
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 36, NOS. 3-.1. PP. 319-334 (J992)

AUTOMATIC TEST GENERATION BASED ON
CONSTRAINTS l

K. TILLy*2 , Gy. ROM..\N**, L. SURJAN**

*Department of Applied Physics
Delft University of Technology, The Netherlands

**Department of Measurement and Instrument Engineering
Technical University of Budapest,

H-1521 Budapest, Hungary

Received: May 13, 1993

Abstract

It seems to be a very hard task to enhance the properties of widespreadly used automatic
test pattern generation algorithms. Experiences show that achievements are sometimes
not worth the effort. In the authors' opinion this fact stems from the basically 'algorithm
oriented' nature of research made in the past. A new experimental framework is pre
sented for the problem, considering network representation and search control algorithms
as equally important parts. The network is represented by object- oriented data-flow
networks, the search control algorithm is based on constraint satisfaction, and a special
kind of dependency directed backtracking which we call constraint slackening. Similar
methods were proved to be very useful in automatic system diagnosis by DAVIS (1985)
and others, although have not been introduced to testing yet. This paper summarises the
basic notions of constraint satisfaction, the potential advantages of using it for building
test generation systems, and shows implementational details of a test generation system,
based on constraints. Experiences of the run-time tests show that constraint-based test
generation can be highly efficient.

Keywords: automatic test pattern generation, constraint, data-flow networks, object
oriented programming.

Introduction

There are several known algorithms for automatic test pattern genera
tion in digital circuits as described by ROTH (1966), KlRKLAND (1988),
FUJIWARA (1985) and others, which are rather efficient and widespreadly
used. Although when we try to enhance their properties (e.g. speed or
coverage rate), or extend them to other domains (like from gate level to
functional testing or from combinational to sequential circuits) we have to
face extreme difficulties, where extensive efforts must be made for accept
able gains. The authors are convinced that this is concerning not only

IThis project was sponsored by the grant OTKA 5-771.
20n the leave from the Department of Measurement and Instrument Engineering, Tech
nical University of Budapest

320 K. TILLY et a1.

the difficulties of the problem itself (which naturally plays a distinct role
here), but also with the representational and programming tools chosen for
building test generation systems. In this article we try to show that -
beside other relevant advantages mentioned later - the efficiency of tradi
tional test generation algorithms can be significantly increased if we use a
carefully designed and appropriately implemented software environment.

To characterise the properties of such an environment, we consider as
a starting point the two basic problems in a test generation system:

The first one is to find a representation method to describe the net
work for which we want to generate test patterns.
The second problem is to control the test generation process. To
achieve this we need algorithms to efficiently perform extensive graph
search using the previously described network. It is also important
that the control algorithms must avoid most unnecessary search, since
automatic test pattern generation is NP-complete.

Methods used until now have paid most attention to the construction
of the control algorithms, while considering the network representation
problem as a solved one.

A basic experience of the software engineering community shows that
to efficiently solve difficult problems (as automatic test pattern generation
obviously is) is practically only possible by using software tools dedicated
to the needs of the current task. So we viewed the problem from this per
spective and we tried to establish an environment dedicated to automatic
test generation.

It is obvious that digital networks are built of just a few types of
blocks, although a given network can contain as many instances of these
elements, as needed. This property can be very easily handled in an 0 bject
oriented environment, where element types (like NAND gates) can be mod
elled by distinct object classes, while individual gates can easily be pro
duced by generating instances of these classes.

This way we can represent nodes of the network as object instances,
but what to do with the connections (wires) between the nodes? Data-flow
networks can help BIEGL (1988). As it is known, data-flow networks contain
elementary processing units in their nodes and a data item is ordered to
any of their arcs. Any node has inputs and outputs. If a node has enough
valid data on its inputs, the node can be started, it performs a specific
transformation on the input data and sets the values of its outputs. This
also means that some of the nodes connected to the output of this node
may be started. Such a network offers the possibility of concurrent run-time
scheduling and shows a very strong analogy with electric circuits.

Data flow networks are efficient tools for simulation, though test gen
eration requires more than that, since in this latter case the direction of in-

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 321

formation flow on the arcs (wires) of the network is not given (the data-flow
graph is not directed). This requirement has some important consequences.
We can only refer to inputs and outputs of a node as bi-directional pins
- although we characterise the original direction of pins as input or out
put. A more difficult problem is that nodes (or more precisely the object
classes of nodes) must be constructed in a special way, so as to make them
able to accept input values on any of their pins and supply output values
to any other pins. These facilities can be handled by means of constraint
propagation techniques, which have gained an increasing importance in AI
research in the last few years and offer just the required properties.

In the next sections we summarise the basic notions of object-oriented
data-flow and constraint propagation systems and point out their advan
tages for building automatic test pattern generators. In the last part we
describe and evaluate our first implemented constraint-based test pattern
generator for combinational logic circuits.

Basic Concepts

Constraint table:

~ a+b=~
Rules:
If a and b are known then c == a + b
If a and c are known then b == b + c
Ifb and c are known then a == c - b

Fig. 1. Representation of an elementary constraint

The most straightforward way to define elementary constraints is by simple
(algebraic) equalities (or inequalities) containing an operator and a set of
constants and variables as shown in Fig. 1. Any (sometimes more than
one) of these variables can be unknown, while others hold given values.
Compound constraints or sets of constraints can be represented by con
straint networks, whose nodes are constraints and the arcs hold variable
values. Figs 2 and 3 show a classical example by STEELE (1980).

The constraint satisfaction problem itself is to find a set of values of
unknown variables, which (together with the known ones) satisfy any con
straint in the network. There are several real-world problems (like qual-

322 K. TILLY et al.

itative modelling of physical systems, automatic diagnosis DAVIS (1985),
equation solving, dynamic resource allocation problems or automatic de
sign) which can be characterised by means of constraints.

The only problem with the simple graph representation stated in the
previous section is that a given variable can take place in more than two
constraints, so a single arc is not sufficient to represent a constraint variable.

A good solution to this problem is to use hyper graphs as stated
by MONTANARI (1991), where a hyper arc can connect as many nodes as
required.

In practice hyper graphs can be represented by using two kinds of
nodes: actor nodes (which hold constraints) and data nodes (which hold
variable values) STEELE (1980), BIEGL (1988). In this model of constraint
networks no nodes with the same type can be adjacent, though to a data
node any number of actor nodes can be connected and vice versa to an
actor node any number of data nodes can be attached (Fig. 2).

1.8 * C + 32 = F

Fig. 2. Representation of constraint networks

The stated representation method is in theory rather simple, although tra
ditional programming tools do not support it, since for example the assign
ment operation which is closely related to constraints is unidirectional, so
the left side has no affect on the right side, while the right side has affect
on the left side only at the very moment of the evaluation of the given
statement. On the other hand, the implementation of the data-flow graph
itself is not supported at all.

It means that at our current stage of available software tools some
software development is required. The main task here is to implement
the elements of the data-flow network and to create a run-time system to
efficiently operate it. This run-time system would also incorporate the test
generation control algorithms.

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 323

Elementary constraints are traditionally implemented by means of
rules STEELE (1980), although we prefer constraint tables, because they are
related to truth tables, this way it is easier to check consistency and table
items can contain sophisticated procedures and compound data items as
well which make this representation for our purposes more flexible (Fig. 1).

The simplest and basically very fast network control technique is local
propagation, where any actor has only local information (i.e. the values of
data nodes directly connected to it), and established to this information
and its internal constraints the actor fills in the missing values around
it. Fig. 3 shows a classic example of STEELE (1980) to demonstrate this
method. Arrows indicate the direction of information flow, values known
at the beginning are underlined.

1.8" C + 32 = F

Fig. 3. An example of equation solving through local constraint propagation

Although when using this technique it is not trivial to handle cycles in the
network, in our case fortunately it does not mean a very strict limitation
(unlike in the case of solving equation sets with just one solution), since in
test generation we have 'under determined' value sets.

Now let us consider an example taken from the field of combinational
circuits to make clear the specific use of constraints and the basic steps of
an ATPG algorithm (Fig. 4).

Although there is a very large range of practical differences, essentially
any ATPG algorithm performs three basic steps:

Fault propagation: A path must be found from the place of the actual
fault to a primary output through connected gates to propagate the
fault and make it observable. A fault is propagated through a func
tional element, if at one of its outputs there is a different value for
the fault-free and for the faulty network.
Fault sensitization: A primary input combination must be found
which forces the opposite level of the given stuck-at (e.g. 1 must
be forced for s-a-O) at the point of the given fault.

324 K. TILLY et al.

Xl

X2

X3 •

X4 •

X5 +

X6

... site offault + fault sensitising junction

... D-path c\Io Junction to justify
D-drive: J4 - D ---+ Y 1 - D
Fault sensitisation: 14 - D ---+ 12 X5

12 - 1 ---+ X3 - X4 - 0
Justification: YI-D---+J3-0---+

---+ J] - 0 ---+ Xl - X2 - 1

The generated test for the fault

XIX2X3X4X5X6

o 0 1 X

Fig. 4. A simple ATPG problem

- Justification: During the previous two steps a set of internal junctions
also get values. These must be recursively 'justified' by finding (trac
ing backwards to the primary inputs) a consistent set of assignments
for all the junctions which affect these values.

The Fault Model

We apply the simple single-stuck-at-fault model, where only one fault is
assumed to occur in the network at a time, and the fault can be described
by fixing the value of the given junction at 0 (s-a-O fault) or 1 (s-a-1 fault).
We use the same notations for the values in the circuit as Roth in his
D algorithm: LOW (logical low level, 0), HIGH (logical high level, 1), X
(don't care), U (unknown value), D (stuck at zero fault), -D (stuck at one
fault). Although this model is a strong simplification of real life situations,
it was shown that the significant majority of multiple faults and even more
complicated faults (e.g. bridging faults) can be covered by single-stuck-at

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 325

tests MICZO (1986), and it has the advantage that it can be handled very
simply and efficiently.

Network Representation: a Closer Look

So far we have dealt with network representation and control algorithms in
general. Now we choose a more distinct domain and determine the elements
of network representation from this scope.

Though for the sake of simplicity we have chosen combinatorial cir
cuits and gate level test generation to gather experiences about the applied
methods, at this point we have to make some important remarks.

The concepts stated above make no theoretical limitations on the
complexity of individual constraints, so it is possible to extend them to
functional level testing. Since algorithmic parts are distributed among the
run-time system and the individual constraint nodes, complex tasks can
be efficiently handled, because the solvable problem is decomposed in a
natural manner into subproblems.

Data-flow graphs also offer the possibility of handling multi level sys
tem models thus offering new possibilities of hierarchical model decompo
sition.

The extension of these methods to sequential circuits also seems pos
sible, in this case although some additional solutions are required (e.g. for
the determination of those states which can be reached from the starting
state supposing that a given fault is present).

Last but not least in constraint based test generation every gate (or
functional element) contains individual algorithmic parts (methods) that
is why they can be separately run on multiprocessor architectures, so this
method supports parallel implementations.

Object Classes

We represent network components by three basic object classes: gates,
nodes and ports.

Gates are the primary processing units of the network. There is a
superclass called gate with several subclasses representing the basic gate
types (e.g. AND, NAND, OR, NOR, INVERT, XOR). Gates represent the
constraint nodes in the network, so they contain sufficient data structures
and algorithms for performing any tasks dedicated to a gate.

The gate class instance variable structure consists of the following
elements:

326 K. TILLY et al.

The output node and the list of input nodes. The gates can set the
values of the connected nodes using this information. Although the
output node is also handled bidirectionally, it must be differentiated
from the input nodes because of its different role.
Number of input pins. This way gates with the same type but different
number of input pins can be handled with the same class but different
parametrisation.
Level of the gate from the output. This information is used by the
D path search procedure of the run-time system for determining the
shortest path from a given fault to a primary output point.
List of supporting nodes. This is a list where those nodes are stored,
whose values were known when the gate was started.

- List of consequent nodes. This is a list of those nodes, whose values
were set by the given gate. These two lists are used for recording data
dependencies in the network.
Contradiction list of supporting nodes and contradiction list of con
sequent nodes. These two lists contain the same information as the
previous two, although only built and used during contradiction res
olution.

- The state of the gate is used by the run-time system to support deci
sions which gate and how to activate.
The significant flag. Only those gates will be activated, whose signifi
cant flag is set. It is used for minimising the number of gates involved
in the test generation process.

- Weight: It is used when a gate must be selected from the hesitate
agenda.

Nodes are the analogies of nodes in a digital circuit. They connect several
inputs with an output by 'wires' and hold specific values. Any pin of a gate
(but naturally only one output) can be connected to any node.

The instance variable structure of the node object class consists of the
following elements:

- The value and state of the node. A node can have two kinds of state
and two value slots according to the different states: one during nor
mal execution and another during contradiction resolution. (These
two operating modes will be explained later when introducing the
operation of the run-time system.)
The list of connected gates. Using this list the node is able to deter
mine for the run-time system which gates to run. It is ordered by the
increasing level of the connected gates (the gate nearest to an output
comes first).
The identifier of the driver gate which has set the value of that node.
The role of this variable is again to record data dependencies.

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 327

Ports are the primary input/ output points of the network. They are similar
to nodes, although they have some extra functions. They can be driven
from outside and must signal that some values have reached them from
inside, so they make the run-time system able to decide when the test
generation process ends.

The port instance variable structure consists of the same elements
described by nodes, except that it also holds the direction of the port
(input or output).

To make the operation of the run-time system as simple as possible,
different object classes use the same kinds of methods (although a given
method can have different function in a different class).

We have to mention that some of the methods used here are similar
to or identical with methods already known in the field of testing. In the
description of these methods we gave the appropriate terms in Italic.
The following methods are used:

Make: object instance generation;
Init: initialises the instance variable structure;

- Level Process: activates the procedure for determining the level of
the given object: The level of output ports is 1. The level of a node
connected to an output port is also 1. The level of a gate is the level of
its output node plus 1. The level of any internal node is the minimal
level of the gates whose inputs it is connected to.

- D Process: D path propagation in the network from the place of the
fault to a primary output (port), this is known as D-drive in the
literature. Values of nodes set by this method cannot be altered in a
possible contradiction resolution process;
Mark Path: If a gate gets a Mark Path message, it sets its own signif
icant flag, and if its significant flag was previously not set, it sends a
Mark Path message to all its input nodes. If a node gets a Mark Path
message, it forwards it to the gate whose output is connected to this
node. The Mark Path procedure is initiated by the run-time system
during D path selection, and ends either on gates that are significant,
or on input ports.

- Process: the normal operation of the object based upon its internal
constraints. The internal operation of a gate is described by constraint
tables using nine valued logic, although nodes can only get values
which are elements of the stated fault model. This method is activated
when a complete D path is found and it is able to propagate values
to both forward and backward directions. This action includes the
implication and line justification steps known from the D algorithm.

328 K. TILLY et al.

Set Weight: This message is sent by the run-time system, when the
weights in the hesitate agenda must be refreshed. The weight is com
puted on the basis of known and unknown values around the gate.

The following methods are only used during contradiction resolution:
Start Resolution: Meaningful only by gates. When accepting this
message, any gate determines and sets the first consistent value set
for the unknown nodes around it.
Continue Resolution: Meaningful only by gates. When a gate gets
this message, it determines the next possible consistent value set.
These two methods can also signal failure to the run time system,
which means that no more consistent value sets exist. This time the
backtracking procedure is initiated.
Retract: If a gate gets a Retract message, it sends a Retract message
to all the nodes, whose values were set by that gate. If a node gets
a Retract message, sets its own value to Unknown, sends a Retract
message to all the gates, which it supports (i.e. to all gates connected
to it, except the driver gate), and deletes its own data dependencies
(i.e. deletes itself from the support lists of supported gates and deletes
its own driver gate registration).

Basic Network Operation

The run-time system has the task to schedule the network (i.e. to select
gates to activate) and to switch between the different operation modes
characterised later. The run-time system uses the following data structures
for network scheduling: the normal queue, the hesitate agenda and a stack
for optimal D path selection called the D stack. The execution of the
run-time system supported by the nodes and gates is as follows:

NI Set the levels of gates using the Level Process method. This step is
only performed once for a given network, since in our fault model the
structure of the network will not be changed by any fault.

N2 Initialise all nodes in the network in the following way: set every node
to U (unknown) except the fault node, which is set to D or -D. (In
the following we neglect the systematic generation of faults, although
it can be very easily solved e.g. by using a linked list of nodes.)
Mark the fault node 'fault'. Set the backtrack stack and backtrack
list to NIL and the engagement level to 0 (the purpose of it see by
the contradiction resolution algorithm).

N3 Generate a D path from the fault node to the nearest output port in
the following manner.

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 329

N3.1 Set actual node to fault node, set the D stack to NIL, set the
operating mode to D path selection (D drive mode).

N3.2 Get the list of neighbouring gates of actual node and push it
to the D stack (One element on the D stack is the same as the
D frontier in the D algorithm). Put the first element of the
neighbours' list into the normal queue. Activate this gate for
D Process (D drive). This gate will set the value of its output
node.

N3.3 If an output port is reached, continue with step N3.4, else set
actual node to the output node and repeat step N3.2.

Steps N3.4, N3.5 and N3.6 are for resolving the problem of multiple
reconvergent D paths.

N3.4 Trace the D stack top down and activate all elements of the D
path (these are the first elements of the lists in the D stack) with
Mark Path method.

N3.5 Trace the D stack bottom up and queue all significant gates that
are neighbours of the output node of a significant D path gate.

N3.6 While the queue is not empty, remove the first element of it,
put it into the normal queue and start it with D Process. (It
implies that nodes whose values are set will automatically queue
significant gates attached to them). If the queue is empty, set
the operating mode to normal operation and continue with N4.

N 4 Activate the first gate of the normal queue, or if it is empty, start the
best gate of the hesitate agenda with Process method. Running the
elements of the normal queue means implication and/or line justifi
cation, but no decision is made. If there are more alternatives, the
actual element is transferred to the hesitate agenda.

We think that the handling of the hesitate agenda needs a bit further
explanation. Agendas are used for supporting best-first search in several
successful AI applications. An agenda consists of tasks to be started. Any
task has a list of justifications (i.e. reasons why we want that task to
start) and a weight, which can be computed based upon the current list of
justifications. The best task is always the task with the best weight and
this one is started.

In our case the tasks are gates, the justifications are the list of support
ing nodes and the weight is computed by the Set Weight method of gates.
An additional problem we have not mentioned yet is the maintenance of
the weights in the agenda. It would be too time consuming to recalculate
weights any time when a new gate is entered to the hesitate agenda. It
is only necessary, when the normal queue is empty and a hesitating gate
must be started.
When a gate is started, it can produce three kinds of results:

330 K. TILLY et al.

1. The gate generates values for all the nodes around it having unknown
values and registers itself as the driver gate in the nodes' appropriate slot.
If a node gets a value from an output (i.e. in forward propagation), it puts
all its neighbouring gates to the normal queue and registers itself on the
list of supporting nodes of all of them. If a node gets a value from an input
(i.e. in backward propagation) it does the same, but only for significant
gates. This way the consideration of those gates, which are unnecessary
for testing a given fault can be avoided.

2. The gate 'hesitates' (it is only allowed, if the gate was taken from the
normal queue). This means that it replaces itself to the hesitate agenda. It
can happen in cases when too few nodes have known values around the gate,
so because of the low reliability of the new values the gate could generate,
it rather postpones the decision hoping that the number of known nodes
around it will increase. We note that a hesitating gate can become normal
again if (before being activated from the hesitate agenda) a neighbouring
node gets a value from another gate and this node puts the hesitating gate
to the normal queue.

3. The gate detects a contradiction. It can happen when the nodes around
the gate having known values do not match the constraints of the given
gate. (E.g. there is LOW at one of the inputs of an AND gate and the
output is HIGH.) In this case the run-time system starts the contradiction
resolution session as described from Cl. If the contradiction resolution
fails, systematically choose a new D path according to step N6.

N5 If the normal queue and hesitate agenda are both empty, the test
generation process successfully ended. Else continue with step N 4.

N 6 Use the registered data dependencies to neglect those gates of the D
path, which have no effect on the contradiction. It is done as follows:

N6.1 Recursively trace backward starting from the contradiction gate
using the support lists of gates and driver gates of nodes. The
trace ends when all available gates in the D path using the reg
istered dependencies are reached and marked. Based upon a
heuristics we consider guilty that marked gate which lays near
est to the top of the D stack (i.e. nearest to an output). This
may be sometimes a bit pessimistic, although it ensures that
paths which surely will not terminate the contradiction are ne
glected, though no paths are dropped which can be important.

N6.2 Delete all elements of the D stack above the guilty gate, get
the next gate of the list at the current stack top and mark the
output node of it as actual (see step N3.1.), initialise the network
(except the elements of the D path currently registered in the D
stack), and continue with step N3.2.

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 331

It can happen that the list containing the guilty gate contains only
one element. In this case while the D stack is not empty and the top of the
D stack consists of just one element, pop it. If a list with more than one
element appears on the top, get the next gate of it and use it to generate a
new D path. If the D stack gets empty, no test was found and the process
ends.

Contradiction Resolution

Contradictions must be handled very carefully, because they can totally
destroy the overall efficiency of the test generation process. It is obvious
that if there can be cycles (reconvergent fanouts) in the network, no simple
method is known to assure global consistency of values.

That is why our system tries to avoid contradictions whenever possible.
This contradiction avoidance stems from two properties. The internal

implementation of gates - since being distributed among different object
classes - can be sophisticated enough to assure high quality generation
of different value sets. The second property is the use of the hesitate
agenda, which makes it possible to significantly decrease the number of
contradictions. Experimental measurements show that for certain Fujiwara
networks our system finds tests without any contradictions for more than
80% of the faults, but this ratio is by these networks is generally not lower
than 45%.

The contradiction resolution is based upon the structure of the net
work, i.e. the dependencies naturally defined by the connections between
individ ual elements.

During contradiction resolution no such nodes get values, whose value
was previously unknown. Similarly no such gates are activated, which have
not been started yet. The algorithm is started from the primary contra
diction (i.e. the gate which signals the contradiction) and a special kind
of dependency directed backtracking, the so-called constraint slackening is
performed when a new, secondary contradiction arises. The backtracking
is based on data dependencies registered during contradiction resolution
in the same way as given by the normal operation, although in this case
dependencies are stored in the contradiction slots. Gates are able to au
tonomously and systematically generate consistent value sets. Instead of
the normal queue and the hesitate agenda a distinct contradiction queue, a
backtrack list for storing retracted gates and a backtrack stack containing
backtrack lists are used.

Since the size of this article is limited we will give a more detailed
description of the contradiction resolution procedure in another article.

332 K. TILLY et al.

Correctness

We have to discuss the correctness of this algorithm. Step N3 assures that
the fault is spread to an output. The problem of reconvergent fanouts is
solved in steps N3.4-6. If the D path is blocked somewhere by an inade
quate D & - D input combination, this fact is signalled by the gate as a
contradiction and can be handled accordingly. When a gate is started, it
sets all the nodes around it which have unknown values. It will result in
the queuing of other relevant gates. This means that if all the queues are
empty and no contradiction occurred, then no needed value is missing and
all values are consistent that is a test is found.

Furthermore, it is worth telling some words about the correctness of
the applied contradiction resolution algorithm. It is essentially an exhaus
tive breadth-first search algorithm, which is based upon structural data de
pendencies and considers the most relevant values first and neglects parts
which have no effect on the resolution. It is also important to mention
that - since we keep the assumption that a gate must set every unknown
values around it - no circular data dependencies exist, which make value
retraction much simpler.

The convergence of the contradiction resolution algorithm (i.e. that
a solved primary contradiction will never occur as a primary contradiction
again) is assured by the following.

After resolving a primary contradiction no values will remain re
tracted compared to the state when the resolution was started, but new
values will be added by the primary contradiction gate (it can be done, since
this was the purpose of the resolution). That means that the number of
known values through resolving primary contradictions will monotonically
increase.

The case of resolving a secondary contradiction is more complicated,
because this time values can also be retracted. That is why, if a secondary
contradiction is resolved, the conditions under which it was done are reg
istered in the backtrack stack and nodes belonging to a given secondary
contradiction are marked with the appropriate engagement level. This as
sures that if another secondary contradiction occurs, it cannot result in the
retraction of the values set in previous secondary contradiction resolution
sessions. Such values can only be altered under the same conditions (i.e.
by the same gate, which once initiated the secondary contradiction). This
solution although may seem a bit complicated - leads to an automatic
problem decomposition, where the more secondary contradictions occur,
the resolution of them will be primarily based upon more and more limited
value sets.

AUTOMATIC TEST GENERATION BASED ON CONSTRAINTS 333

When a secondary contradiction has been resolved, results at the
same gate can never cause a secondary contradiction again. This gate can
only be involved in the backtracking procedure of resolving other secondary
contradictions, but itself will not signal contradictions, since in this case a
contradiction is merely an inappropriate value set which the gate will not
accept. So the only thing which can happen later on is that the gate gets
exhausted and a new backtracking step is initiated.

In an average case the contradiction resolution algorithm assures ac
ceptable results, although in the worst case it runs with exponential time.
Our experiences show that it is in most cases more efficient to use a sim
pler - although nonexhaustive - algorithm, which tries out all possible
consistent combinations around the primary contradiction and when a sec
ondary contradiction occurs, every value in the previous resolution step is
set again to unknown and the procedure is started again with the next
value set of the primary contradiction gate. If the primary contradiction
gate is exhausted, a new D path is selected. This method in practical cases
offers rather good results. For faults untestable with this simple algorithm,
the described constraint slackening procedure can be used.

Conclusions

Constraint-based test generation is a new method which offers some major
advantages. It can be used for gate level as for functional testing and it
can also be applied for building multi-level, hierarchical test generation
and diagnostic systems. If we represent test generation problems with
the described methods, it becomes also possible to easily and naturally
distribute the task on multi-processor architectures.

Although we have proposed algorithms for the run-time system (i.e.
for controlling the test generation process), and we think these algorithms
are well fitted to the applied network representation methods, we would
like to point out that the normal operation algorithm has several common
points with known test generation methods, so in theory any well known
test generation algorithms could be adapted instead of it. On the contrary
the stated contradiction resolution and backtracking method seems to us
more unusual.

The test generation environment presented in this article is the result
of our first experiments for checking some of our ideas for being viable.
That means that on certain points the applied solutions are far from being
optimal. The most significant point of these is the internal representation
of gates, which currently contains too many heuristics, so we must find
methods to make such descriptions more formalised and uniform.

334 K. TILL\, et al.

The stated contradiction resolution algorithm can also be further re
fined by using algebraic graph rewriting methods to reduce the sizes of
cycles in the network. The reason why we did not implement it yet is the
increased complexity of such a system.

In spite of these drawbacks our first prototype has proved to be sur
prisingly efficient. For example for the Fujiwara c432 network the average
time of generating a given test vector (i.e. the total time of test generation
for all faults divided by the number of faults) is 0.6 seconds on a 12 MHz
IBM/PC-AT 286 by a coverage rate of 98%.

Based upon current experiences we consider constraint-based test gen
eration to be viable and we are working on the enhancements of this tech
nique in multiple directions.

First of all we are searching for solutions to resolve the weaknesses
of the combinatorial test generator, and we also intend to investigate the
possibilities for using it for sequential circuits, multi-level functional testing
and multiprocessor parallel implementations.

References

BIEGL, C. (1988): Design and Implementation of an Execution Environment for Knowl
edge Based Systems. Ph.D. Thesis, Electrical Engineering, Vanderbilt University,
Nashville, TN.

D.WIS, D. (198.5): Diagnostic Reasoning Based on Structure and Behavior. AI, Vol 32.
No. 1-3, pp. 347-410.

FUJIWARA, H. (198.5): FAN: A Fanout-oriented Test Pattern Generation Algorithm. IEEE
Proc. of ISCAS '8.5. pp. 671-6;4.

KIRKLAl'.'D, T. (1988): Algorithms for Automatic Test Pattern Generation. IEEE Design
& Test, Vol .5, No. 3, pp. 43-.').').

LELER, W. (1988): Constraint Programming Languages. Addison Wesley Publishing Co.
MICZO, A. (1986): Digital Testing and Logic Simulation. Harper & Row, NY.
"iO:--lTA:--lARI, U. - RossI. F. (1991): Constraint Relaxation May Be Perfect. AI, Vo!. 48.

pp. 143-170.
ROTH, J. P. (1966): Diagnosis of Automata Failures: A Calculus and a .:vlethod. IBM J.

Research and Development, Vo!. 10. pp. 218-291.
STEELE, J. Jr. (1980): A Computer Programming Language Based on Constraints, Tech

nical Report No. AI-TR-.5.5.5, AI Lab, .:vUT.

INDEX

PAP, L.: Theory and Practice of Linearly Tunable LC Oscillators 3
ABO-ZAHHAD, M.: Switched-capacitor Circuits with Reduced Influenes of Parasitic

Capacitances Switch Resistances and Amplifier Non-idealities 19
SABAH, M. A. - GORDOS, G.- OLASZY, G.: Acoustic Building Units for Formant

Synthesis Text-to-Speech Converter System for Modern Standard Arabic 39

Du D.A.S, J. - FEHER, A.: On Influence of Magnetic Structure on the Electric Charge
Transport in Samarium and Thulium Thin Films 53

KAB05, P. HYBEN, P.: Methods of Calculation of MSW Structures 61

BOOK REVIEW ... 69

MOHAMED, K. A.- PAP, L.: Reed-Solomon Coded Frequency-Hopped Packet Radio
Networks with Receiver Memory Throughput-Delay Analysis 73

SABAH, M. A.- GORDOS, G. OLASZY, G.: Data-Base Rule-System for the MUL-
TIVOX Text-to-Speech Converter Application for Arabic Language 93

MOHAMMED, N.: A New Algorithm for Adaptive HR Filters 107
GHOURAB, M.E. - NEMETH, E.:Investigation of the Relationship between the Re-

turn Voltage and Polarization Spectrum of Insulations 121
MOLNAR, M.: Adjustment of Stochastic Stock Models with Learning 131
FOREwoRD 141

THOMA, R.: Spectral Correlation Measurement - Introduction and Applications 143
HUCKER, M. - OSTERTAG, M.: The Wigner-Distribution as a Tool for Spectral

Analysis of Instationary Signals 155

CARBONE, P. - NARDUZZI, C. - PETRI, D. - ZANIN, F.: Fast Least Squares Algo-
rithms in Linear Identification 171

SCHOUKENS, J. MONTICELLI, L. - ROLAIN, Y.: Identification of Linear Systems
in the Presence of N onlinear Distortions 185

KEULERS, M.:Structure Determination of a Severe Nonlinear Process 197
PATAKI, B.: Neural Network Controlled Adaptive Filters 215
KISS, Z. - NAGY, F.: Interpolation by Irrational Factor 227
VAN WOERDEN,J. A. ZEELEN, R. VAN DEN BERG, C. - BENSCHOP, A. \V.:

Matched Architectures for Signal Processing and Control 235

.]OBB.A.GY, A. and FURNEE, E. H.: New Marker Centre Estimation Algorithm of
High Accuracy in Motion Analysis 249

DOSTERT, K. M.: Power Lines as Local Area Networks For Measuring and Control
Signal Transmission 2.59

KERESE, I. - ZSEMLYE, T. - TILLY, K. - SZALAY, Z. - VAD.A.SZ, B.: Supervising
Microwave Telecommunication Networks with the REALEX Expert System
Shell ... 281

UBAR, R. KUCHCINSKI, K.:Algorithms of Functional Level Testability Analysis for
Digital Circuits 295

H EG ED (j S, Z.: Efficiency test of au tomatic test pat tern generation methods 309

TILLY, K. RO~l.A.N, Gy. SURJ.A.N, L. Automatic Test Generation Based on
Constraints 319

