°C and 5, respectively. 
e foam production is negligible. 
e addition of anti-foam and NH40H does not influence the process in 

any other way than keeping foam negligible and pH at 5. 
e there are no correction terms for time constants, time lags, etc. of 

actuators and sensors. 

2.1. The Simulation Set-up 

The process can be seen as a three input, four output MIMO system (see 
Fig. 1). 

:"";-F ====-1 

ESS 
!o===-OUR 

AF ====-1 
i====- CPR 

Fig. J. The input-output representation of the process 

The inputs are: stirrer speed (SS), air flow (AF) and glucose flow (GF), 
the outputs are: dissolved oxygen tension (DOT), ethanol concentration 
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(E), the oxygen uptake rate (OUR) and the carbon-dioxide production rate 
( GP R). In practice the requirements placed upon the controlled process 
are: a maximal biomass production with negligible ethanol production. 
Measuring the biomass concentration on-line is not always feasible; con­
sequently an auxiliary signal has to be found for controlling the biomass 
concentration. This auxiliary signal is the respiratory quotient (RQ): the 
GP R divided by the OUR. In order to ensure maximum biomass concen­
tration at the end of a production run the RQ has to be kept at a predefined 
value. RQ is influenced by GF more than by SS or AF. Although the 
process is MIMO, only a 8180 loop will be identified: the GF -+ RQ loop. 
This loop is time-varying and highly nonlinear and is thus suitable to test 
the algorithms described before. 

RQ 
Process 

Fig. 2. The actual process with precompensated inputs. 

2.2. The Simulation Data-set 

The simulation set-up is chosen so that it resembles the actual process 
with its inputs and outputs (see Fig. 2). Care is taken to design such 
identification experiments that they can be executed on the real process 
in order to test the algorithms. Due to these requirements some attention 
is paid to the possible set of input signals. This set is limited due to the 
requirements placed upon the process, inputs and outputs. The process is 
operated in fed-batch mode, which requires a pre-setting of most inputs. 
This pre-setting is dominated by the initial value inp(O) of the input and 
the growth rate f.L( t) of the yeast and can be expressed as: 

inp(t) = inp(O) . e(/l(lJ.t). (1) 

For the test, two simulation runs are selected that resemble the practical 
situation and are highly nonlinear. During the simulations ethanol is pro-
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duced (pathway 2) as well as consumed (pathway 3). The input and output 
data of both runs are depicted in Fig. 3 and 4. The difference between the 
two sets is negligible. Set 2 is regarded as being smoother than set 1 but 
both data sets resemble a normal operation of a fed-batch process and are 
therefore good test example for the structure identification algorithms. 

3. Applied Methods 

In this chapter three structure identification methods are discussed: block­
oriented models using Volterra kernels (HABER, 1989), a nonlinear model 
with linear parameters (BILLINGS et al., 1989) and Group Method of Data 
Handling (GMDH) (FARLOyV, 1984). These are three among a vast variety 
of methods found in Haber and UNBEHAUEN (1990). The three algorithms 
are quite different in their approach to model the nonlinear process. The 
block-oriented method divides the process into a linear (dynamic) part and 
a nonlinear (static) part with corresponding kernels. The nonlinear model 
with linear parameters has both the static and dynamic part inside the 
nonlinear description. The GMDH algorithm selects inputs into a set of 
fixed polynomial that describe the process best at that stage. The order of 
the models is then increased by using the polynomials as inputs to a new 
set of polynomials, and so on. 

3.1. Block-Oriented Models 

The basic idea of block-oriented models is that the system can be divided 
into several blocks: blocks with static nonlinear and blocks with dynamic 
linear terms that are combined into a system through multipliers and sum­
mative elements. As the fermentation process is a exponential increasing 
process, only quadratic terms (almost exponential) will be discussed. The 
models can be divided into three groups (HABER, 1989): 

1. Hammerstein models in which the static term is followed by a linear 
dynamic term. 

2. Wiener models in which the linear dynamic term is followed by a 
static nonlinear one. 

3. Wiener-Hammerstein cascade models which contain dynamic 
terms both at input and output. The nonlinear dynamic systems hav­
ing polynomial static terms can generally be described by a discrete 
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Fig. 3. Input (Gp) and output (RQ) data set obtained from simulation run. This set 
will be denoted as Set 1. 
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Fig. 4. Input (GF) and output (RQ) data set obtained from simulation run. This set 
will be denoted as Set 2. 
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Volterra series: 

m m m 

where ho, hI (~I) and h2(~I, ~2) are the kernels. 
Parameter estimation of the Volterra series has the disadvantage that 

too many unknown parameters have to be estimated. On the other hand, 
it is possible to identify a structure that is valid for quite different models. 
The kernels can be estimated using an ordinary least squares method. Due 
to a high degree of non-linearity and a high memory value m the solution 
can be made numerically not feasible because of matrix inversion. A so­
lution to this problem lies in applying a recursive least squares algorithm. 
Next the model structure is determined from the characteristics of the ker­
nels. These characteristics are the graphical plots and analytical indices of 
the kernels (HABER, 1989). Finally, linear dynamic terms can be calculated 
either from the kernels or by means of direct estimation of the parameters 
of the parametric model of known structure. However, the linear dynamic 
terms cannot be reconstructed directly from the identified Volterra kernels. 

The estimation of the Volterra kernels makes the one-step structural 
identification possible, independent from the model type as defined before. 
Only first- and second-degree kernels up to a sufficient high memory length 
m have to be estimated. The memory length is normally chosen between 
10 and 20 in order to get sufficient clear graphical plots. Then the structure 
can be determined by applying the analytical measures (HABER, 1989) and, 
if not sufficient, by looking at the graphical representation of first- and 
second-degree Volterra kernels. Having determined the right structure, the 
parameters of the parametric model of known structure can be estimated. 
This is done using ordinary least squares estimators. 

3.2. The N onlinear Model Lineal' in the Parameters 

The dynamic nonlinear model is assumed to be linear in the parameters. 
The structure identification is performed by selecting significant compo­
nents from the set of possible. This can be done by using orthogonal 
regression methods. The model is divided into a process part (no noise 
elements) and a noise part. The structure of the process part is estimated 
and by convergence the noise part is determined. Next the actual estima­
tion of the parameters is done over the combined process and noise parts 
of the model. 
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The model can be represented as an m outputs and r inputs nonlinear 
system: 

yet) = f(y(t-l), ... , y(t-ny), u(t-l), u(t-nu), e(t-l), ... , e(t-ne))+e(t), 
(3) 

where 

[ 

Yl (t) 1 
y(t) = : , 

Ym(t), 
[

U 1(t)] 
u(t) = : ' 

ur(t) , 
[ 

el(t) 1 
e(t) = : , 

em(t) 

(4) 

are the system output, input and noise, respectively; ny, nu and ne are the 
maximum lags in the output, input and noise; {e(t)} is assumed to be a 
white sequence; and f(·) is some vector-valued nonlinear function. The 
nonlinear form of fO is generally unknown. One can write the model fO 
as a combination of a process part jP ( .) and a noise fn (.) part: 

yet) = p(y(t-l), ... ,y(t-ny),u(t l), ... ,u(t-nu)) (5) 

+ r (y(t-l), . .. , y(t-ny), u(t-l), . .. , u(t-nu), e(t-l), ... ,e(t-ne )) +e(t) 

where jP(.) includes all terms 8jXj(t) which do not contain noise elements. 
The remainder of the terms are included in r(·). 

3.2.1. The Structure Identification Algorithm 

For the general model, delayed noise terms e(t- j) are included in the model 
and these have to be estimated using the prediction errors or residuals 
E(t- j). The orthogonal property of the estimator ensures that the selection 
of the process and noise model parameters can be decoupled. Which terms 
will be included in the process model will not be affected by whatever 
noise model is produced later because of the orthogonal property. Initial 
residuals and a tolerance are then computed based on the process model 
and the model structure can then be re-selected with noise terms included. 
A revised residual sequence is calculated and so is a new tolerance and an 
improved process and noise model is determined. A few iterations are often 
enough to determine the final model. Finally it is determined whether the 
model is adequate by calculating some simple correlations. The original 
algorithm proposed by BILLINGS et al., (1989) has been improved so that 
convergence occurs if noise terms are identified. Tests have shown that less 
than 10 iterations, typically 5-6 iterations, are sufficient for the algorithm 
to converge with a tolerance of 1.10:1. 
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3.3. Group Method of Data Handling 

Ivakhnenko in 1966 introduced the Group Method of Data Handling 
(GMDH), which is an automatic, so called self-organizing method. GMDH 
can be used to build up a hierarchical multilevel model that can be trans­
formed into an input/output one. The model itself has a cascade-like struc­
ture with more inputs and one output signal. Through the difference with 
the cascade structure, the model is called hierarchic and this is shown 
by the fact that each subsequent submodel can be estimated only in the 
knowledge of the output signals ofthe previous submodels. These submod­
els build a layer and the complexity of the model is characterized by the 
number of layers. 

The system is represented as a regression equation of the form: 

.) ? 

Y = A + BXi + eXj + Dx; + Ex] + FXiXj (6) 

for all possible combinations of inputs Xi and Xj and the output y. This will 
give m(m -1)/2 higher-order variables for predicting the output y in place 
of the original m variables X1, X2, ... , x m . From the calculated m(m - 1)/2 
variables m 1 quadratic regression models are selected that best predict 
y. These m1 variables will be used to generate m1 (m1 - 1) /2 regression 
equations for predicting y from the new variables. Essentially what is 
computed are a collection of polynomials of degree 4 in four variables. 
The process will continue until the regression equations begin to have a 
poorer predictability power than did the previous ones. This will happen 
since the regression equations are tested against a new independent set of 
observations. The model will start to become overparameterized. After 
stopping, the best of the polynomial representations in that generation is 
selected. Doing the necessary algebraic substitutions one arrives at the 
Ivakhnenko polynomial: 

m rH rn rn rn 111 

y = a + L biXi + L L CijXiXj + L L L dijkXiXjXk +... (7) 
;=1 ;=1 j=1 ;=1 j=1 k=1 

3.3.1. The Algorithm 

All relevant data are collected as regression type. Say n observations of m 
inputs and one output are collected. Next the observations are split up into 
a training set and a checking set. Take all the independent variables two 
at a time and construct the regression polynomial (Eq. 6) that best fits the 
dependent observation y in the training set. N O\V for each of the polynomi­
als evaluate them at all data points, and store the new observations. One 
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should interpret these new observations as new improved variables which 
have better predictability powers than those of the original generations. 
The object is to keep only the best of these new observations, and this is 
where the observations in the checking set come into play. Select the ob­
servations that best estimate the dependent variable y in the checking set. 
One should note that the number of variables selected may be less than or 
greater than the original number. Also note that the test of goodness of 
fit was summed over the observations in the checking set. Find the best fit 
and compare it to the latest best fit. If it is less, repeat the construction 
of the regression polynomials, else the algorithm has reached its optimal 
structure. 

4. Results 

The results of the structure determination according to the three methods 
can be divided into two sections: numerical results (identification) and user 
results (handling the algorithm and its output). The stress will be on the 
last item, discussing the tuning knobs of the three algorithms, looking at 
their performance against test cases (defined by the authors), discussing 
the usability of different evaluation points suggested by the authors and 
finally applying the algorithms to the test data and evaluating it. 

The determination of a nonlinear process roughly involves identifica­
tion of time delays, the order of the nonlinear process, its nonlinearity and 
the identification of the parameters belonging to the nonlinear structure. 
The first item, time delay identification, can be done separately with signal 
processing of the input-output data. Doing so can speed up calculations 
of all algorithms. The order of the nonlinear process will be determined 
by the kind of nonlinearity and is usually restricted by the user to two. 
The nonlinearity is approximated by a series of products and summations. 
Ending the structure determination is the identification of the parameters 
of the obtained model. The results of the three algorithms will now be 
discussed separately. 

4.1. Block- Oriented Models 

Before doing any structure determination the order of the Volterra kernels 
has to be chosen in advance, in our case two (see Eq.(2)). Note that 
nonlinearities can cause a higher order and can introduce any algebraic 
function as input (e.g. sin(u)). The set of input signals is limited by 
the number of input signals as the algorithm itself creates time series of 
these inputs. Note, however that the maximum memory length still has to 
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be chosen. If no delay correction has been done, the maximum memory 
length is rather high, incorporating the delay plus the length of the impulse 
response. 

Second order Volterra kernels 

Contour plot 3-D plot. 

Fig. 5. Contour plot and 3-D plot of the data of Set 1. This data represents the Bakers' 
yeast process. 

~;econd order Volterra kernels. 

CODtoUr 3-D plot 

Fig. 6. Contour plot and 3-D plot of the data of Set 2. This data represents the Bakers' 
yeas t process. 

The algorithm was first tested on a known process described by 
HA B ER (1989). Results of these tests indicate that use of the graphical plots 
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gives the best results. Analytical indices formulated by HABER (1989) give 
no additional information. Only the information obtained from the con­
tour plots of the graphical plots gives enough information to discriminate 
between model structures. The two data sets representing the yeast pro­
cess are investigated with the structure identification tools based on the 
Volterra kernels. Fig. 5 shows the graphical representation of Set 1 and 
Fig. 6 that of Set 2. It is seen that the 3-D plot and contour plot indicate 
a Wiener-Hammerstein model (see HABER, 1989). Due to the fact that 
the data of Set 2 is smoother than that of Set 1 the structure is better 
seen in the 3-D plot. The structure has been identified but leaves a great 
deal of freedom to the user. HABER (1989) presented 3 different Wiener 
Hammerstein models: simple, general and extended. The extended model 
was chosen. The choice was dictated by the presence of 'fast' and 'slow' 
dynamics in the system. The model consists of 4 different dynamic blocks, 
a multiplier and a constant. The dynamic block (Bd Ad represents the 
'slow' dynamics of the system, associated with the enzyme dynamics. The 
other three blocks are related to the 'fast' dynamics. 

Input 

GF 

~(q-l) 

~(q-l) 

~(q-l) 

A3(ql) 

Output 

RQ 

Fig. 7. The extended Wiener-Hammerstein model of the biological process 

The blocks representing the system give a nice indication of the structure of 
the system but as already mentioned above, several different structures are 
applicable. Furthermore, the blocks themselves still have to be identified 
before any error criterion can be applied. Due to the freedom of a high 
order for the Volterra kernels almost any nonlinear system can be modelled 
this way, note, however that the computational burden becomes large. Care 
has to be taken when choosing the memory length, as choosing this one 
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not long enough will automatically lead to a wrong determination of the 
structure of the model. 

4.2. The Algorithm of Billings 

Again, before doing any structure determination the maximum order of the 
nonlinear model has to be chosen, in our case the order was two. The set of 
input signals is limited by the number of input signals and output signals, 
the expected delay and the memory length for input and output signals. 
The accuracy of the obtained process model has to be chosen in advance. 
This accuracy is set to a percentage of total recovery of the output signals 
by the (total) set of input and output signals. Next the influence of the 
error is incorporated by setting the stop criterion for the convergence. 

The algorithm was tested on a known process described by BILLINGS 
et al., (1989). Results of these tests indicate the use of the selection criteria 
as described in BILLINGS et al., (1989). The best selection criterion is 
the convergence. In case of no convergence the model is too small (the 
order is too low, or not enough memory depth is applied). Note that 
this convergence criterion is only valid with noise corrupted models, as it 
depends on the evolution of the prediction error. Whether the model is 
correct can then be tested with several (auto/cross) correlation tests. Data 

y(t) = 1.08 + 0.9106· y(t - 1) + 2.072 . u(t) - 1.903· u(t - 1)+ 

120.7· y(t - 1) . u(t) - 107.3· y(t - 1) . u(t - 1) + 299.6 . u(t) . u(t)-

232.8· u(t) . u(t - 1) - 84.17· u(t - 1)u(t 1) (8) 

y(t) = 1.08 + 0.8545 . y(t - 1) + 3.31' u(t) 2.941· u(t - 1)+ 

19.21· y(t - 1) . u(t) + 422.4 . u(t) . u(t) - 309.9· u(t - 1) . u(t 1) (9) 

from simulation runs, the same as with the Volterra kernels, is used to 
get an indication of the structure and parameters of the process. The 
two data sets are evaluated with the structure identification tool based 
on the algorithm of Billings. Formulas 8 and 9 give the selected terms of 
respectively data Set 1 and data Set 2. It is seen that all the selected terms 
of Set 2 reappear in Set 1. Furthermore, it is found that the contribution 
of the nonlinear terms to the output signal is small in comparison to the 
two major linear terms y(t - 1) and u(t - 1). The parameter values of the 
nonlinear terms are big in comparison with the linear terms. They also seem 
to compensate each other as can be seen with selected term y(t-1).u(t) and 
y(t-1).u(t-1) and also u(t).u(t) and u(t).u(t-1) of Set 1. The parameter 



STRUCTURE DETERMINATION OF A SEVERE NONLINEAR PROCESS 211 

values have different signs and their values are comparable. This is due to 
the steep changes of the output signal. The original signal is reconstructed 
for about 90%. Note that the system has no noise incorporated such that 
only the process terms are selected and the user has to define the stop 
criterion for the process model so that this matches his needs. If the same 
stop criterion is chosen for Set 1 as for Set 2 the number of selected terms 
for Set 1 is maximal. 

The obtained model is less transparent than that of the Volterra ker­
nels as there are no blocks representing it. If no noise signal is expected 
on the output signals the algorithm will skip the identification of any of 
the noise parameters. This means that an iterative procedure has to be 
done by the user to obtain a correct process model. This can be time 
consuming. If no delays are estimated, this algorithm will estimate them 
itself by excluding those signals with less delay. This can directly be seen 
from the obtained results. A measure of goodness of the obtained model, 
if noise is present, are the plotted correlation functions (BILLIl'\GS, 1989), 
but care has to be taken e.g. when evaluating cross-correlation terms of 
the prediction error and the inputs. 

4·3. Group Method of Data Handling 

In contradiction to the other two algorithms the maximum order of the 
model is not chosen by the user but by the algorithm itself. The set of 
input signals is determined by the number of input signals, the expected 
delay and the memory length of the input signals. The algorithm normally 
divides the data set into a training and a checking set. This procedure is 
followed for the test, but for the Bakers' yeast data only a training set is 
assumed. The accuracy is determined by the algorithm itself as the total 
recovery percentage of the output signal by the (total) set of input signals 
(like in section 4.2). 

The algorithm was tested on a known process described by FARLOW, 

(1984). Results of these tests indicate that the algorithm is self-learning 
and needs no presetting. This is a big contradiction to the other two 
algorithms. Note that with this algorithm inclusion of noise is difficult 
and special provisions have to be made to do so. The two data sets are 
evaluated with the algorithm yielding similar results (see Eq. (10) and (11). 
It is seen that only the terms y(t - 1) and y(t - 3) are identified in a one-

y(t) = 1.08 + 0.8634 . y(t - 1) - 0.1067· y(t - 3) + 6.7289 . y(t - 1) . y(t - 1) 

+ 2.4623· y(t - 3) . y(t - 3) - 3.1006· y(t - 1) . y(t - 3), (10) 
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y(t) = 

1.08 + 0.8767· y(t - 1) - 0.1526· y(t - 3) + 3.3274· y(t - 1) . y(t - 1)-

4.3437· y(t - 3) . y(t - 3) - 6.5353· y(t - 1) . y(t 3) (ll) 

layer model. The original signal is reconstructed for about 70% in both 
cases. It is interesting to observe that GMDH only selects the autoregres­
sive terms whereas the Billings algorithm also selects inputs. This fact can 
be explained as an integral action. 

For both results the obtained model is transparent due to the simple 
solution and the low reconstruction rate. If the reconstruction rate has 
to be higher, the model will become less transparent due to a more layer 
model. The algorithm can cope with delays as these are included into the 
first layer (by choosing the right delayed input signals). The algorithm can 
only be tested on goodness by its sum of squares of the output error. 

5. Conclusions 

The structure identification method based on Volterra kernels gives a nice 
indication of the structure in terms of blocks. These blocks have still to be 
identified using normal identification techniques. The structure identifica­
tion technique proposed by BILLINGS et al., (1989), however, does identify 
structure and parameters at the same time. GMDH also identifies the 
structure and parameters at the same time but becomes less transparent 
when more than one layer is determined. 

The Volterra kernels based algorithm is time consuming, specially if 
a recursive least squares algorithm has to be used. The technique has no 
flexibility in dealing with the memory, it has to be chosen beforehand and 
large enough to get a good impression of the structure and the blocks of the 
system. The memory restriction is also present in the other two algorithms 
but less stringent as these algorithms are not based on impulse responses. 
Note that for all algorithms it yields: when choosing the memory not high 
enough the algorithm does not yield practical results. 

The algorithm of BILLINGS et al., (1989) is more flexible with respect 
to the choice of the model structure and the estimation of the parame­
ters. The algorithm decides itself whether the process involved is a linear 
one or a nonlinear one by selecting relevant terms. The parameters are 
estimated directly with the resulting model and its structure whereas the 
linear dynamic terms in the Volterra kernels based algorithm have to be 
estimated after the model structure is chosen. Due to the fixed structure 
of the GMDH (the Ivakhnenko polynomial) there is less flexibility with 
respect to the model structure. 
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The algorithm of BILLINGS has only two tuning knobs: the stop cri­
terion for the process model and the convergence criterion. The algorithm 
selects its own stop criterion for process and noise model together, which 
is sometimes very time consuming. Another advantage of the algorithm 
of BILLINGS is the fact of automatical estimation of delay terms in the 
NARMAX model and the fact that it may deal with MIMO models. The 
GMDH algorithm has no tuning knobs at all, which is a big advantage over 
the other algorithms, but makes the algorithm also less flexible in terms of 
interactive corrections by the user. 

Comparing the outcome of the relative sum of squared output error 
for both data sets and for all structure determination algorithms indicates 
a preference for the Billings algorithm. 
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