
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 95, NO . .2, PP. 77-99 (1991)

FACTORISATION OF THE FACTORIAL
AN EXAMPLE OF INVERTING THE FLOW OF

COMPUTATION!

E. A. BOITEN

Department of Informatics
Faculty of Mathematics and Informatics
University of Nijmegen, The Netherlands

Received: Sept. 5, 1990.

Abstract

As an example of the transformational programming method, a previously unknown algo
rithm for calculating factorials is derived. The derivation is done by the unfold-fold strat
egy with transformation rules for changing the recursion structure of functions. These
transformation rules (inverting the flow of computation and splitting recursion) are pre
sented and explained. The derivation proceeds from a system of linear recursive functions,
via tail-recursive functions, to an efficient imperative program. The resulting program is,
in our opinion, only intelligible by way of its derivation. It is also shown how a similar
derivation leads to a version of the algorithm that may be executed on 2 processors.

Keywords: transformational programming, inversion of computation, factorial function.

1 Introduction

In the last decade, transformational programming has proved to be an ap
propriate methodology for developing programs (see, e.g., FEATHER, 1987;
PARTSCH, 1990). The essence of this methodology is the derivation of
(efficient) programs from formal specifications by applying semantics pre
serving transformations, i.e. applying a transformation rule results in a
semantically equivalent program.

In a previous paper (BOITEN, 1989), we presented some transfor
mation rules for inverting the flow of computation. Inverting the flow of
computation is a transformation technique that can be applied to recursive
functions, aiming at improvement of efficiency. The functions resulting
from this transformation use (possiblY1 a.o.) the same arguments in the
recursive evaluation as the original functions, but in an inverted order.

Later, we discovered a particular algebraic property of a (contrived)
example function in (BOITEN, 1989). This led, via a sequence of transfor-

IThis research has been sponsored by the Netherlands Organisation for Scientific Research
(NWO), under grant NF 63/62-518 (the STOP - Specification and Transformation Of
Programs - project).

78 E. A. BOITEN

mations (including inverting the flow of computation) to a, to our knowl
edge, new algorithm for computing factorials. It also appeared possible to
derive a version of the algorithm for execution on 2 processors.

This paper is organised as follows. In the next two sections our frame
work is introduced: the methodology, the language, and some notations
specific to this paper in Section 2, and a short description of the method
ology in Section 3.

In Section 4, some transformation rules (inverting the flow of compu
tation and splitting linear recursion) that are needed later are given.

The definition of fact using the new function facthalf is presented in
Subsection 4.2. It is shown in Subsection 5.1 how a particular property
can be used to optimise the new algorithm for the factorial function. Sub
section 5.2 shows how the algorithm in Subsection 5.1 can be optimised
by inverting the flow of computation. The efficiency of the resulting algo
rithm may be clearer to a computer scientist than it is to a mathematician,
because multiplications and divisions by 2 are not considered 'special' in
mathematics. The resulting algorithm is, in our opinion, only intelligible
by way of its derivation.

A derivation of a variant ofthe algorithm in Subsection 5.2 that might
be implemented to run on 2 processors is presented in Section 6.

A more extensive report on our manipulations of the function facthalf
can be found in (BOITEN, 1990).

2 Language and Notation

In this Section we introduce some notation and present the language used
in this paper.

A functional language is used that is similar to CIP-L (BAUER et aI,
1985). Most of the constructs used here are self-explanatory. As in CIP-L,
the semantics is strict and call-by-value. Because most functions in this
paper are functions on natural numbers, the type nat of arguments and
results is frequently omitted.

Many functions considered here are of the form:

(2.1) f(x: Q(x)) if T(x)
then H(x)
else x EEl f (K(x))fi

The predicate Q(x) restricts the domain of f to those elements that satisfy
Q. T(x), H(x), and K(x) are expressions in which the variable x may
occur free, and in which the function f does not occur. EEl and ® (used
later) denote binary operators.

FACTORISATION OF THE FACTORIAL 79

The notation r(x), n 2:: 0, denotes the n-fold application of f to x,
I.e.:

fO(x) = x,

r(x) = fUn-1(x))forn 2:: 1.

The function g-l denotes the inverse of g, provided that it exists. (g-l)k (x)
is abbreviated to g-k(x).

3 Methodology

A derivation in the transformational programming methodology is pre
sented. The essence of this methodology is the derivation of (efficient) pro
grams from formal specifications by applying semantics preserving trans
formations, i.e. applying a transformation rule results in a semantically
equivalent program.

The strategy we use is mainly the unfold-fold strategy (BURSTALL

and DARLINGTON, 1977). Unfolding is the substitution of a function call
by the body of the function, with substitution of the formal parameters by
the actual parameters. Folding is the inverse of unfolding, i.e., an instance
of a function body is replaced by a function call with suitable parameters.

Most phases of the derivation start with the introduction of a new
function, defined in terms of existing ones. Some motivation is usually
given for the introduction of the new function, we refer to vlell-known
strategies like finite differencing (PAIGE and KOENIG, 1982) and accumu
lation (BIRD, 1984). Function calls are unfolded, often simplifications and
rearrangements are done, until by folding an independent version of the
new function can be obtained.

In this paper, some special transformation rules will be used as well
(cf. Section 4). These are rules that require more complicated inductive
proofs than can be provided by unfolding and folding only.

4 'Transformation Ru.les

In this Section, we present three transformation rules to be used in the rest
of this paper. The first two invert the flow of computation of functions of
the form (2.1).

80 E. A. BOITEN

4.1 Inverting the Flow of Computation

We aim at transforming a function f of the form

(4.1) f(x: Q(x» if T(x)
then H(x)
else x $ f(K(x»ii

into an equivalent function of the form:

(4.2) f(x: Q(x» = f'(C,X)
where

J'(y,z:Q(y)/\Q(z» =ify=z
then H(e)
else K-I(y) ® f'(K-I(y), z)fi

where K- I is the inverse of K, and e is some fixed value, viz. the last
argument to f in the original computation. Intuitively, this transformation
rule transforms the calculation of a term

Xl $ (X2 $ (X3 $... ffi xp) ...)

into the calculation of a term

Xp-l ® (Xp-2 ® ... ® (X2 ® (Xl ® xp) ...) .

Thus, a computational sequence is inverted.
As an example of a function of the form (4.1), consider the well-known

factorial function, defined by:

(4.3) faet(x: X ~ 0) = if X = 0 then 1 else X X fact(x -1) fi

An important notion for inverting the flow of computation is the de
pendency relation between function calls. We say th~t argument X depends
on argument y for function f, denoted by x f-f y, if the value fey) is eval
uated in order to determine the value of f(x). Although this description
suffices for our purposes, a formal definition is given in order to show that
these dependency relations can be defined operationally, and can therefore
be included in the program text.

Definition 4.1 x f-J y == Q(x) /\ (x = y V (-'T(x) /\ K(x) f-J y»
{recall that f is of the form in program 4.1}.

FACTORISATION OF THE FACTORIAL 81

Lemma 4.1

x ~f Y == Q(x} A 3k ~ 0: (y = Kk(x) A Vi: 0 $ i < k: ...,T(Ki(x)))

Proof. Follows directly from definition 4.1. 0

Often, computationally more efficient expressions for the dependency rela
tion ~ f can be derived. As an example, the following holds according to
definition 4.1:

x ~fact Y == x ~ 0 A (x = y V (x =/; 0 A x-I ~fact y)),

where fact is as defined above.
It can even be simplified to the following non-recursive expression:

X +-fact Y == 0 $ y $ x.

As shown in Section 4, the simplification of such expressions for func
tion call dependencies may be an important step in inverting the flow of
computation.

The computational sequence of the original factorial function, viz.

fact(x)

fact(x - 1)

I
fact(x - 2)

82 E. A. BOITEN

is transformed by transformation rule 4.3 into

fact(x)

jact'(O, x)

fact'(l, x)

fact'(x,x)

More general conditions for this transformation rule can be found in
(BOITEN, 1989). If we restrict ourselves to the most simple case, viz. where
® == EEl, we have:

Transformation 4.1

Defined and deterministic functions f of the form

(4.4) f(x: Q(x)) = if T(x)
then H(x)
else x EEl f(K(x)) fi

are equivalent to

(4.5) f(x: Q(x)) = !'(c, x)
where

f'(y, z : Q(y) /\ Q(z)) = if y = z
then H(c)
else K-1(y) EEl !,(K-1(y),z) fi

under the following conditions:

1. K is invertible, i.e. a function K-1 exists that fullfils

'Vx: -,T(x) :::} K-1(K(x)) = x;

2. EEl is left-commutative

FACTORISATION OF THE FACTORIAL

'Vx,y, z: x El7 (y El7 z) == y El7 (x El7 z) j

3. every function call f(x) depends on fee):

T(e) /\ 'Vx : Q(x) : x +-1 e.

In particular, when

T(x) == x = q,

then we have e = q in the transformed f.

83

So far, we have dealt only with functions for which a left inverse of
K exists. For the inversion of computation it is, however, not necessary at
all that the left inverse of K exists.

In the inverted version above, after determining the value of f(y),
K-1(y) is used to determine the value z such that K(z)=y. Note that this
always takes place in the context of the inverted computation of f(x) for a
certain x. Although there may be multiple values z such that K(z)=y, only
one of those values actually occurs as an argument of f in the computation
of f(x). PATERSON and HEWITT (1970) have shown that such a z can
always be found, albeit in an inefficient way. This is done by reconstructing
all arguments Ki(x) for i = 1 ... j such that Kj(x) = y. Such a j always
exists, because y occurs as an argument to f in the computation of f(x).
The argument that precedes the argument y in the computation of f(x) is
Kj-l(x). Formally, this way of finding in the context of the computation
of f(x) a z such that K(z)=y can be defined by:

if y = K(x)
then x

else KP~tHew(K(x),y) fi

We still use the symbol K-l, because it denotes the inverse relation of
K, restricted to the set {y\x y}. This will be called a generalised left
inverse function.

A transformation rule similar to 4.1 can be given which uses the gen
eralised inverse. The most important difference with the previous transfor
mation rule is the incorporation of the argument x in the generalised left
inverse K-1 • Also, the requirement that the starting value e is independent
of the argument x has been dropped.

84 E. A. BOITEN

Transformation 4.2

Defined and deterministic functions f of the form

(4.6) f{x: Q(x)) = if T(x)
then H(x)
else x $ f(K(x)) fi

are equivalent to

(4.7) f(x: Q(x)) = f'(c)
where

c =thatk:T(k)/\x+-jk
f'(y : Q(y)) = if y = x

then H(c)
else K-1(x, y) EB f'(K-1(x, y)) fi

under the following conditions:
1. K-1 is the generalised inverse of K, i.e.

\::Ix, y : (x +-j y /\ -.T(y)) ::::} K-1(x, K(y)) = y;

2. EB is left-commutative

\::Ix, y, z : x EB (y EB z) == y EB (x EB z) .

A useful lemma for finding more efficient generalised left inverses is the
following:

Lemma 4.2

KP~tHew(X, y : 3j 2:: 1 : y = Kj (x)) == that z : -.T(z) /\ K(z) = y /\ x +-j Z

4.2 Splitting Linear Recursion

In (BOITEN, 1989), the following alternative definition of the factorial func
tion was presented:

(4.8) fact(x) = if x = 0
then 1

FACTORISATION OF THE FACTORIAL

else facthalf(x) x facthalf(x - 1) fi
where

facthalf(x) = if x ~ 1
then 1
else x x facthalf(x - 2) fi

85

It is clear that the above function calculates the factorial of a number by
calculating the products of the odd and even factors separately. Intuitively,
its correctness is obvious. Formally, it is guaranteed by the correctness of
the follovving transformation rule, which is proved in (BOITEN, 1990):

Transformation 4.3

Defined functions f of the form

(4.9) f(x) = if T(x)
then H(x)
else Q(x) EB f(K(x)) fi

are equivalent to

(4.10) f(x) = if T(x)
then EBj~o Q(Ki(x)) EB H(x)
elsf T(K(x))
then EB~=o Q(Ki(x)) EB H(K(x))

elsf T(Kn - 1(x))
then EBj~J Q(Ki(x)) EB H(Kn- 1(x))

else EB~l fn(Ki(x))
fi

where
fn(x) = if T(x) then H(x)

elsf 3i,;lT(Ki (x))
then Q(x)
else Q(x) EB fn(Kn(x))
fi

for any n ;::: 1, provided that the operator EB is associative and commutative,
with unit element 1$. The ezpressions EBl=p g(i) are defined by:

if p > q,

otherwise.

86 E. A. BOITEN

Note that the only expression of the form EBl=p g{i) that does not contain a

term syntactically different from 19 occurs only in the context EBl=p g(i) EEl
H(x). That means that, for fixed n, all expressions of the form EBl=p g{i)
in the transformation rule may be eliminated or simplified to expressions
not containing 19. So, the value 19 may be fictitious, i.e. if no unit of
EEl exists, a new element 19 may be adjoined to the type of EEl's operands.
The only property that is required of the new value 19 is that for all t
x : x EEl 19 = x.

Intuitively, this transformation rule splits the calculation of a term

Xl EEl X2 EEl X3 EEl ... Efl xp

into n calculations of terms

Xl EEl Xn+l EEl X2n+1 EEl ... ,

X2 EEl Xn +2 EEl X2n+2 Efl ... ,

Xn EEl X2n EEl X3n EEl

Thus, a computational sequence is transformed into a computational tree
with n branches.

The computational sequence of the original factorial function, viz.

fact{x)

!
I

fact{x - 1)

fact{x - 2)

is transformed by transformation rule 4.3 into

facthalp{x - 1)

facthalp{x - 2) facthalp(x - 3)

FACTORISATION OF THE FACTORIAL 87

(for x ~ 3). Thus, one computation is split up into two independent com
putations that may be executed in parallel. It is clear that transformation
rule 4.3 may be used for the evaluation of certain kinds of linear recursive
functions on architectures with a fixed number (~ 2) of processors.

5 Transformational Development

5.1 A Property of facthalf

By induction, it can easily be proved that the following property holds for
the function f acthal f in program (4.8).

even(x) => facthalf(x) = 2x/2 X fact(x/2). (1)

This property is also mentioned in (PURDON and BROWN, 1985, exercise 4
on page 98). In the following, / denotes integer division.

(5.1) facthalf(x) x facthalf(x - 1)
={(1)} if odd(x)

then facthalf(x) x 2(x-l)/2 x fact((x - 1)/2)
else fact(x/2) x 2x/2 X facthalf(x - 1)
fi

={usernod,comm.x} facthalf(x -1 + xmod2) x 2x/2 X fact(x/2)

Finally, it is clear that all arguments to facthalf are odd. When we add
this to the assertion in facthalf, and simplify facthalf accordingly, we
have altogether:

(5.2) fact(x)
if x = 0 then 1
else facthalf(x - 1 + x mod 2) x 2x/2 X fact(x/2)
fi

where
facthalf(x : x ~ 1/\ odd(x))

if x = 1
.then 1
else x x facthalf(x - 2)fi

This is our second, in our view surprising version of fact, which uses mainly
subtraction and division by 2 instead of subtraction by 1 in its recursion.

88 E. A. BOITEN

5.2 Possibilities for improving facti facthalf

As an example, consider the evaluation of fact(31). By repeatedly unfold
ing fact, we get:

fact(31) =facthalf(31) X facthalf(15) X facthalf(7) X

facthalf(3) X facthalf(l) X 226
.

Obviously,

facthalf(31) = 31 X 29 X ... X 17 X facthalf(15) ,

i.e., there is some redundancy in the computation. \Ve are, however, not
able as yet to eliminate that redundancy. This is because facthalf(31)
is computed 'first', and only later is the intermediate result facthalf(15)
again useful. Therefore, we aim at inverting the flow of computation of
fact. The result of that is that fact(15) is computed first in the compu
tation of fact(31), and it is multiplied only afterwards with the value of
facthalf(31). Thus, facthalf(15) is used before facthalf(31), and can be
used as a starting value for computing facthalf(31). If we want to do so,
we have to find a version of facthalf that computes as facthalf(31) as
(... ((facthalf(15) X 17) X 19) X .••) X 31. This can be achieved by also
inverting the flow of computation of facthalf.

5.3 Transforming facthalf

Transformation rule 4.1 can be applied to facthalf, resulting in:

(5.3) facthalf(x: x ~ 1/\ odd(x))
=fh(l,x)

where
fh(y, x: x ~ y ~ 1/\ odd(x) /\ odd(y))
= ify = x

then 1
else (y + 2) X fh(y + 2, x) fi

The correctness of this version is guaranteed by the invertibility of K (x) =
x - 2 and the commutativity of multiplication.

We now prove a lemma that will be useful later in the derivation.

FACTORISATION OF THE FACTORIAL

Lemma 5.1
For all p, q, x such ihai 1 ~ p ~ q ~ x /\ odd(P) /\ odd(q) /\ odd(x),
fh(p,x) = jh(p,q) X fh(q,x).

89

Proof: Intuitively it is clear that the lemma holds, because fh(p, q) is
simply the product of all odd numbers from pIP up to q. Formally, this
can be proved by induction on q-x.

Basis. Ifq-x=O, then fh(p,x) = fh(p,x) X 1 = fh(p,q) X fh(q,x).

Induction. Suppose the lemma holds for x -- 2k ~ q ~ x. Then

fh(p, x - 2k - 2) X fh(x - 2k - 2, x) ={unfoldJh}

fh(p, x - 2k - 2) X (x - 2k) X fh(x - 2k,x) ={foldJh,commutativityx}

fh(p, x 2k) X fh(x - 2k, x) ={induction}

fh(p,x). 0

Because multiplication is associative, the accumulation strategy (BIRD,
1984) can be applied by definition of

fhf(x, y, res) = res X fh(x, y)

resulting in:

(5.4) facthalf(x: x ~ 1/\ odd(x))
fhf(l, x, 1)

where
fhf(y, x, res: x ~ y ~ 1/\ odd(x) /\ odd(y))
= ify=x

then res
else fhf(y + 2, x, res X (y + 2))
fi

(2)

The function fhf can be transformed into iterative form, because it is tail
recursive. Then we have:

5.5 fhf(y, x, res: x ~ y ~ 1/\ odd(x) /\ odd(y))
= begin var(vy,vx,vres):= (y,x,res);

while vy '# vx

end

do (vy, vx, vres) := (vy + 2, vx, vres X (vy + 2))
od;

vres

This can be simplified by eliminating all assignments to vx and replacing
all other occurrences of vx by x, yielding:

90 E. A. BOITEN

5.6 fhf(y, x, res: x ~ y ~ 1/\ odd(x) /\ odd(y))
= begin var(vy, vres) := (y, res);

while vy::j:. vx
do (vy,vres):= (vY+f,vres x (vy+2))
od;
vres

end

5.4 Transforming fact

As mentioned before, in order to profit from the new version of f acthal f,
we need to invert the flow of computation of fact as well. Furthermore,
some optimisations (viz. accumulation and finite differencing) are possible
afterwards.

First the complicated expression x-I + (x mod 2) is abstracted. Note
that it denotes the greatest odd number less than or equal to x. This
definition of toodd is used throughout this paper.

(5.7) toodd(x: x > 0) = x-I + (x mod 2)

The function fact can now be improved by inverting the flow of computa
tion. This will be done along the lines of Section 4.

If K(x) = x/2 were invertible, transformation rule 4.1 would be ap
plicable. This is not the case, and thus we should find a generalised left
inverse of K in order to apply transformation rule 4.2. Since Ki(x)=x/2i ,
we can define K-1

, using lemma 4.2, by:

(5.8) K-1(x,y: 3k > 0: y = x/2k
) =that z: z/2 = y /\ 3k: z = x/2k

Later on, an efficient definition of K- 1 can be given. The definition of K-1

will not be repeated in the derivations. Using transformation rule 4.2, we
now invert the flow of computation of fact, resulting in:

(5.9) fact(x) = fact'(O)
where
fact'(y)

ify = x
then 1
else 2Y x facthalf(toodd(ny)) x fact'(ny)
where ny = K-1(x, y)

fi

FACTORISATION OF THE FACTORIAL 91

By using the definition of facthalf above, the else-branch transforms into:

2Y x fhf(l, toodd(ny) , 1) x fact' (ny).

The next goal is now improvement of fact by finite differencing. We aim
at carrying along the value of fhf last computed. Furthermore, because
the last call of fhf has toodd(ny) as an argument, the value of toodd(ny)
will also be kept. First we define a new function fact" with appropriate
assertion (note that when y=O, no fhf value has been computed yet, and
thus the assertion should give no extra information):

(5.10) fact" (y, z, oddy :
y "I O::::} (oddy = toodd(y) 1\ z = fhf(l,oddy, 1»)

= fact'(y)

By unfolding, abstraction and simplification we get:

(5.11) fact" (y, z, oddy :
y "I 0 ::::} (oddy = toodd(y) 1\ z = fhf(l, oddy, 1)))

= ify = x
then 1
else 2Y x fhf(l, toodd(ny) , 1 x fact'(ny)

where ny = K-1(x,y)
fi

The following simplification is possible:

fhf(l, toodd(ny) , 1)
={lernrna 5.1, def. fhl} fhf(l,oddy, 1) x fhf(oddy,toodd(ny), 1)
={(2)} fhf(oddy, toodd(ny) , fhf(l, oddy, 1))
={assertion fact 'l } fhf(oddy, toodd(ny) , z)

Using this, we can fold fact" (the fhf value just computed is the correct
new value for z, according to the assertion), resulting in:

(5.12) fact" (y, z, oddy :
y"l o::::} (oddy = toodd(y) 1\ z = fhf(l,oddy, 1)))

= ify=x
then 1
else 2Y x nz x fact"(ny,nz,oddny)

fi

where ny = K- 1(x, y), oddny = toodd(ny),
nz = fhf(oddy, oddny, z)

92 E. A. BOITEN

For fact, we then have

fact(x) = fact" (0,1,1).

Due to commutativity of multiplication and addition, the accumulation
strategy can also be applied to fact". We define

factlll(y,z,oddy,res,two) = fact"(y,z,oddy) X res X 2two.

This allows the derivation of:

(5.13) fact (x)
fact lll (0,1,1,1,0)

where
face" (y, z, oddy, res, two:

y -:f ° =} (oddy = toodd(y) 1\ z = fhf(l,oddy, 1)))
ify = x
then res X 2two
else factlll(ny,nz,oddny,res X nz,two+y)

where ny = K-1(x, y), oddny = toodd(ny) ,
nz = fhf(oddy, oddny, z).

fi

A parameter n is added, such that y = x/2n. Because ny = x/2n-l,
we have a more efficient expression for K-1

• The initial value should be
L210gxJ+l for x>O, since x/2l21ogxJ+l=0. Because 210g 0 is undefined, we
single out ° in the definition of fact, which results in:

(5.14) fact(x)

- if x = ° then 1
else factlll (0,1,1,1,0) fi.

Note that K-1 might be implemented even more efficiently: all first argu
ments to fact lll are of the form x/2k, and so their binary representations
are prefixes of the binary representation of x. K- 1 transforms a prefix of
length n into a prefix of length n+ 1, and this could also be achieved by
gradually shifting x into a location.

Finite differencing by introduction of a parameter such that y = x/2n

yields:

(5.15) fact(x)
= if x = ° then 1

FACTORISATION OF THE FACTORIAL

else fact llll (0,1,1,1,0, L2log xJ + 1) fi
where

fact llll (y, z, oddy, res, two, n:
oddy = toodd(y) 1\ z = fhf(l, oddy, 1) 1\ Y = x/2n

)

ify = x
then res X 2two

else fact llll (ny, nz, oddny, res X nz, y + two, n - 1)
where ny = x/2n -1, oddny = toodd(ny) ,

nz = fhf(oddy, oddny, z)
fi

5.5 The Imperative Level

93

Because fact llll is tail recursive, we can transform (5.15) (with unfolding of
all value abstractions and the imperative counterpart of factllll

) into:

(5.16) fact(x)
= if x = ° then 1 else

begin
var (vy,vz,voddy,vres,vtwo,vn):= (0,1,1,1,0, L2logxJ + 1);
while vy =F x
do

(vy, vz, voddy, vres, vtwo, vn) :=
(x/2 vn

-
1, fhf(voddy, toodd(x/2vn

-
1), vz), toodd(x/2vn

-
1)

,vres X fhf(voddy, toodd(x/2vn
-

1
), vz), vtwo + vy, vn - 1)

od;
vres x 2vtwo

end fi

The inner assignment statement can be sequentialised as follows:

(5.17) vtwo := vtwo + vy;
vn:= vn - 1j
vy := x/2vn

j

vz := fhf(voddy, toodd(vy), vz);
voddy := toodd(vy);
vres := vres X vz

Now we unfold fhf in the assignment to vz, yielding:

(5.18) vz:= begin
var (va,vb):= (voddy,vz);

94 B. A. BOITBN

while va "# toodd(vy)
do (va, vb) := (va + 2, vb x (va + 2)) od
vb

end;

The following optimisations are now possible:
® because va is initialised with voddy, and voddy is not used in the inner

loop, and va equals toodd(vy) upon termination, voddy can replace
va, thereby making the assignment to voddy superfluous;

® vb is initialised with vz, vz is not used in the inner loop, and after the
inner loop vz is assigned vb; thus, vz can replace vb. This can also be
derived via a sequence of small transformation steps.

@ The assignments in the inner loop can be sequentialised in such a way
that the expression va+2 (now: voddy+2) is computed only once.

This yields our final program, in which independent collateral assignments
are not sequentialised:

(5.19) fact{x)
if x = 0 then 1 else
begin

var (vy, vz, voddy, vres, vtwo, vn) := (0,1,1,1,0, L2log xJ + 1);
while vy"# x
do vtwo := vtwo + vy;

od;

vn:= vn -1;
vy:= x/2vn;
while voddy "# toodd{ vy)
do voddy:= voddy + 2;

vz := vz x voddy
od;

vres := vres X vz

vres X 2vtwo

end fi

6 Implementation on Two Processors

We will demonstrate how the above algorithm can be implemented on two
processors. The first processor sends a sequence of appropriate facthalf
values to the second one, which computes fact using those values.

In order to derive a version of the algorithm which is close to a paral
lel one, we need to introduce sequences. Often, in functional descriptions

FACTORISATION OF THE FACTORIAL 95

of parallel systems so-called streams are used to describe the communica
tion (BROY and BAUER, 1984), but in this case only finite streams, i.e.,
sequences are needed. Because now multiple types occur in our functions,
we write nat for natural number arguments and results, bool"for booleans,
and seq for sequences of natural numbers.

The type seq

< > the empty sequence
+I- prep end a natural number to a sequence

first the first element of a sequence
rest all but the first element

The derivation starts from the version of fact in program (5.9) nat x is
assumed to be known in the context. Below, a function factp2 is defined
which is equal to fact', except that it takes as an extra argument the se
quence of all necessary facthalf values. This is expressed by the predicate
allfh.

(6.1) factp2(seq s, nat y : y ::; x /\ allfh(s, y))nat
= fact'(y)
where
allfh(seq s, nat y)bool
= ify = x then s =<>

= else first s = facthalf(toodd(ny)) /\ allfh(ny,rest s)
where ny = K-1(x, y) :fi

In order for factp2 to replace fact', we need to derive:
• a definition of factp2 independent of fact', and
" a value z such that factp2(z,0) = fact' (0); in particular, this means

that the assertion allfh(z, O) should hold.

First we derive a definition of factp2.

factp2(s,Y)={unfold factI} ify =:p then 1
else 2Y X facthalf(toodd(ny)) x fact'(ny)
where ny = K- 1(x, y) :fi

={definition all/h} if y = x then 1
else 2Y X :first s x factp2(rest s, ny)

ny = K-1 (x,y) :fi

The value of s for the initial call can be computed from the assertion. A
value z is needed, such that allfh(z,O) holds. That value of z will be

96 E. A. BOITEN

denoted by Jactpl, which implicitly depends on x, but also on y. The
dependence on y is necessary to derive a recursive definition of Jactpl. In
the derivation below, ny is assumed to be K-1(x, y).

Jactpl(y) ={above}

some 8 : allJh(8, y)

= {def. allfh}

some 8 : if y = x then 8 =<>

fi

else first 8 = JacthaIJ(toodd(ny))
l\allJh(rest 8, ny)

={ distributivity}
if y = x
then some 8: 8 =<>

else some 8: first 8 = facthalf(toodd(ny))
l\allJh(rest 8, ny) fi

= { some-simplification}
if y = x

then <>

else some 8: first 8 = JacthaIJ(toodd(ny))
1\ allJh(rest 8, ny) fi

={seq. decomposition}
if y = x
then <>

else JacthalJ(toodd(ny))
-fl-some 8': allJh(8',ny) fi

={fold factpl}

if y = x
then <>

else JacthalJ(toodd(ny))-fl- Jactpl(ny) fi

Then we have altogether:

(6.2) Jact(nat x)nat
= Jactp2(jactpl(0) , 0)

where
Jactpl(nat y)seq

if y = x
then <>

else JacthalJ(toodd(ny))-fl- Jactpl(ny)
where ny = K-1(x, y) ft,

Jactp2(seq 8,nat y)nat

FACTORISATION OF THE FACTORIAL

if y = x then 1
else 2Y x first sxfactp2(rest s,ny)
where ny = K-1 (x,y) fi,

facthalf(nat y)nat
if y = 1 then 1
else y x facthalf(y - 2) fi

97

The functions factp1 and factp2 can be optimised similarly to fact and
facthalf in the previous section:

Optimise factp1:

@ Define (finite differencing)

factp1(y) = factp1'(y, 1),

factp1' (y, z : y =1= ° :=} z = facthalf(toodd(y))) = factp1(y)

@ Use lemma 5.1 to derive

(6.3) factp1'(y,z)
if y = x then < >
else nztl-factp1'(ny,nz)

where ny = K- 1 (x, y),
nz = fhf(toodd(y), toodd(ny) , z)

fi

Optimise factp2:

@ Define (accumulation)

@ Derive

factp2(s,y) = factp2'(s,y, 0, 1)

factp2'(s,y,two,res) = 2two X res X factp2(s,y)

(6.4) f actp2' (s, y, two, res)
if y = x
then 2two X res

else factp2'(rest s,ny,two+y,resx first s)
where ny = K-1(x, y) fi

fi

Implement K- 1 as in the previous section.

It is clear that the sequence s in factp1 and factp2 may also be viewed
as a one-way communication channel. Cf. (BROY and BAUER, 1984) for

98 E. A. BOITEN

a discussion of this kind of consumer-producer programs. The function
factp1 may be implemented on one processor, and send the computed
successive first elements of s to the other processor on which factp2 is
implemented.

It is even possible to use a third processor for computing the sequence
of K-1 values. In the current version, these are computed by both factp1
and factp2.

7 Conclusions

We have given transformation rules that split and invert computation se
quences of linear recursive functions.

For the factorial function, the application of these rules and subse
quent manipulations resulted in a previously unknown algorithm.. The
resulting algorithm appears very complicated, and is in our opinion only
intelligible by way of its derivation.

In (BORWEIN, 1985) a factorial algorithm is presented which is based
on factoring out all prime factors. Its time complexity is better than that
of our algorithm. However, it needs more space, viz. for a table of all prime
numbers up to the argument of fact.

Finally, it was shown that the resulting algorithm may efficiently be
executed on a two processor architecture.

Acknowledgement

I thank Helmut Partsch for pointing out the possibility of deriving a new algorithm from
the first version of factj facthalf and for much constructive criticism. Furthermore,
Norbert Volker and Daniel Tuijnman are thanked for their remarks on earlier versions of
this paper.

References

BAUER, F. L. - BERGHAMMER, R. BROY, M. - DoscH, W. - GEISELBRECHTINGER, F.
- GNATZ, R. - HANGEL, E. - HESSE, W. - KRIEG-BRUCKNER, B. - LAUT, A.
- MATZNER, T. - MOLLER, B. - NICKL, F. - PARTSCH, H. - PEPPER, P. -
SAMELSON, K. - WIRSING, M. - WOSSNER, H. (1985): The Munich Project CIP.
Volume I: The Wide Spectrum Language CIP-L, Lecture Notes in Computer Science
183. Springer-Verlag, BerlinjHeidelbergjNew York.

BIRD, R. S. (1984): The Promotion and Accumulation Strategies in Transformational
Programming. AGM Transactions on Programming Languages and Systems, Vol. 6,
No. 4, pp. 487-504.

BOlT EN , E. A. (1989): Inverting the Flow of Computation. Technical Report 89-10, Dept.
of Informatics, K.U. Nijmegen. To appear in Science of Computer Programming.

FACTORISATION OF THE FACTORIAL 99

BOITEN, E. A. (1990): Factorisation ofthe Factorial- an Algorithm Discovered by Playing
with Transformations. Technical Report 89-10, Dept. ofInformatics, K.U. Nijmegen.

BORWEIN, P. B. (1985): On the Complexity of Calculating Factorials. Journal of Algo
rithms, Vol. 6, pp. 376-380.

BROY, M. - BAuER, F. L. (1984): A Systematic Approach to Language Constructs for
Concurrent Programs. Science of Computer Programming, Vol. 4, pp 103-139.

BURSTALL, R. M. - DARLINGTON, J. (1977): A Transformation System for Developing
Recursive Programs. Journal of the ACM, Vol. 24, No. 1, pp. 44-67.

FEATHER, M. S. (1987): A Survey and Classification of some Program Transformation
Approaches and Techniques. In L.G.L.T Meertens, editor, Program Specification
and Transformation. Proceedings of the IFIP TC2/WG2.1 Working Conference on
Program Specification and Transformation, pp. 165--196. North-Holland Publishing
Company, Amsterdam.

PAIGE, R. - KOENIG, S. (1982): Finite Differencing of Computable Expressions. AGM
Transactions on Programming Languages and Systems, Vol. 4, No. 3, pp. 402--454.

PARTSCH, H. (1990): Specification and Transformation of Programs - a Formal Approach
to Software Development. Springer-Verlag, Berlin.

PATERSON, M. S. - HEWITT, C. E. (1970): Comparative Schematology. Record of the
Project MAC Conf. on Cone. Syst. and Par. Camp., Woods Hole, Mass., pp. 119-
127. ACM, New York.

PURDON, C. A. JR. - BROWN, C. A. (1985): The Analysis of Algorithms. Holt, Rineheart
and Winston, New York.

Address:

Eerke A. BOITEN

Department of Informatics
Faculty of Mathematics & Informatics
University of Nijmegen
Toernooiveld 1
NL - 6525 ED Nijmegen
The Netherlands

