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Abstract 

Recently SZTIPANOVITS has proposed [2,3] an adaptive processing system - an adaptive 
FIR filter structure - that consists of a resonator based digital filter (RBDF) and a neural 
network. The RBDF is a highly parallel structure with several structural and implemen
tational advantages, which in the proposed case performs a recursive transformation as 
well. This paper focuses on the advantages and disadvantages of the proposed composite 
structure. Some improvements are suggested, for example extending the parallelism of 
the structure to the neural network as well, which results in a better convergence rate 
of the training procedure. On the other hand, the convergence rate can be improved by 
using the combination of the output error and the transform domain component error. 
Finally the structure is extended to adaptive HR filtering problems which requires the 
modification of the resonator based HR structure. 

Keywords: neural networks, HR filter, improved training rate, adaptive filters, resonator 
bank digital filters. 

Introduction 

Over the last years adaptive filtering has been an active area of research 
with important results and applications in fields of adaptive control, sig
nal processing and communication [1]. (E.g. adaptive noise cancellation, 
channel equalization, etc.) 

The general structure of an adaptive filter [1] is shown in Fig. 1. Usu
ally we define the system decomposing it into two main subsystems: a 
linear or nonlinear time-varying filter, with predefined structure character
ized by an adjustable parameter set (8(n)) and an adaptation algorithm 
which adjusts the parameters of the filter. 

The adaptation algorithm can get information for the proper param
eter adjustment from several sources: 

from the input signal(s), 
- from the output signal(s), 
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Fig. 1. General structure of adaptive filters 

from external signal( s), which are indirectly connected to the features 
of the ideal signal, 
from the desired (ideal) signal which is the purpose of adaptation. 

In Fig. 1 it is emphasized that usually the difference of the desired sig
nal and the actual output signal (the error signal) drives the adaptation 
process. 

Recently SZTIP.-\NOVITS [2,31 has proposed new components for gen
eral adaptive FIR filter structures: 

- resonator based digital filter (RBDF) is used as a time-varying filter 
component, 
single or multilayer neural network is used for adaptation. 

Both components have promising features: 
- the RBDF is structurally passive, provides minimum roundoff noise, 

can suppress zero-input limit cycles, etc.[41 In the implementational 
point of view it is a highly parallel structure which provides the adap
tive system with substantial advantages, 

- using neural networks for adaptation may solve problems, where usu
ally no (or at least limited) a priori structural information of the 
system, signal, or process of interest is available. The necessary struc
tural knowledge can be taught during the training process. 

On the other hand, both components have drawbacks as well: 
- the RBDF structure is suitable for both FIR and HR filtering prob

lems but its application in an adaptive HR context is not straightfor
ward because of stability problems, 
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- the neural network can exhibit poor convergence properties during 
training. 

The purpose of this paper is twofold: 
to improve the performance of the adaptive filter proposed by 
Sztipanovits (especially during the training phase), 
to extend the applicability to adaptive HR applications. 

The Time-varying Filter Section and the Adaptive FIR Filter 

The proposed time-varying filter is a resonator based digital filter structure 
which has several structural and implementational advantages. The filter 
structure is based on some concepts of the observer theory. The key part of 
the filter is a conceptual state variable model of the input signal, where the 
state variables are the components of a discrete transformation (Fig. 2). 

signal generator 

Fig. 2. Concept and structure of the resonator based digital filter 

Parameters for the recursive Discrete Fourier Transformation: 

j271'"m 
Zm = e N i 

1 ,2" m 
gm = N eJ 7'[ ; 

m = 0,1, ... , N - 1 

Arbitrary discrete orthogonal transformation can be used but in most of 
the cases we prefer to use Fourier transformation, and that will be used 
throughout this paper. Discrete Fourier transformation is performed if we 
use N parallel first order complex resonators, where: 

the poles of the resonators (Zi =exp(21ri/N), i = 0,1,2, ... , N - 1 
are the Nth roots of 1, 
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- the input weighting factors are proportional to the corresponding 
poles (gi = zdN, i = 0,1,2, ... , N - 1). 

In that case the outputs of the observer loop (Xo, Xl, . .. ,XN-d gives the 
recursive discrete Fourier transform (RDFT) of the last N samples of the 
input time series (x(n-1), x(n-2), ,", x(n-N)) [4J. The sum of the outputs 
of the observer loop (Xo+X I + ... +XN - I ) gives a one-step prediction of the 
input signal (x(n)) based on the last N samples. 

The outputs of the transformation loop always give a correct DFT of 
the last N input samples, but the one-step prediction is not always errorless. 
If the input signal is periodic, having time period of N (i.e. having harmonic 
components of the resonator pole frequencies of the loop), the x( n) signal 
can be composed of the transformation components without error. In that 
case there is no difference between the input x(n) and the feedback signal 
fb(n), therefore the feedback difference signal fx(n) = x(n) fb(n) is 
zero. The resonators work with zero input and their outputs will provide 
sinusoidal signals of the free running frequencies. It will be referred to as 
the case of correct signal model. If the input signal has different harmonics 
which are not embodied in the resonators, the input signal (x(n)) cannot be 
predicted from the N point time series, therefore cannot be reconstructed 
from the N point DFT of this record. In that case the feedback signal 
can follow the input with some error only, the feedback difference signal is 
not zero, it will tune the resonators to give frequencies different from the 
free-running ones. It will be referred to as the case of not correct signal 
model. 

On the basis of the observer in Fig.2 the realization of FIR and HR 
filters is also possible. The transfer characteristics of the filter: 

N-I 
L Si.,..-"-'--'-

H(z) = x
y

((:)) = -':.=.·=-=-::-°N:----I --, 
- g._-l 

1 + L 1_1----1 
i=O -1-

(1) 

For FIR filters, the transformation loop is fixed, only the output weight
ing factors have to be set for the proper FIR filter transfer characteristics. 
In that case the observer is dead-beat in N steps, where N denotes the 
transformation size. Because the resonator pole positions are on the unit 
circle the resonators work at the limit of stability. But the global observer 
system will be stable due to the global feedback of -1, which results in 
one zero for every pole at the same position and so stabilizes the transfer 
function. Because the zeros are provided by the same resonator param
eter (Zi = 0,1, ... ,N - 1) through the feedback the poles and zeros will 
effectively cancel the instability. 
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For HR filters fixed recursive DFT cannot be used because the pole po
sitions of the resonators and the input weighting coefficients (g; = 0, ... , N -
1) will depend on the HR filter pole-zero arrangement to be realized. In 
order to achieve good sensitivity properties the poles are on the unit cir
cle and the input weighting factors are chosen gi = TiZi, where T; are real 
numbers and TO + Tl + ... TN-l 1 [4J. 

The adaptive filter structure proposed by Sztipanovits is shown in 
Fig. 3. 

Neural 
Network 

I G(Yll 

Fig. 3. Adaptive FIR filter structure 

sIn) 

Only the output weighting factors of a fixed RDFT loop are adapted there
fore only FIR filters can be implemented by this model. Two architectures 
were investigated with and without feedback G(y) and it was shown that 
this type of feedback transformation helps to improve the noise rejection 
properties of the filter [2,3]. 

Improvement of the Convergence Properties 

Using neural networks usually results in convergence rate problems dur
ing the training of the system. In this section some possibilities of the 
improvement of the training speed of the neural network are investigated. 

The size (number of layers, number of nodes, number of connections) 
of the neural network is in strong correlation with the convergence rate; 
the higher is the complexity of the net the slower is the training rate. So 
it would be very advantageous to decrease the size of the neural network 
used. But there is a lower limit of the size - the neural network must 
be complex enough to model the complexity of the mapping of the input 
signal (x(n)) onto the output one (d(n)). The problem is that we usually 
do not know this complexity, but even if we know it, the complexity of the 
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neural network should be higher for an efficient training. So we usually use 
a neural network which is redundant and thought to be complex enough. 
Therefore the direct decrease of the size of the neural network is not a 
feasible possibility. 

But we can make use of the parallel structure of the filter; we can 
achieve the complexity needed by using independent smaller parallel sub
networks for every branch of the resonator bank. It is correct when our 
signal model is a correct one, in that case the signal components in the 
transform domain are independent of each other (at every output we have 
one component of the orthogonal discrete Fourier transform). By using 
parallel neural networks for every branch the complexity of the total neu
ral network system remained nearly the same (the number of layers and 
nodes remained, only some connections were cancelled) but the training 
rate is improved, because smaller independent networks trained. 

A second opportunity to improve the convergence properties is a con
sequence of the fact that the filter has parallel branches and the neural 
network is divided into parallel independent nets as well. Using back
propagation as training algorithm we try to optimize a scalar performance 
function, in most of the cases we use: 

1 AI 
E = M L[d(n) - y(n)f 

n=1 

(2) 

We use the steepest descent gradient method; evaluating the gradient of 
the scalar cost function according to the parameter vector of the neural 
network. If }V~.q,r is the input weight assigned to the pth input of the 
qth node in the rth layer of the ith subnetwork, for the sake of notational 
simplicity we will use ~V/ in referring to this single weight. 

SE = ~ #-- '>[d( . _ (. )]Sy(n) 
SW' M L.. ~ n) y nSW' . 

I n=1 I 

(3) 

Taking into account that we evaluated the transform components of the 
incoming signal: 

:\"-1 X-I 

y(n) = L Yi(n) = L [si(n)Xi(n)]. (4) 
;=0 

It follows that: 

8 E l·H [ X-I 1 S . 
8Wi = M L 2 d(n) - L siXi(n) Xi(n) 8~i 

I n=1 ,=0 t 

(5) 



NEURAL NETWORK CONTROLLED ADAPTIVE FILTERS 221 

because the transform domain components Xi of x(n) do not depend on 
the neural network parameters. Assuming that the signal concept of x( n) 
is correct the components Xi are independent of each other since the trans
formation used is an orthogonal one. Therefore only the ideal output signal 
den) builds connections among the components of the gradient vector. Let 
us take the transform domain components of d( n) in the same transforma
tion as we did for x(n) 

.'\'-1 

den) = L Di(n) (6) 
i=O 

1 lv! [N-l ]2 1 M [N-l ]2 
E = M]; ~ [Di(n) - siXi(n)] = M]; ~ Ei(n) , (7) 

where 

Ei(n) = Di(n) - siXi(n) i = 0, ... ,N - 1 (8) 

are the component errors in the transform domain. Assuming that the 
orthogonal transform of d( n) gives a correct model of d( n) as well: 

8E 1 Ai 8Si(n) 
8Wi = M L 2[Di(n) - si(n)Xi(n)]Xi(n) 8Wi 

t n=1 t 

= ~ ~ 2E-(n) - X-en) 8si(n) 
M L.. 1 1 8W' 

n=l t 

(9) 

If the above assumptions are valid the component errors could be used 
to train the independent neural subnetworks that will increase the con
vergence rate. (It can be considered as a type of the transform domain 
adaptation [6].) 

Unfortunately if Xi and Di(i = 0,1, ... ,N - 1) are not correct signal 
models of x( n) and d( n), respectively, the transform domain error evalua
tion gives a lower limit of the achievable accuracy. The goal of transform 
domain optimization is to modify Xi until Xi = Di, but Di cannot charac
terize d( n) perfectly. You can measure how the transformations character
ize the signals by measuring the power of the feedback difference signals. 
Therefore a combination of the errors seems to be effective. Define the 
ratio of the power of the output error and the transformation errors: 

iJ: + id 
c = '7=( d==-=y=) (10) 
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where ix and id are the feedback difference errors of the transformations 
of signals x(n) and d(n), respectively and the overbar notes the power of a 
signal. The following combination of the two errors was used in simulations: 

eo(n) = d(n) - y(n), E;(n) = D;(n) - s;X;(n) (11) 

,c c 
E;= l+c eo + l+cE;. ( 12) 

The system using the combination of the output error and the transform 
domain component error is shown in Fig. 4. For the sake of simplicity the 
error evaluation method for only one branch (ith branch) is shown. The 
shaded blocks perform recursive Fourier transformation, the dotted block 
is used for evaluating the combined error for training algorithm according 
to Eqs. (10)-(12). 

d(n) 

e 

Fig. 4. Combined use of transform domain error and time domain error 

Simulation results show that this system improves the learning rate, espe
cially when the signal transform components give correct or near correct 
models of the signals. In Fig.5 the result of modelling a 5th order FIR 
low-pass filter is shown. The cut-off frequency of the filter is is/4 Us is the 
sampling frequency), the input signal is the combination of sine waves of 
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resonator pole position frequencies and white noise. The decrease of out
put relative error during the training is shown using the output error only 
(solid line) and the combination of output and transform domain errors 
(dotted line). The combined error results in a significant improvement of 
convergence rate . 
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Fig. 5. Convergence of training algorithm using different errors 

Extending the Adaptive Structure to HR Filters 

The resonators of the RBDF structure work at the limit of instability. 
The negative feedback of -1 stabilizes the loop. But for HR filters the 
parameters of the loop especially the resonator pole positions should be 
changed as well. Because the adaptation algorithm of the pole positions 
includes the same pole positions, in its transfer function but it is out of 
the negative feedback loop, unfortunately the adaptation process will be 
unstable. 

One should modify the structure such that any HR filter uses the same 
stable loop for transformation and the pole positions be unchanged. In that 
case new free parameters have to be introduced because the denominator of 
the transfer function has to be defined. (An HR filter of order N has 2-N-1 
free parameters, compared to a FIR filter of the same order which has N 
free parameters only. On the other hand, the transformation is dead beat 
so it provides only a finite memory.) A possible solution could be found for 
that problem if we use the same recursive Discrete Fourier Transformation 
loop as in Fig.i, but we modify the output weighting by using first order 
HR filters (in form of bI/(l + a2z-1)) instead of the complex numbers (Si; 



224 B. PATAKI 

i = 0,1, ... , N - 1). The transfer function of the filter in that case: 

9i z - 1 

I !-Zi Z j 

(13) 

N-l N-I 

I: [b1i9jZ-1 IT (l+u2iZ-l)(I-ZkZ-I)] 

i=O k=O, 

H(z) - k;!i (14) 
- N-l N-I N-I 

IT (1+u2kz-l)(I-zkz-ll+ I: 9jz-l(1+u2i z - l ) IT (1+u2k)(I- z k z - 1 )] 

k=O i=O k=O, 
k;!i 

The adaptation algorithm can set the parameters of the output weighting 
filters with some constraints to have a real-valued output function for y(n). 
(Because the loop is similar to the FIR case, Discrete Fourier Transforma
tion components will drive the output first order filters, so the input of the 
kth and (N -k)th filters are complex conjugate pairs; Xk = X N- k . If we use 
in these branches first order filters having complex conjugate coefficients, 
the resulting output will be real valued. So bli = bi(N -i); a2i = a;(N -i); 

i = 0, ... , N - 1. 

yen) 

x(n) 

Fig. 6. Adaptive IIR filter structure 

For the sake of simplicity in Fig. 6 the transformation of the desired signal 
(d(n)) and the error evaluation process are not shown, they are the same 
as in Fig. 4. 

The above adaptive HR structure with the generalized error evalua
tion process was used in several computer simulations. In Fig. 7 the ideal 
output signal (d(n): solid line) and the actual output signal (y(n): dotted 
line) are shown. The input signal (x(n)) was composed of some sinusoidal 
signals (some of them are in resonator positions others are between res
onator positions) and a stochastic error term. The ideal output (d( n)) was 
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a filtered version of the input signal by using two second order HR low
pass filters. The filter parameters providing the ideal signal were changed 
periodically. The adaptive system had 16 parallel resonators (therefore 16 
order HR filter could be formed using that filter) and it was trained to 
follow these changes. In Fig. 7 a part of the training is shown, the time 
window: 9300 < n < 9400. The filter characteristics providing the ideal 
output is changed at n = 9325. It is clear that the adaptive filter could 
follow the change after a short transient. 

3r-------~------~------~------,_------, 

2.5 

2 

1.5 . 

-1.5 

ideal output: 
model output: 

-2~------~------~------~------~------~ o 20 40 60 eo 100 

time (n) +9300 ) 

Fig. 7. Output signal of a time varying filter and the output of the model 

1.5r-------~~----~------~------,_------~ 

- output error: ---
signal model error: ...... . 

-1.5 

-20~----~2~0~-----4~0~-----6~O-------8~O-------,~OO 

time (n) +9300 " 

Fig. 8. Output error and feedback error signals 
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In Fig. 8 the output error (d(n) - y(n) : solid line) and the feedback error 
of the transformation of the ideal signal (f d( n) : dotted line) are shown 
in the same time window. You can see the transient after changing the 
filter providing the ideal output signal. In the period 9300 < n < 9325 the 
low-pass filter having higher cut-off frequency is used, the output error is of 
lower level than the transformation error, because the high frequency noise 
could not be properly modelled by the transformation. In this part the 
output error is used dominantly for training. In the second part (9325 < 
n < 9400) when lower cut-off frequency filter is used, the output error 
is dominant over the error of transformation. In this part the transform 
domain component errors are used dominantly for training. 

Conclusions 

The promising new components for general adaptive FIR filter structures, 
proposed by Sztipanovits, have conceptual and implementational advan
tages. The proposed structure has drawbacks e.g. the poor convergence 
of the neural network during learning. In this paper some new methods 
for improving the convergence of the neural network were investigated. A 
structural modification of the resonator based filter was suggested as well 
to extend the applicability of the structure to adaptive HR filters. 

References 

1. SHY:-;K, .J. J.: Adaptive IIR filtering, IEEE ASSP Magazine, Vo!. 6, pp. 4-21, 1989. 
2. SZTIP . .\NOVITS. J.: Adaptive Processing with l\'eural Controlled Resonator-Banks, 

IEEE Trans. on Circuits and Systems, Vo!. CAS-37, No. l1, pp. 1436-1440, 1990. 
3. SZTIP,boVITs, .].: Dynamic Backpropagation Algorithm for l\'eural Network Controlled 

Resonator-Banks. IEEE Trans. on CiTcuits and Systems, Vo!. CAS-39, l\'o. 2.1992. 
4. PECELI, G.: Resonator-Based Digital Filters, IEEE ITans. on CiTcuits and Systems. 

Vo!. CAS-36. No. 1, pp. 1.56-1.59, 1989 . 
.5. NARENDRA. K. S. - PARTHASARATHY. K.: Gradient Methods for the Optimization of 

Dynamical Systems Containing Neural .\'etworks. IEEE Trans. on Neural NetwoTks 
Vo!. 2. pp. 2.52-262, 1991, 

6. MARSHALL, D. F. JE1'KINS, \c\'. I"":. - \It.:RPHY, J. J.: The Use of Orthogonal 
Transforms for Improving Performance of Adaptive Filters, IEEE ITans. on CiTcuits 
and Systems Vo!. CAS-36 . .\'0. 4. pp. 474-483. 1989. 


