
PERJODICA POLYTECHNICA SER. EL. ENG. VOL. 37, NOS. 3-,1, PP. 309-316 (1993) 

EFFICIENCY TEST 
OF AUTOMATIC TEST PATTERN GENERATION 

METHODS 

Zoltan HEGEDUS 

Department of Measurement and Instrument Engineering 
Technical University of Budapest 

H-1521 Hungary, Budapest 

Received: December 5, 1992 

Abstract 

Automatic Test Pattern Generation (ATPG) is unavoidable for large combinational cir
cuits, However, since ATPG is a known NP-complet problem, this is a very CPU-time 
consuming process, Therefore choosing the optimal ATPG algorithm for an industrial 
test generation system can be an important question, However, this question cannot be 
easily answered because of the implementational and evaluation differences of the pub
lished algorithms, This paper presents a software frame, where any ATPG method and 
their heuristic can be easily implemented allowing a correct comparison between different 
methods, 

On the other hand the known ATPG methods cannot be ordered by quality, because 
their efficiency depends on the properties of the examined circuit. Therefore it seems to 
be reasonable to develop a hibrid strategy whose effectivity is independent of the circuit 
properties and near to the known strategies, The presented frame is an ideal environment 
for developing such a new method, 

Experimental results are also presented on some implemented algorithms and heuris
tics using a variety of MSI components and ISCAS'85 benchmark circuits, 

Keywords: automatic test pattern generation, development tool, heuristics, 

Introduction 

Generally deterministic test pattern generation for large combinational cir
cuits is unavoidable for a certain percentage of the circuit faults, However, 
Automatic Test Pattern Generation (ATPG) techniques being NP-complet 
problems are [2] very CPU time consuming processes for larger circuits, 
Therefore the optimal choice of an ATPG method for a certain application 
can be a significant question. However the known ATPG algorithms like 
D-algorithm [3], PODEM [4], Composite Justification [5] have different ap
proaches in finding an appropriate test pattern for a given fault, This fact 
implies that regarding their effectivity an absolute quality order cannot be 
established. Their effectivity depends on the properties of the examined 
circuit. Furthermore the implementation and evaluation differences of the 
published algorithms makes also difficult the right choice. 



310 Z. HEGEDUS 

This paper describes a software frame (TESTFRAME) which allows 
the implementation of any kind of ATPG algorithms providing a possibil
ity for a correct comparison. Furthermore the TESTFRAME provides an 
ideal environment for developing new ATPG methods. In Section 1 a sim
ple formalism is introduced which is suitable to describe a variety of ATPG 
algorithms. Section 2 contains the description of TESTFRAME tool. In 
Section 3 some example can be found how to implement ATPG methods 
in TESTFRAME. Section 4 contains some examples of heuristics imple
mented in TESTFRAME. Section 5 summarizes some experimental results 
achieved on MSI elements and ISCAS'85 benchmark circuits [6]. 

1. General Description Formalism for ATPG Methods 

To implement different ATPG methods in the same environment we need 
a formalism, that is appropriate to describe all of them. One such an ap
proach can be if the ATPG algorithms are regarded as systematic search
ing in a weighted decision tree. In this case an ATPG algorithm can be 
given on the next way. 

Let the examined circuit be given by a graph (Fig. 1.). In this graph 
let each gate output and primary input of the circuit be represented by a 
node in the graph. The nodes are connected to each other upon the circuit 
topology by directed edges. The direction of an edge corresponds to the 
direction of the signal flow in the circuit. 

Fig. 1. Circuit diagram and the corresponding circuit graph 

Now one vertex in the decision tree corresponds to a logic value com
bination of the nodes in the circuit graph (Fig. 2). The vertices of the 
decision tree are also connected to each other by directioned edges. Here 



EFFICIENCY TEST 311 

one edge corresponds to an assignment of a logic value to a certain node 
of the circuit graph. The root vertex of the decision tree represents the 
circuit state when every node has no definite value. The leafs of the de
cision tree will correspond to the valid test patterns and the inconsistent 
logic value combinations. One vertex can be reached from different states, 
since a combinational network is unsensible to the order of the logic value 
changes at its nodes. The searching in the decision tree should be system
atic, since otherwise it cannot be ensured that if a test pattern exists it 
will be found. In the third section examples will be given, how an ATPG 
method can be corresponded to a certain weighting of the tree. 

vS 

Fig. 2. Decision tree corresponding to ATPG 

2. TESTFRAME Development Tool for ATPG Algorithms 

Since TESTFRAME aims at comparing and developing ATPG methods it 
can rather be regarded as an experimental tool than an industrial software. 
Therefore some requirements have lower significance comparing to an in
dustrial test system, however some properties get higher importance. For 
example we do not need fault simulation since we definitely want to exam
ine the behaviour of an ATPG method for each assumed fault. Of similar 
reasons we do not need random or adaptive random test generation phase. 
However we do need precise evaluation, the possibility to easy install new 
ATPG strategies and the possible most general properties to support the 
realisation of every algorithm. For example the different methods use var
ious logic value set. In [3] a 5-valued logic is described, [7] and [8] have 9-
and ll-valued alphabet respectively. To support all of these alphabets in 



312 Z. HEGEDUS 

TESTFRAME it was necessary to choose the possible widest logic value 
set which yields as the power set of {O/O, 1/1, 1/0, 0/1}1 alphabet. 

Using the {I, h, d, n} notation for this basic values respectively, the 
16-valued power set is: 

. 2 
{-, l, n, In, d, ld, dn, ldn, h, lh, hn, lhn, hd, lhd, hdn, lhdn} 

This choice2 can make the computation slower but includes all possible 
logic sets and can ensure the least sever assignment to a node. 

Some further properties of the software: Its fault model consists of the 
stuck-at-1 and stuck-at-O faults. It is implemented in C language. Its size 
is only about 2000 source line. Only the C standard libraries were used to 
maintain the portability of the software. It has implemented versions under 
UNIX and DOS operating systems. The inputs of the software are the 
gate level description of the examined circuit and some parameters. The 
parameters can be given in a command file as well, since for larger networks 
the running time is expected to be rather long. By these parameters the 
computation time and the number of backtracks taken can be limited, 
furthermore the used ATPG methods and the required output files can be 
determined. 

In the current state of the tool three ATPG algorithms can be chosen. 
These methods are: D-algorithm, Composite Justification, PODEM. As 
an output file enhanced circuit graph description, test pattern, statistics 
and trace information on the test computing process can be chosen. The 
philosophy of constructing the frame was to include every function in it 
which is needed by most of ATPG methods. Therefore in TESTFRAME 
the following functions are built-in: 

User interface/Command file treatment 
Circuit graph extractor and processor 
Systematic search method with decision maker and backtrack mech
anIsm 
Forward and backward implication 
A checker function to detect if the current state of the circuit is a test 
for the given fault 
A procedure that is systematically searching for an appropriate input 
combination to a gate output value. This is used during back tracking. 
Fault effect propagation function 

TESTFRAME uses two dinamic lists. The decision list contains the deci
sion which can be made. The order of the elements is determined by their 

1 Here the two parts of one logic value separated by slash refer to the logic value of 
the node in the good and the faculty circuit, respectively 

2Here '-' stands for the inconsistent state when no logic value can be assigned a node 



EFFICIENCY TEST 313 

weight. 3 The first element has the highest weight which represents the 
most fascinating decision. The allocation list contains the made decisions 
and implications in the order of insertion time. The first element represents 
the fault site. The elements of the two lists have the same structure. The 
most important slots of an element are: node index, logic value, weight.4 

It has to be noticed, since TESTFRAME aims to be a generally usable 
tool, the fastest solution had to sacrificed in order to keep the generality. 
The recursive test computing process of the next main steps (Fig. 3.): 

1. Getting the parameters from command file or console. 
2. Circuit graph extracting. Constructing data structure upon the cir

cuit topology and computing further information for later use of 
heuristics. 5If required saving graph information file. 

3. If there is no untested fault, making general statistics if required and 
exiting from the program. 

4. Choosing the next fault and placing it as the only element of the 
decision list on the first recursion level. 

5. If no more decision can be made (decision list is empty) backtracking. 
At this step level of recursion is decremented by one. 

6. If the level of the recursion is 0 the test computing failed for the given 
fault. If required making test administration and local statistics. 

7. If trace information required, making administration on the current 
state of the decision list. Taking the decision which has the highest 
weight from decision list, placing the decision to the allocation list. 
At this step the recursion gets one level deeper. 

8. Forward and backward implication. 
9. If the implication finds the current state of circuit inconsistent, re

drawing last decision, jumping to 5. 
10. Placing the implications to the allocation list. If trace information is 

required making administration on allocation list. 
11. Input combination matching for the gate output which corresponds 

to the last decision made. This step is skipped if a primary input 
corresponds to the last decision. The matched inputs have weight 0 
on the decision list. 

12. If the current state of the network tests the assumed fault, making 
test administration, local statistics if required and jumping to 3. 

3 One new decision can be inserted to beginning or to the end of the group of those 
decisions which have the same weight. This makes possible easy realising of first depth 
and breadth searchings. 

-!The function of some more slot of the structure are not detailed here and in the 
description of the program. 

5 Detailed in Section 4. 



314 Z. HEGEDUS 

13. Calling the weighting function that realises the chosen ATPG method. 
Occasionly ordering or placing new element to decision list. 

14. Jump to 5. 

3. Illlplelllentation of ATPG Methods in TESTFRAME 

In TESTFRAME several ATPG methods and their different versions were 
implemented. For example here the weighting function for the D-algorithm 
and the Composite Justification are given. The D-algorithm's weighting 
process has two steps. 

1. Making fault propagation and placing the propagated nodes to the 
decision list with weight 2. 

2. If there are any element on the decision list with weight 0, changing 
their weight to 2 and reordering the list. Decisions can be generated 
weight ° during gate input matching. 

The weighting function of Composite Justification consists of two steps too. 
But the first is taken only once, at the beginning of the test computation 
for a fault. 

1. If the last allocated node is the fault site placing all primary outputs 
to the decision tree with value 'dn' and weight 1. 

2. If there are any element on the decision list with weight 0, changing 
their weight to 2 and reordering the list. 

4. Illlplelllentation of Heuristics in TESTFRAME 

Heuristics can be established in TESTFRAME using mainly the informa
tion gained during graph extracting. 6 Graph extracting generates infor
mation for one gate on; gate type, input number, fanout number, back
ward and foreward connected nodes, reachable pri.mary inputs and out
puts, node complexity, primary output complexity. The complexity of a 
node is computed similarly as in [9]. The primary output complexity at a 
node, shows that how many paths lead from the node to the given primary 
output. Since the primary output list of a node is ordered upon this com
plexity measure the Composite Justification will choose automatically for 
the first trial primary output with the lowest complexity. 

In the current state of the frame two further heuristics are imple
mented. One is the intelligent backtrace algorithm published by Goel in 

60bviously the required information call be colIlputed right whell it is nee<IPd, but if 
there is an suitable, it is much less expensive to use which was gained during preprocessing 
since it was computed once for the whole test generation process. 



Recursion level 
increments 

-1 Redraw decision r 

Weighting 

EFFICIENCY TEST 

Decision? 

N 
)--~Exit 

Recursion level 1 

N 

Recursion level 
decrements 

iI> Exit 

Mass ,,0 

Fig. 3. Flow chart for TESTFRA:-'lE 

315 



316 Z. HEGEDOS 

[4]. This method chooses the easiest gate input if only one input has to be 
justified and the hardest if all has to be justified during backtracing. In 
TESTFRAME the inputs of each gate are ordered by their complexity in
dex during preprocessing. Therefore during test computing, we only have 
to choose the right end of the current gate input list. The other heuris
tic helps to find the optimal path from the fault site to a primary out
put in D-algorithm. The list of foreward connected gates are also ordered 
during preprocessing upon the number of their inputs. Therefore the D
propagation will try first the gate which has the lowest number of inputs. 

5. Experimental Results 

Table I. shows the experimental results on the implemented ATPG methods 
and heuristics using TESTFRAME. Here the backtrack limit for the MSI 
elements was 1000 and for the benchmarks 20. 

In some cases the circuits contain untestable faults 7 [8]. These faults 
are also taken into account in the summary, therefore the real test coverage 
is higher in some cases than it is marked. 

In the case of c499 and c13558 the application of intelligent backtrace 
seems to reduce the fault coverage. However the D-algorithm for example 
is known to be poor at highly reconvergent exor networks [4]. Therefore the 
high fault coverage without intelligent backtrace now can rather be viewed 
as the result of a lucky description of the network.9 To proof this several 
experiments were made with different descriptions of the same circuit and 
in each case the fault coverage fell below 70%. On the other hand replacing 
the applied node complexity measure by a static testability analysis which 
distinguish the controllability when logic 0 and 1 is required to a node may 
increase the performance of the implemented ATPG methods. 

The applied intelligent D-propagation and intelligent primary out
put choice heuristic never reduced the performance in the examined cases. 
However since these are also statistic techniques certainly exists some de
scription of the examined circuit when they do reduce the fault coverage. 

It can be seen that the quality of the ATPG methods depends on 
the examined circuit, so it would be useful to develop a hibrid method 
combining the D-algorithm and the Composite Justification to reduce this 
dependence. 

iFor example c432 contains one according to [S]. but unfortunately is SOllle other 
publications different values can be found. 

8The c499 and cl3.s.s circuits realise the same function but the numerous exor gates 
in c499 are replaced by nand gates in cl :3.5.5 

9The description of a circuit is insensible to the order of inputs belonging to a gate. 



EFFICIENCY TEST 317 

Table 1 
Experimental results using TESTFRAME. D-alg. stands for D-algorithm, Camp. for 
Composite Justification, iD-prop. for intelligent D-propagation, iBckTr. for intelligent 

backtrace, iPO-cho. for intelligent Primary Output choice, f.cov. for fault coverage, 
av.bck. for avarage number of backtracks and av.brc. for the average number of 

branches taken during test computing. 

7.:18.5 74181 c432 c499 c880 cl 3.5.5 

D-alg f. cov. [%] 100.0 100.0 90.31 100.0 100.0 100.0 
av. bek. 7.440 1.0.52 2.10.5 0.000 0.002 0.131 
av. brc 37.49 20 .. 5.5 91.08 119.4 74.94 17·5.3 

D-alg. + f. cov. [%] 100.0 I 100.0 I 92.60 100.0 100.0 100.0 
iD-prop. av. bck. 3.881 1.0.52 1 . .584 0.000 0.002 0.131 

av. brc. 31.64 20.·52 84.74 119.4 I 74.8.5 174.3 

D-alg. + f. eov. [%] 100.0 100.0 9.5.92 89.71 100.0 98.4 7 
iBckTr. av. bck. 7.179 0.922 0.911 2.370 0.028 2.0.50 

av. brc. 38.66 19.8.5 77 .. 59 123 . .5 7.5.7.5 1~- .) 
11.-

D-alg. + f. eov. [%1 100.0 100.0 98.21 89.71 100.0 98.47 
iD-prop. + av. bck. 3.738 0.922 0.4.52 2.370 0.012 2.0.50 
iBckTr. av. brc. 33.06 19.83 68.42 123 . .5 7.5.64 177.2 

Camp. J. f. eov. [%] 9·5.24 100.0 74.23 100.0 99.89 98.64 
av. bek. .51 . .5,) 2.188 .5.681 0.33.5 0.03.5 0.982 
av. brc. 7.5.11 2.5.18 89.20 123.7 79.81 189.2 

Camp. J. + f. cov. [%] 100.0 100.0 91.84 100.0 100.0 98.64 
iPO-cho av. bek. 0.2.50 I 2 . .597 2.168 0.33.5 0.002 0.983 

av. brc. 24.4.5 24.81 82.29 123.7 77.80 189.0 

Camp. J. + f. cov. [%] 90.48 97.40 68.:37 97.94 99.77 9:3.:27 
iBckTr. av. bck. 9.) . .58 I 27.7.5 I 6.449 0 .. 593 0.10.5 2.8.5.5 

av. brc. 120.5 49.82 72.88 130.3 I 80.40 I 181.1 

Camp. J. + f. cov. rVc J 100.0 98.70 96.68 97.94 I 99.77 93.:27 
iPO-cho. + av. bek. I 0.000 I 1.5.22 I 0.737 0 . .59:3 I 0.087 2.849 
iBckTr. av. brc. 2.5.36 I :3 •. 23 6.5.88 130.:3 78.0S 181.1 

Conclusions 

In this paper a software frame TESTFRAME and a possible general de
scription formalism for ATPG methods were presented. ATPG algorithms 
implemented in TESTFRAME were also presented. Upon experimental 
results the implemented methods working under TESTFRAME have ac
ceptable performance on fault coverage, number of backtracks and number 
of taken branches. The frame was proved to be an efficient tool for a very 
simple implementation of different ATPG algorithms. Some possibilities of 



318 Z. HEGEDUS 

implementing heuristics in TESTFRAME were also given. Since the per
formance of the implemented ATPG algorithms depends on the properties 
of the examines network it seems to be reasonable to develop a hibrid, cir
cuit independent method using the advantages of TESTFRAME. 

References 

1. FUJl\VARA, H.: Logic testing and design for testability. ?-.!IT PRESS 198.5. 
2. FUJIWARA, H., TOIDA, S.: The complexity of fault detection: An approach to design 

for testability. Proc. FTCS-12, 1982. pp. 101-108. 
3. ROTH,.J. P.: Diagnosis of Automata Failures: A Calculus and a Method. IBM Joumal 

of Research and Development, Vo!. 10, pp. 278-291. July. 1966. 
-1. GOEL, P.: PODEM-X: An automatic test generation system for VLSI logic structures. 

PTOC. 18th Design Automation ConI. 1981, pp. 160-268 . 
. 5. SZIRAY, .J.: Test calculation for logic networks by composit justification. Dig'ital PTocess, 

Vo!. 2. 1979. pp. 3-15. 
6. BRGLEZ, F .. POW:>ALL. P., HUM, R.: Accelerated ATPG and fault grading via testa

bility analysis. Proc, ISCAS'85, June 198.5, pp. 695-698. 
7. ?>.ll:TH. P.: A Nine-Valued Circuit ?>'lodel for Test Generation. IEEE Trans. on Com

puters, Vol. C-25, no. 6, June 1976, pp. 630-636. 
8. CHE;-;G, W. T.: Split Circuit .\lodel for Test Generation. PTOC. 25th Design Automation 

ConI, Anaheill1, CA, June 1988, pp. 96-101. 
9. SIPOS. T., PATARICZA, A., SZIRAY .. 1.: An artificial intelligence application in fault

oriented algorithms. PTOC. UP'S9, (Jlh Symposium on ivficTOcomputeT and Mic7'opTo
ceSSOT Application. Budapest. Oct. 1989. 


