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Abstract 

The problem of the extraction of the useful signal from a noisy background is one of 
the most important areas of signal processing. Order Statistic (OS) smoothers, based on 
amplitude ordering of signal samples, have been shown to offer an effective alternative 
to linear smoothers. It is the case particularly when there is uncertainty concerning 
noise statistics, or when the useful signal possesses local features such as sharp edges. 
In this paper we consider some linear and nonlinear (OS) smoothers, and propose a new 
smoothing algorithm. Simulation results are presented to illustrate the performance of 
the proposed smoother. 
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Introduction 

The problem of the extraction of the useful signal from a noisy discrete 
time signal is one of the most important areas of signal processing. The 
contaminating noise can be impulsive, and the useful signal may possess 
local features such as sharp edges, pulses, or trends, which are important 
carriers of information. The ability to suppress unwanted components while 
preserving local signal features is crucial in many applications. 

The first techniques used for noise suppression were linear. Linear 
techniques are analytically very well understood due to the nice proper­
ties, such as superposition, and are very well suited for frequency domain 
interpretation. Due to this fact, linear systems are generally easy to de­
scribe analytically, and can be characterized uniquely by a transfer func­
tion, independently from the input. Unfortunately, despite this analytical 
simplicity, some problems of signal smoothing have not been satisfactorily 
addressed by using linear smoothers. Linear smoothers smear edges, and 
do not perform well in the presence of impulsive noise. 

lThe author is a PhD student at the Technical University of Budapest. 
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In the early signal smoothing techniques, the emphasis was on the 
derivation of optimum schemes based on a priori assumptions about signal 
and noise models. A typical example of this is the running mean (RM) 
smoother which is optimal for a slowly varying signal in Gaussian noise. 
An important question is: what will be the performance of such optimum 
scheme if the signal and noise characteristics deviate from those for which 
the scheme is designed? This is an important question, because in practice 
one rarely has perfect knowledge of the noise characteristics. The a priori 
assumptions are often only mathematically convenient formulations of an 
uncertain knowledge. For example, the RM smoother can suffer a drastic 
degradation in performance if the measurement data contain largely out­
lying observations (impulses). This has led to the need for robust signal 
smoothing techniques (KASSAM et aI, 1985): techniques which can tolerate 
small deviations from ideal a priori assumptions. 

The above problems have stimulated considerable interest and re­
search work, during the last two decades, to search for new approaches 
that address these problems. Various approaches have been proposed, and 
extensive research is still introducing different new methods. Among the 
most successful approaches are those based on the robust estimation of 
location parameter. In particular three classes of smoothers can be distin­
guished, namely Order Statistic smoothers (BOVIK et aI, 1983), which are 
based on the linear combinations of order statistics, M-smoothers (maxi­
mum likelihood estimators, LEE et aI, 1985), R-smoothers (CRINON, 1985), 
which are based on rank tests. 

The organization of this paper is as follows. In the following two sec­
tions we consider linear and Order Statistic smoothers, respectively, and 
discuss their properties. In the last two sections we propose a simple and 
efficient smoothing algorithm, and present some simulation results compar­
ing the performance of the smoothing algorithms discussed in the paper. 

Linear Smoothing 

Linear smoothing in time domain is achieved by applying a linear operation 
through a window Wk , which moves over the input signal. The output of 
the smoothing at time index k is computed by the average value of the N 
points inside the window H'k : 

2n+l 
I: aix(i) 

y(k) = _i=-2~-+-1--' x(i) E Wk . (1) 
I: ai 
i=l 



ROBUST SMOOTHING OF SIGNALS 19 

This is called a linear shift invariant (LSI) finite impulse response (FIR) 
filter if the weighting coefficients (ad are fixed for the window Wk . The 
RM smoother is obtained when all (ad are equal to a constant. 

Let us consider an input signal consisting of noise superimposed on a 
useful signal, which displays abrupt and sustained changes (discontinuities). 
Such discontinuities contain high frequency components, and cannot be 
distinguished from the noise component, as far as their spectral content is 
concerned. Thus, the RM (lowpass filter) will smear out the sharp edges in 
the data and suppress the noise. In many applications this is intolerable, 
because edges carry important information. On the other hand, a single 
impulsive data point at the input produces a copy of the filter impulse 
response at the output. When an impulse is present inside the window, 
the RM tends to suppress it by distributing its energy to the neighbouring 
points, while an ideal solution is to give aberrant data points less (or no) 
weight in the computation. The search for such ideal impulse suppressor 
has led to the development of the so called Robust Statistical Estimators. 
One of the most interesting estimators of this type is the median smoother 
(MS). 

Order Statistic Smoothers 

OS smoothers form an interesting class of nonlinear algorithms, which are 
useful for the robust smoothing of noisy discrete signals. The output of an 
OS smoother at time index h is obtained by replacing the corresponding 
input point by linear combination of the amplitude ordered samples in the 
neighbourhood of that point. The class of OS smoothers includes as special 
case the MS, the RM, Alpha-Trimmed-Mean (ATM), and the Ranked­
Order (RO) smoothers. The output of an OS smoother of window size 
2N + 1 at time index h, for an input sequence {xd is given by: 

2n+l 

Y(h) = L AjX(~) , (2) 
j=l 

where Xtl) is the smallest sample inside the window centred at h, and 
Aj is a set of constant weights with I: Aj = 1 . The optimal coefficients 
are chosen so that they minimize the MSE, with the constraint that the 
resulting estimator is unbiased (BOVIK et aI, 1983). The estimation of 
the coefficients for an arbitrary signal is generally intractable, due to the 
nonlinearity. For the simple case of constant signal in additive zero mean 
white noise, the optimal weights for an OS smoother, minimizing the output 
variance are obtained in (BOVIK et aI, 1983). It is interesting to note 
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that as the tails of the noise distribution grow short the optimal smoother 
approaches the midrange, i.e. the weights for the extreme values of X (X&), 

and X&N+1)) approach 0.5 and the rest of Aj approach zero. Conversely, as 
the tails of the noise distribution grow heavy, the optimal filter approaches 
the median, i.e. the weight in the centre (A(N+l)) approaches unity, and 
the rest approaches zero. These results are expected since the midrange 
and the median are the respective maximum likelihood estimators for these 
distributions. 

~ Window ~ '--_--=----' 

\iJ J I Y(K) '1 Weighting I==~~ 

Fig. 1. Block diagram of the Order Statistic smoother 

A block diagram of the OS smoother is shown in Fig. 1. As shown 
m the figure the OS operation can be decomposed into three sequential 
steps: 

-windowing, 
-amplitude ordering of data inside the running window, 
-linear wdghting which is identical to FIR filtering. 
By proper choice of weights, OS smoothers are tuneable from the 

linear RM to nonlinear smoothers such as median. The median smoother 
is obtained by choosing the weights as follows: 

j = (N + 1), 
otherwise. 

(3) 

The RM is obtained by choosing equal weights: 

Aj = 1/(2N + 1) ; 1 ~ j ~ 2N + 1 . (4) 

Median Smoother 

The median smoother (MS) is the most interesting member of the OS 
smoothers. It was first proposed in 1974 by TUKEY as a time series tool 
for robust noise suppression. Since then the MS has received considerable 
attention in the signal processing literature. It has found application in 
many fields, e.g.: computer assisted tomography scan systems, geophysical 
signal processing, speech processing, and picture processing. The interest in 
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the MS is due to its desirable properties such as impulse noise suppression 
and particularly its ability to smooth while preserving edges. 

With median smoothing, extreme sample values (impulses, or out­
liers) are entirely removed by the smoothing operation. In addition, the 
MS also smooths the input signal; the degree of smoothing increases with 
the size of the window. Analytical explanation of the success of the MS in 
applications such as the above are available in the literature (JusTussON, 
1981; DAVID, 1970; GALLAGHER, 1988; TYAN, 1981). 

Coefficient Censored OS Smoothers 

An important class of OS sm.oothers is the so-called coefficient censored 
(CS) smoothers. Coefficient Censoring (trimming) is achieved by assigning 
zero weights to the extreme value samples inside the window. Coefficient 
censoring is widely used by statisticians for parameter estimation when 
the data contain unreliable or outlying samples. The number of censored 
samples can be either randomly determined or fixed. Examples of such 
filters are the Modified Trimmed Mean (MTM) smoother (KASSAM et aI, 
1985), and the ATM smoother (BENDAR et aI, 1984). The motivation for 
these smoothers is to combine the nonimpulsive noise suppression ability of 
the RM, with the impulsive noise suppression and edge preservation ability 
of the MS. 

In ATM smoothing, a set of (N - T) samples closest to the sample 
median is selected from the two sets of N samples on either side of the 
sample median, where T is the trimming parameter. Then the average 
of the 2(N - T) selected samples and the sample median is used as the 
output. The MTM smoother determines the sample median Mk for the 
current window position, censors all samples that fall outside the range 
[Mk - q, Mk + q], and averages the remaining samples. The parameter q 
is a preselected constant depending on the noise variance and the minimum 
edge height. 

Quick and Simple Smoother 

The MS is an effective algorithm for suppressing impulsive noise and pre­
serving edges, however, it fails to provide sufficient smoothing of nonimpul­
sive noise. Therefore, when the noise consists of both impulsive and nonim­
pulsive components, powerful trimming algorithms such as the MTM, and 
DWMTM (LEE et aI, 1985) are called for. These algorithms are computa­
tionally demanding, and have rather complicated structure. Sometimes one 
would like to have a solution which is fast, simple, and yet safe (robust), 
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Table 1 
Relative efficiency of the FS estimator to the best possible one 

Distribution 

Cauchy 
Laplace 
Logistic 
Normal 

Relative Efficiency 

.800 

.847 

.910 

.781 

i.e. its efficiency is guaranteed to be within acceptable limits for some class 
of noise distributions. As an example of such techniques, we propose a fast 
and simple (FS) smoother with an output defined as follows: 

Y(k) = 0.3X(33.33) + 0.4X(50) + 0.3X(66.66) , (5) 

where X(33.33), X(50), and X(66.66) are the 33 - 13, 50 and 66 - ~3 per­
centiles, respectively, of the data inside the current window. This is basi­
cally an estimator proposed in the statistical literature by J. L. GASTWIRTH, 
but we have not found any report of its usage as a smoother in the litera­
ture. 

It should be noted here that although many statistical estimators 
of the location parameter can be applied for signal smoothing, the signal 
smoothing problems impose their own distinct requirements which are not 
considered in statistics. In statistics the input data set is modelled as a 
sample from a given parent distribution, and the aim is to estimate the 
centre of symmetry (location parameter) of this distribution. Conversely, 
in signal smoothing the input 'is generally a random variable with varying 
mean. Thus the a priori assumptions of the signal model for the estimation 
of location parameter are not valid in the case of smoothing nonconstant 
signal in noise. 

Therefore, when a statistical estimator is to be used for smoothing it 
should be checked to see if it is suited for that particular task. Unfortu­
nately, in the case of OS estimators which, as mentioned, are analytically 
rather intractable, empirical approaches are usually employed. 

Table 1 (taken from GASTWIRTH, 1966) shows the efficiency of the 
proposed estimator relative to the best estimators for the distributions 
considered. It is seen that the FS estimator has a minimum efficiency 
of approximately 80 % for noise distributions ranging from Gaussian to 
Cauchy. Thus, it is quite robust and yet has a very simple structure. 

In the table, the logistic probability density function is defined by: 

(6) 
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Simulation Results 

Fig. 2 a shows the test signal used for empirical evaluation and comparison 
of the performance of the proposed algorithm with the RM, MS, and the 
MTM smoothers. This signal is designed to contain a variety of features 
that we like to preserve. To this signal a noise sequence is added, which 
consists of nonimpulsive (Gaussian, (j = 2) noise and several impulses. The 
noisy signal is shown in Fig. 2b. 

! 
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Fig. 2a. Simulation results: Test signal. 

Fig. 2c shows the noisy signal smoothed by a RM with window size 
W = 11. One can see that the RM fails to suppress the impulsive noise, 
and smears signal edges. Fig. 2d shows the noisy input signal smoothed by 
a MS with window length W = 11. The MS suppresses the impulsive noise, 
and preserves the edges very well. However, it fails to provide sufficient 
smoothing of the nonimpulsive noise. 

Fig. 2e shows the noisy signal smoothed by the proposed smoother. 
We can see that the FS smoother suppresses nonimpulsive noise better 
than the MS smoother, and suppresses impulsive noise and preserves edges 
better than the RM smoother. 

Fig. 2/ shows the output of MTM smoother with window size W = 11, 
and parameter q = 30-. The MTM smoother has a good performance with 
respect to edge preservation, nonimpulsive noise smoothing, and impulsive 
noise suppression. It is slightly better than the FS smoother, but the FS 
smoother is much simpler and much faster than the MTM smoother. 
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Fig. 2b. Simulation results: Noisy signal. 
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Fig. 2c. Simulation results: Output of the RM. 

Conclusion 

In this paper we have considered robust algorithms for signal smoothing. 
Robustness could be formulated in many ways, but here we consider it 
as the robustness with respect to uncertain a priori information about 
the noise probability distribution, and resistance to extreme value noisy 
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Fig. 2d. Simulation results: Output of the MS. 
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Fig. 2e. Simulation results: Output of the FS. 

samples (impulses). Another important issue is the suppression of noise 
while preserving local signal features. Linear smoothing techniques are 
analytically very well understood, due to the rich and well established 
linear theory; however, they fail to perform well in the case of impulsive 
noise contamination, and distort some local signal features. Order statistic 
smoothers, based on amplitude ordering of signal samples, have been shown 
to be a promising solution to the problem. Being nonlinear, they can be 
mainly analyzed empirically; some examples are presented in the simulation 
section. 
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Fig. 2/. Simulation results: Output of the MTM. 

We have proposed a robust nonlinear smoothing algorithm, and em­
pirically compared it to the RM, MS, and the MTM smoothers. It is shown 
that the FS smoother is superior to the RM and MS, and comparable to 
the MTM smoother. The FS smoother has the advantage of simple struc­
ture, higher speed, and high efficiency for the classes of noise distributions 
ranging from Gaussian to Cauchy . 
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