
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 95, NO. 2, PP. 101-129 (!991)

USTOPIA REQUIREMENTS
THOUGHTS ON A USER-FRIENDLY SYSTEM FOR

TRANSFORMATION OF PROGRAMS
IN ABSTRACTO!

E. A. BOITEN, M. G. J. VAN DEN BRAND, N. W. P. VAN DIEPEN,

C. H. A. KOSTER, H. A. PARTS CH AND N. VOLKER

Department of Informatics
Faculty of Mathematics and Informatics
University of Nijmegen, The Netherlands

Received: Sept. 5, 1990.

Abstract

Transformational programming is a program development method which is usually applied
using 'pen and paper'. Since this requires a lot of clerical work (copying expressions, con­
sistent substitution) which is tiresome and prone to error, some form of machine support is
desirable. In this paper a number of systems are described that have already been built to
this aim. Some of their shortcomings and limitations are identified. Based on experience
with program transformation and transformation systems, a long list of features is given
that would be useful in an 'utopian' transformation system. This list is presented using
an orthogonal division of the problem area. A number of problems with the realisation of
some aspects of our 'utopian' system are identified, and some areas for further research
are indicated.

Keywords: transformational programming, transformation systems, programming envi­
ronments.

1 Introduction

One of the main barriers in the manual application of program transfor­
mations is the amount of work necessary to ensure the correctness of the
application of various transformation rules. These correctness checks are
often of a rather trivial, and very tedious, nature. It is hard to remember
that a correctness check should be applied. These considerations led to
the obvious idea of machine support for various clerical tasks, including
automatic verification of trivial applicability conditions, and signalling of
the more difficult ones.

In practice, machine support for program transformation in the form
of an editor is a minimal requirement. The programmer copies the current

lSupport has been received from the Netherlands Organisation for Scientific Research
N. W. O. under grant NF 63/62-518 (the STOP - Specification and Transformation Of
Programs project) for E. A. Boiten, N. W. P. van Diepen and N. V6lker, and under grant
612-317-020 for M. G. J. van den Brand.

102 E. A. BOITEN et al.

version into the editor, and manually applies the transformations which
seem to further his or her aim. Of course, this cannot be called proper
support, but it provides a starting point in functionality for any system.

This paper has been motivated and stimulated by ongoing research in
the STOP (Specification and Transformation Of Programs) project. Partic­
ipants are the Computer Science Departments of the Universities of Utrecht
and Nijmegen and the Algorithmics and Architecture Department of the
Centre for Mathematics and Computer Science in Amsterdam. The aim of
the project is to further the research into program specification and trans­
formation. Hence the functionality and components of a transformation
system form an important issue within these research activities.

It should be noted that we do not aim at describing a practical pro­
gram transformation support system. Rather, we first try to list things
which could conceivably be part of an ideal system. Based on this, we will
discuss the realisation of such a system what has already been done, what
cannot be done, and what are the interesting research topics that arise.

1.1 Why Program Transformation?

The name software engineering has been coined in the sixties to character­
ize attempts to overcome the problem of the so-called software crisis. This
crisis was caused by the lack of proper techniques to lift the construction
of software from the level of art to the level of engineering. Many attempts
have been made to handle this problem. A satisfactory solution, however,
has not yet been found. Hence new techniques are still looked for to bridge
the gap.

One answer can be found in the following way. The software engi­
neer starts with a formal description of the problem, or of the program
to be written. This description is then transformed step by step using
formal rules towards a final program (which should probably be efficient,
etc.), along the way maintaining the correctness by verifying the correct
application of the transformations. Many transformation steps lend them­
selves to formalisation. Also, combinations of steps allow transformation
strategies to be formulated and applied. This approach therefore brings
two fundamental engineering aspects into play. It is possible to formulate
and use standard techniques, thus gaining confidence in the quality of the
final product. And it is possible to 'compute the strength of the construc­
tion' (prove the properties of the program) with respect to the original
specification.

Of course, this leaves open the question of how to find such a formal
specification. Ideally, it should be provided by the client who wanted the

USTOPIA REQUIREMENTS 103

program in the first place. In practice, the process is more difficult, with
a recurrent interaction between the client (who supplies the wishes) and
the software engineer (who writes the specification). Though: such a form
of communication is apt to lead to misunderstandings, it is assumed here
that the original specification is a correct formalisation of the informally
specified problem. Some first ideas on improving the formalisation process
itself can be found in (VAN DIEPEN and PARTSCH, 1990).

1.2 Why a Program Transformation System?

There are several reasons why one would want machine support for pro­
gram transformation. Firstly, transformational developments show a con­
siderable amount of clerical work. Usually, only a small part of the program
is transformed. In that case, the remainder of the program is just copied.
Furthermore, the application of a transformation rule requires instantiation
of certain parts of the original program in the resulting program, a task in
which an automated system is less likely to make errors in. Some people
would already be very happy with a system having just these properties.

Another reason for using a transformation system is formality. A
transformation system may ensure the check of all details of a deriva­
tion, whereas currently many developments are presented vnth much 'hand­
waving' and, very often, cheating on essential details.

Also, a transformation system should contain a large body of know­
ledge, e. g. libraries of data types, rules, strategies, etc. This means that
much valuable information is available on-line and can be reused.

Finally, a transformation system allows one to treat a development
as a formal object. Thus, developments can be 'manipulated' to produce
nice documentation (PARTSCH, 1988), reused to solve similar problems, or
abstracted into new transformation rules or strategies.

1.3 A Utopian Transformation System

This paper is meant as a reference to support the research into program
transformation systems, rather than as a description of an actual system.
Therefore, this document describes features of a utopian transformation
system. We do not want to restrict ourselves in any way, hence no claim
is laid on useful design paradigms like orthogonality, completeness, or even
implementability.

104 E. A. BOITEN et al.

1.4 Organisation of this Paper

In the next section we discuss some existing program transformation sys­
tems. Then the USTOPIA system is de.scribed by means of an informally
stated list of requirements, and some of the features are discussed. It is
pointed out which of these features are present in existing program trans­
formation systems. Also, some thoughts are presented on features that
seem to require more research before being implementable. Finally, con­
clusions are drawn and it is indicated how our research in transformation
systems may proceed.

2 Existing Transformation Systems

Current transformation systems are described in some detail in (PARTSCH
and STEINBRUGGEN, 1983). The interested reader is referred to this paper.
Some systems not yet available at the time of writing of (PARTSCH and
STEINBRUGGEN, 1983) have since been studied to some extent. While these
systems all have their merits, they are also very much pioneering efforts.
Hence they tend to be strong in certain areas, while other areas are not
dealt with at all. Still, there is much to be learned from them.

2.1 GIP-S

CIP-S (CIP, 1987) is an interactive, language-independent system to sup­
port

€I> the derivation of new program(-scheme)s from present ones by the
application of transformation rules (which is to include the derivation
of new rules within the system),

€I> the reduction of applicability conditions (including support for proofs
by induction), and

€I> the administration of all system-specific entities (including the docu­
mentation and manipulation of program developments).

In (CIP l 1987), a formal specification of (the kernel of) CIP-S is given.
Conceptually, this formal specification is based on the notion of a finite
state machine. Following a well-known concept for specifying interactive
systems, CIP-S comprises three major components: the user interface, the
'core', and the knowledge base. The purposes of these system components
are as follows:

® The user interface is responsible for the user/system interaction. In
particular, it is to manage the translation between internal and exter-

USTOPIA REqUIREMENTS 105

nal representations (parsing/unparsing) and the compilation of (com­
plex) user requests ('transformation programs') into (basic) system
operations.

El The core is the central component of the system that provides all basic
operations that are needed for each of the above-mentioned activities
derivation, reduction, and administration. Additionally it controls
the internal system states and prepares reactions of the system to be
conveyed as output to the user by the user-interface.

El The knowledge base is a collection of data depositories, each consisting
of a number of catalogues for

(global or local) transformation rules,
(predefined or user-defined) abstract data types, realised as sig­
natures and transformation rules that correspond to the axioms
of the respective types,
(temporary or permanent) program schemes,
program developments (development trees).

The core of CIP-S has been formally specified in CIP-L (CIP, 1985)
and developed by transformations into a set of programs at the level of
PASCAL programs. For this transformational development the CIP pro­
totype transformation system (RIETHMAYER et al., 1985) was used. The
extension of the core by language-dependent components (parser/unparser,
catalogues of transformation rules, etc.) and a user-interface leading to a
running system is the subject of an ongoing cooperation between TUM
and Siemens corporation. A pilot version of CIP-S supporting CIP-L as an
object language is operational.

In addition to the pure functional requirements, further (non-func­
tional) requirements and constraints have been attempted in the design
and the development of CIP-S:

El correctness ('transformational calculus', (PEPPER, 1984))
El reliability ('foolproof' system defined as a set of total functions; re­

stricted mode of operation, dependent on current 'activity'),
El extensibility with respect to functionality (clean hierarchical specifi­

cation), and
El language-independence (appropriate parametrisation).

2.2 The PROSPECTRA System

The research topics of the ESPRIT project PROSPECTRA (PROGram
SPECification and TRAnsformation (PROSPECTRA, 1987)) include:

106 E. A. BOITEN et al.

@') Engineering discipline for obtaining correct software: integration of
program construction, formalisation of knowledge, method bank.

@') Abstract formal specification, gradual introduction of detail, replay.
• Research consolidation and technology transfer. ADA as the centre

of a common European technology base. Consolidation of convergent
research in specification, verification and implementation.

41) Industry of software components: reduction of software production
cost by reusable components.

Therefore, a program transformation system for the language PATlTldAS, a
combination of ADA and ANNA (an annotation language for ADA, (LUCK­
HAM et al., 1987)) has been developed. This system consists of an integrated
collection of tools, based on ESPRIT PCTE (Portable Common Tool Envi­
ronment), with a uniform concept of user interaction. Many of these tools
are based on the Comell Synthesizer Generator (CSG, REPS and TEITEL­
BAUM, 1989). The following components exist:

41) a variant of PA nTldAS which is used for controlling the PROSPEC­
TRA system;

IiiI a CSG editor for TRAFOLA-S, a variant of PAnndAS which can be
used to describe transformation rules;

IiiI a 'transformer generator' which generates a CSG editor for PA nndAS
with transformation rules from TRAFOLA-S descriptions;

IiiI CEC, a system for completing algebraic specifications;
41) an ML-based language for describing transformation rules, which is

to enhance or possibly replace TRAFOLA-S;
IiiI various libraries, etc.

A collection of transformation rules, a.o. the basic rules from (CIP, 1987)
has been written in TRAFOLA-S. The system is embedded in X-Windows
(O'REILLY et al., 1988).

More on the philosophy of the Prospectra project may be found in
(PROSPECTRA, 1987); a short survey of the system may be found in
(BOITEN et al., 1989).

2.9 The KIDS System

KIDS (Kestrel Interactive Development System (SMITH, 1988)) is an inter­
active system that provides an open architecture for experimenting with
various components for transforming formal specifications into correct and
efficient programs. It works fully automatically when optimising programs
and needs user interaction only in the 'algorithm design' phase.

USTOPIA REQUIREMENTS 107

KIDS is implemented in REFINE which is also used as object lan­
guage. REFINE isa commercial knowledge-based programming environ­
ment which provides

• an object-oriented data base used to represent 'domain theories' (do­
main objects, relationships, constraints, laws),

• a grammar-based parser/unparser, and
• a very-high-Ievellanguage (including transformation and pattern con­

structs).

Among others, KIDS provides tools that support

tII deductive inference,
tII algorithm design,
tII expression simplification,
tII finite differencing, and
• partial evaluation/specialization.

The central component of KIDS is the general-purpose deductive inference
system RAINBOW II. This subsystem comprises a knowledge-base con­
sisting of approximately 300 rules for reasoning over program expressions
and a facility to apply these rules to expressions. RAINBOW IT allows the
inference of sufficient conditions (by 'backward reasoning') as well as neces­
sary conditions (by 'forward reasoning') of formulas. Inference of equalities
and (lower) bounds are included as special cases. Specifically for program
development the following tasks are supported by RAINBOW IT:

tII canonicalisation,
EO formula verification and first-order theorem proving,
tII expression and formula simplification,
• constraint propagation,
• finite differencing.

Program development with KIDS starts with an explicit statement
of the 'domain theory' (i.e., properties reflecting particular knowledge of
the respective problem) and a formal specification built on top of it. The
system then applies specialized, built-in tactics (e. g. divide-and-conquer
or global search), selected by mouse from a menu, to subexpressions also
selected by mouse. Partially implemented specifications are augmented
with input assumptions, invariants, and output conditions, and shown to
the user in a particular window. The result of a development in KIDS is a
recursive REFINE program which is then further compiled into COMMON
LISP.

KIDS has been used so far for many sample developments, includ­
ing: enumeration problems involving global search, job scheduling, graph

108 E. A. BOITEN el al.

colouring, covers of vertices and sets, knapsack problems, travelling sales­
man tours, and the k-queens problem.

Although the system worked quite satisfactorily for these examples,
it is still an experimental system. For the future it is planned to extend
the system by

El more advanced optimisation algorithms,
CD automatic data structure selection,
CD (ground and parametrized) tactics,
El a more elaborate methodology (checklist for standard scripts), and
CD performance-directed design.

3 A List of Requirements

Our list of requirements will be divided into three parts. The first one
treats the capabilities of the utopian transformation system, i.e. the 'heart'
of the system. The requirements regarding the user interface are described
in the second part. The third part concerns itself with some behavioural
aspects of the system. In the fourth part, the role of a transformation
system within an integrated project support environment is described. For
reasons of readability the list of requirements has an informal nature.

3.1 Capabilities

The desirable capabilities of an 'ideal' program transformation system as
we envisage it are summed up below. This list is based on our own experi­
ences with 'pen and paper' derivations, in which many clerical steps appear
to be automatabIe. In the list below we outline the necessary support for
the automation of such clerical tasks. It is based as well on our analysis of
existing program transformation systems and other programming environ­
ments.

Our ideal of a program transformation system can be viewed along
three different dimensions, each of which comprises a well-known subject
in computing science:

1. program (or problem) specifications and their analysis, validation and
verification;

2. the process of transformational programming;
3. 'powerful' computing systems in general.

In these three 'dimensions', important parameters are language, logic, and
model, respectively.

USTOPIA REQUIREMENTS 109

These dimensions will serve as a guideline when summing up relevant
aspects of the program transformation system below.

Projections of the requirements below to any two of these dimensions
correspond to:

- 1 & 2: The ('pen and paper') method of transformational programming.
- 1 & 3: A traditional programming environment.
- 2 & 3: An expert system shell.

We are striving to combine 1 & 2 & 3.

3.1.1 Specifications and Their Analysis

Writing specifications

Any transformational development must begin with some sort of specifi­
cation of the problem to be solved, or the program to be written. Hence
a transformation system should provide support for writing specifications.
Since a rigorous development is aimed at (DIJKSTRA, 1976, JONES, 1980)
we envisage support for one or more specification formalisms. To avoid
overreaching we restrict ourselves for the rest of the paper, unless explic­
itly stated otherwise, to two specification and transformation formaJisms
as leitmotiv, viz. CIP-L, including algebraic specifications (CIP, 1985,
BERGSTRA et al., 1989), and the Bird-Meertens formalism (BIRD, 1987,
MEERTENS, 1986) referred to as BMF in the rest ofthis paper. The choice
of these two formalisms is rather pragmatic: with these two the authors
have built up extensive experience. Apart from that, these formalisms take
extreme positions in the area of specification. BMF specifications are usu­
ally defined and determinate; CIP-L specifications need not be. BMF has
a lazy semantics, while CIP-L has a strict one. BMF is mostly used to de­
scribe algorithms on lists and related structures, while CIP-L is intended to
cover arbitrary descriptive and operational specifications over all possible
data types.

Support for both of these formaJisms could be provided by:

® a pre-defined collection of basic data types, to avoid the tedious job of
specifying yet again, e.g., the Booleans. This collection can be viewed
as a library for software reuse;

® basic operators and laws of BMF (BIRD, 1987);
® support for constructing specifications (by combination or e:x-tension)

from existing ones;

110 B. A. BOITBN el al.

4& some specialized support, e.g., for algebraic specifications, checks on
consistency and completeness of abstract data types;

4& support for formalizing informal requirements.

A nalysing specifications

Since a formal specification is generally derived from an informal one, it
needs to be validated. This can be done in a number of different ways.
One may want to prove additional properties of a specification. Thus, the
following activities need to be supported:

4& reasoning about definedness, determinacy, or other aspects of formal
specifications;

4& the analysis of operational specifications w.r.t. complexity, etc.;
<:0 formal interpretation of specifications, including non-operational con­

structs like some-expressions, and with possibilities for tracing for
'de bugging' specifications;

<:0 (rapid) prototyping of abstract data types for the validation of infor­
mal specifications, and to provide a check on the practical value of
the final program;

• in combination with the former, interpretation (reduction) of program
schemes;

III compilation of a reasonable subset of specifications;
<:0 change of representation, like the translation to English or graphi­

cal representation of a specification, to provide a version readable to
the customer. For graphical representations, one could also think of
structure diagrams, signature diagrams, etc~

9.1.2 Transformational Programming

Derivation

Since the derivation process is the main activity of the programmer, tools
for its support are desirable. Support should be given for the:

<:0 explicit application of one transformation rule, viz.

- the selection (graphical, path expressions) of a program fragment
to which the transformation is to be applied;
the selection of a rule to be applied or proposed for application,
e.g., with pattern recognition;

USTOPIA REqUIREMENTS 111

the reduction or proof of applicability conditions, or at least
recording the need for the proof of these conditions.

• implicit application of one transformation rule, i.e., by stating a pro­
gram equivalent to the current one.

@ combined application of multiple transformation rules, viz.

by way of transformational expressions or a transformation lan­
guage;
the application of standard strategies, like divide and conquer
(SMITH, 1988), or the elimination of tail recursion;
the notions of focus and status, i.e., the localization of the pro­
gram fragment under consideration and the part of the strategy
currently elaborated and the possibilities of user interaction.

• introduction of transformation rules.
During a derivation one often wants to introduce and prove some
specialized transformation, comparable with a lemma during a math­
ematical proof. One should be reminded by the system of the proof
obligation, and aided in delivering the proof.

Furthermore, it should be possible to do the development in a way that
reflects the logical structure of the derivation.

Verification

This concept plays a central role in program transformation, since many
transformation rules are only valid under certain applicability conditions.
Therefore, the following activities need to be supported:

El the proof of

- applicability conditions, and
- transformation rules,

using a proof system including comprehensive possibilities for back­
ward reasoning.

s delayed proof of applicability conditions and keeping track of these
proof obligations.

Advice fj automation

In order to reduce the amount of work to be done by the user, the system
should provide hints and advice on possible directions for a derivation. For
this one could think of:

112 E. A. BOITEN et al.

" options for automatic canonicaJisation ('simplification');
@ 'jittering', automatic adaptation of a program to fit a transformation

rule;
• the automated checking of the app}.icability of a rule, e.g., by pattern

matching and reducing applicability conditions, and 'proposals' for
possible transformation steps;

@ guidance for the selection of rules and strategies, based on complexity
checks or other heuristics.

Evaluation of Developments

It should be possible to evaluate the development process, in order to learn
from mistakes and to add successful transformation rules or strategies to
the available repertoire. In this context, the following activities should be
supported:

• manipulation of formal derivations to adapt them to new circum­
stances ('reusability');

• the generalization of developments, in order to abstract strategies or
rules for more general use;

• collecting all laws and assumptions used in a derivation;
" maintenance of a history in order to aid modification of the program

and/or its development (e.g., by keeping track of the strategies which
have been tried or could still be tried);

" replay of parts of the development process to aid the above and to
follow alternative strategies if desired or needed;

" the generation of papers or other written documentation during the
transformational development in a convenient way ('literate program­
ming' (KNUTH, 1984)).

3.1.3 A Powerful System

Knowledge base

One of the main advantages of a program transformation system is the
availability of a large amount of knowledge on transformation techniques,
etc. (a 'method bank'). Not only should data types, transformation rules,
strategies, etc. be stored, but they should also be accessible in a convenient
way. Furthermore, they should be appropriateiy documented, in such a way

USTOPIA REQUIREMENTS ll3

that they can be used by any user of the system. It is insufficient to rely
on the knowledge of transformation strategies of all but the most expert
user.

Also, the program to be produced should be documented: This should
be automated as much as possible. One needs:

411> a library or database of (basic) data types, laws, operators, rules, and
strategies, etc.;

• a tool to provide and store documentation for (new) rules and strate­
gies with the possibility of generating dictionaries, indexes, cross­
references, etc.

The system should also support the development of large programs, so
some form of version management should be available.

Editing Facilities

A powerful language-based editor is necessary for entering specifications,
transformation rules, etc. It should also allow easy modification of speci­
fications (e.g., restructuring, generalization, specialisation). Furthermore,
it should also recognize program schemes ('contexts').

3.2 User Interface

A system with a user interface which is both pleasant and easy to use
will attract more users. Hence effort put into the user interface is effort
well spent. On the other hand, a full scale development effort on the user
interface is not desired, since the focus of our research is on capabilities.
Existing software should therefore be used wherever possible. A list of
interface aspects is given below.

® A windows based system is clearly an advantage here, since subde­
velopments and data base references for rules or applications could
use their own window. For portability reasons some standard system
seems to be the best choice, e.g., X-Windows (O'REILLY et al., 1988).
Furthermore, it would be useful if a hypertext-like facility were avail­
able. This allows the uncomplicated unfolding of information on the
screen.
The user interface should be adjustable, to accommodate to personal
taste and for research into different views on the ease of use.

o A focusing facility is needed to switch from the global development
to subdevelopments and back.

114 E. A. BOITEN el al.

III It should be possible to perform some simple operations in a graphical
way by highlighting the components of common transformations. It
may be rather too futuristic at the moment, but a holographic user
interface could actually perform f~ld/unfold transformations on the
screen.

• The metaphor employed by access facilities should be such that every
kind of user can do at least anything he could do with pen & paper.
In connection with the latter point good help facilities are needed.

• In order to allow for more concise notations (e.g., in a 'squiggly' kind
of transformational development (BIRD, 1987)), a large and extensible
character set (e.g. M etafont) should be available.

3.3 System Aspects

The system should exhibit all the attributes of a well engineered software
product, as stated for example in (FAIRLEY, 1985, SOMMERVILLE, 1989).
This is especially important, because the system should run on different
machines, and it should be possible to instantiate it with different specifi­
cation languages. We list a number of main points:

" The system should be modular, and well integrated.
" It should be eittensible and modifiable.
" The system should be robust and reliable.
" It should be integratable with relevant other systems, such as editors,

compiler generators, file systems, etc.
• The system should be fast. If and when it cannot be, the user should

get something to read every now and then, to 'prove' that the system
is doing hard work.

• It should be portable (that seems to imply C under UNIX and X­
Windows). Also, it should be relatively easy to install the system.

• Nevertheless, the size of the system should be such that it can be

installed on every reasonably powerful machine (workstation)
and
run without causing innumerable page faults.

3.4 USTOPIA Within an Integrated Project Support Environment

The main idea of this Section is to investigate whether it is useful to con­
sider the possibility of having USTOPIA as a subsystem of an Integrated
Project Support Environment (IPSE). The aim of an IPSE is to provide an
environment for developing large software systems by integrating a set of

USTOPIA REQUIREMENTS 115

tools which support a certain development methodology (BROWN, 1988).
An IPSE supports both program development and the management aspects
of software development of several people at the same time. USTOPIA as
described in the previous sections does not support the management as­
pects of the software development and it will also be a single user system.
It could be possible to have USTOPIA as a subsystem within some IPSE.

The trend in software engineering is towards the development of
IPSE's. The base of an IPSE is a database in which all relevant information
about the software project is recorded, such as the relationship between a
specification and its implementation in some programming language. Fur­
thermore it contains facilities for the communication between the project
members. Only a few of these IPSE's incorporate a transformational tool,
to allow the formal derivation of software from a specification. However,
there are already some systems which allow the formal specifications of
software requirements.

The USTOPIA system in an IPSE could be used as a tool to support
the formal specification and derivation of software by transformations. The
transformation rules used should be stored in the underlying database of
the IPSE. New correct transformation rules, strategies and tactics can also
be stored in this database, so each user of the USTOPIA tool can make
use of the rules derived by fellow users. It may even be possible to store
parts of the derivation in order to reuse them later in another derivation.

4 Realisation Aspects

From the implementation point of view, the requirements presented in the
last section range from easily implement able to unsolvable tasks. Also, it is
obvious that some of the requirements are contradictory. In the following
section, we will list a number of implementation issues of existing resp.
futuristic systems, which promise to be interesting for further research.
Following the ordering of the previous section, we will first look at single
requirements, and then comment on aspects concerning the whole system.

4.1 Tools for the Design of Specifications

Every implementation of a transformation system will in the end support
some specification formalism, and will hence provide the basic constructs
of that formalism. Following the paradigm of reuse, the user should also
have access to already existing specifications. This leads to a process of
developing formal specifications which should help to lessen the gap be­
tween formal and informal requirements. At present only a few systems

116 E. A. BOITEN et al.

support the specification process at all (PLUSS: (BIDOIT et al., 1987),
SAFE: (BALZER et al., 1980)). However, this seems to reflect a lack in the
underlying methodology, rather than basic difficulties in the realisation of
appropriate tools.

The efficient incorporation of existing specifications makes particu­
lar demands on the specification formalism, such as possibilities for para­
metrization and modularization. For algebraic specifications, there has
been much research on this issue, and a number of textbooks which in­
clude sections on it have recently been published (EHRIG and MAHR, 1985,
BERGSTRA et al., 1989). Nevertheless, there still seems to be work left with
respect to the integration and, even, standardisation of the techniques.

The system should ensure wellformedness of the initial specification.
The required methods and tools are fairly well understood in the case of
classical syntactical correctness, Le., the building of parsers, syntax di­
rected editors, etc. There are still a number of interesting open problems
in connection with more recently developed formalisms. For polymorphic,
functional languages which allow higher order functions, there are for ex­
ample questions surrounding the implementation of efficient typing algo­
rithms, see for example (HENGLEIN, 1989). For algebraic specifications a
number of open issues concerning completeness and consistency remain.
An overview of recent results and problems in this area can be found in
(COMPASS, 1989, chapter 2.5.4).

4.2 Realization of Specification Analysis

It is well- known that most semantic properties of specifications such as
definedness, determinacy, strictness or complexity behaviour are in general
undecidable. Hence, only results within a specific area of specifications, or
of a stochastic or otherwise restricted nature can be expected. The first
path has for example been taken by the builders of the RAPTS-system
(PAIGE and CAl, 1987). In this system, it is possible to construct functions
which can automatically be shown to be of linear time and size complexity
(in the input and output space).

One of the first systems aimed at average case complexity analysis of
functional programs was (WEGBREIT, 1975). In (ZIMMERMANN, 1988), its
ideas are transported to the context of a simple typed functional language.
These kinds of systems can usually also be used to obtain upper bounds
for the worst case behaviour of programs. However, without user support,
these bounds tend to be fairly imprecise even with relatively simple pro­
grams. In (HICKEY and COHEN, 1988), some of the problems with the
complexity analysis of programs have been attacked from the theoretical

USTOPIA REQUIREMENTS 117

side by giving a probabilistic semantics for (functional) programs and using
probabilistic attribute grammars to model input distributions. Looking at
the equations generated by their hypothetical system, it seems that sup­
port by a symbolic processor would be an indispensable requisite of any
system using this approach.

Up to now, these approaches seem to have a fairly experimental na­
ture and serve, in a way, to show the problems arising during the analysis of
a program. In the context of the synthesis of programs, this seems to make
the case for tools which do the complexity analysis of programs alongside
the transformation process. The effect of many transformations with re­
spect to definedness and determinacy can be determined, see for example
the theory developed in the frame of the CIP-project (CIP, 1985, CIP,
1987). Hence, systems which help the user to keep track of at least these
properties seem to be within reach. However, at present we do not know
of any general purpose transformation system which supports this kind of
activity. Despite the fact that the effect of transformations on the com­
plexity is in general undecidable, future research should try to establish a
calculus measuring more quantitative effects of (certain) transformations.

In recent years, it has emerged that one of the major benefits of formal
specifications c~Il ~~.their use for prototyping and, hence, early validation
of specifications. Such a prototype is of course immediately obtained as a
byproduct of a specification in an executable specification language such
as a functional language. The problem with the use of such a deterministic
formalism for specification is of course the overspecijicaiion which is often
implied by determinacy. Hence, in recent years there has been research
about the integration resp. extension of such formalisms to relational cal­
culi, see for example the enrichment of the BMF-formalism discussed in
(BIRD et al., 1989) or the Ruby language (SHEERAN, 1990). Prototyping in
such a language is of course more difficult. It seems reasonable to expect
that many of the techniques employed in the interpretation of PROLOG
programs could be used in this context as well. Note that because of the
correspondence between relations and many-valued functions, this would
also show the way to the interpretation of choice-constructs like the some
expressions in CIP-L.

Quite a number of implementations for 'executing' algebraic specifica­
tions have been developed in the last few years. These include interpreters
as well as - more recently - compilers. Most of these systems have been
based on term rewriting and narrowing. As an attempt to make use of com­
mon su bterms, graph grammars (containing graph transformation rules)
have also been introduced. They can reduce the number of rewrite steps
and the amount of space needed during a rewrite process at the expense
of some administrative overhead. Despite all this, it seems that a lot more

118 E . . 4. SOfTEN et al.

effort will be needed to increase the efficiency of the prototypes based on
either of these techniques. For a list of references, see (COMPASS, 1989,
chapter 2.3.2).

One of the more general transformations which can be useful for the
evaluation of specifications is partial evaluation (BJ0RNER et al., 1988). A
related principle is the symbolic evaluation propagated in (CHEATHAM et
al., 1979). We will make more comments on the techniques related to these
kinds of transformations in the following section.

There are a number of tools which have been useful to make for­
mal specifications more understandable to 'non experts'. This includes
translators to English (SWARTOUT, 1982, EHLER, 1985) as well as tools to
give more general behaviour explanations (SWARTOUT, 1983).

4.3 Support for the Transformational Process

By definition, transformation systems should support the basic activities
occurring during a transformational development, such as the application
and introduction of transformation rules. Most existing systems perform
these and other clerical jobs more or less satisfactorily. Experience with
their use has revealed a number of inconveniences.

@ The amount of user interaction needed can be fairly high. This is
partly due to the length of transformational developments. Partly
this seems a user interface problem.

@ The interaction can sometimes be technically difficult. A typical prob­
lem is the proof of applicability conditions.

@ It is not easy to choose the 'right' transformation, in particular if this
is to be chosen out of some huge catalogue.

One method of trying to solve these problems lies of course in letting the
machine do more work. We list in the following some of the approaches
which have been made in this direction. We will group them according to
the framework they are based on.

1. Language and type.
One way of shortening the transformational development is by adding
an extra language level, i.e. by establishing a transformational lan­
guage. This has been done in a number of systems including the
Prospectra System described in section 2, and the DEVA system de­
veloped in the course ofthe ToolUSE project (DEVA, 1989). In these
projects, a uniform approach to program and meta-program develop­
ment is advocated. More remarks on the underlying methodology can
be found in (KRIEG-BRUCKNER, 1988). In (DARLINGTON, 1981), the

USTOPIA REQUIREMENTS 119

functional language HOPE is used for similar purposes. Despite all
this, it should be mentioned, that there has not been much practical
experience with this method yet.
Most systems provide a tool to signal rules which are applicable within
a certain part of the specification. This can be implemented with the
help of pattern matching based on the type system. Of course, this
only concerns those rules whose applicability can be derived from syn­
tax and type information only, i.e. without semantic checks. Hence,
in general it will only be possible to exclude certain transformation
rules which cannot be applied. It is not clear to which extent this is
done incrementally in existing systems.

2. Rewriting.
Provided the question of applicability can be solved, it is of course pos­
sible to perform certain transformations automatically. Especially if
this is done conditionally, it has strong relations with existing rewrit­
ing. The resulting processes can be used to simplify expression for
the user. (Semi) automatic transformation systems can be seen as
rewrite systems. This includes, as an extreme case, compilers which
automatically perform optimizations. Jittering, i.e. the slight modi­
fication of programs to fit certain transformation rules (FICKAS) is a
related application.

3. Theorem proving.
Most specification languages contain logical constructs. Hence the
transformation system should support calculations within a general
logical framework. This could be provided by the integration of a
conventional theorem prover such as the LCF or the Boyer-Moore
theorem proving system (PAULSEN, 1987, BOYER and MOORE, 1979).
More specific needs for deductive capabilities arise during the verifi­
cation of applicability conditions and transformation rules. Resolving
these questions involves semantic issues. A deductive system to sup­
port these activities will be dependent on the semantics and the logic
of the specification language, i.e. the possible transformations.
Further tasks for deductive systems arise from complexity analysis. As
argued above, within a transformational style of programming this is
probably best done incrementally. Hence, complexity can be seen as
an annotation of a specification (WUPPER and VYTOPIL, 1989). The
updating of this or other annotations of a specification will usually
demand deductive capabilities.

Within (semi)-automatic systems, all of the above deductive tasks
occur. Hence, for example 'RAINBOW 11', the 'inference engine' of the

120 E. A. BOITEN et al.

KIDS system provides tools for them as well as for optimizing the resulting
trees of developments.

The extreme length of transformational developments is partly due to
the fact that they often consist of many, small transformation steps. One
possible approach to overcome this is the use of more compact transforma­
tion rules. However, this has the disadvantage of increasing the knowledge
and choice expected from the user. This has motivated the introduction
of 'transformation strategies', such as 'try finite differencing'. The trans­
formation languages introduced above can be seen as a tool to explicitly
formulate such strategies. In (semi) automatic systems such as KIDS or
RAPTS, the user usually only has the choice between the built in strategies.

4.4 Support for the Evaluation of Developments

No serious work has been done on supporting the evaluation of complex
developments, other than traditional clerical support. This is due to the
fact that the work on the underlying methodology has only just begun.

4.5 System Aspects

It is a well-known fact that the requirements of a well engineered software
product cannot all be met to the same degree, because they are inherently
contradictory. So, we are faced here with the dilemma between formalism
independence (parametrisation), flexibility and convenience on the one side,
and efficiency, compactness, and portability on the other.

5 Conclusions and Further Work

We hope that this survey has been of help in identifying important problems
and design decisions in the area of program transformation systems. To us,
it has certainly become clearer what constitutes a program transformation
system.

Also, we have pointed out a number of principal problems, and other
problems that may instigate further, theoretical and applied, research.

In our opinion, the construction of yet another transformation system
will not be a very useful activity. Many basic systems exist, and we hope
to gain experience with more of them in the near future. It appears to be
more interesting to extend an existing system with some more advanced
features, like those mentioned in section 3.1.2.

USTOPIA REQUIREMENTS 121

Acknowledgements

We would like to thank H. Meijer and J. Sarb6 for their contribution to the discussions
on transformation systems, and L. Meertens for completing the USTOPIA-acronym.

References

BALZER, R. - GOLDMAN, N. - WILE, D. (1980): Informality in Program Specifications.
IEEE Transactions on Software Engineering, Vol. 4, No. 2, pp. 94-103.

BERGSTRA, J. A. - HEERING, J. - KLINT, P. editors (1989): Algebraic Specification.
Addison-Wesley, New York.

BIDOIT, M. - GAUDEL, M.-C. - MAUBOUSSIN, A. (1987): How to Make Algebraic Spec­
ifications More Understandable? An Experiment with the PLUSS Specification
Language. Rapport Interne N. 343, LRI, April 1987.

BIRD, R. S. (1987): An Introduction to the Theory of Lists. In M. Broy, editor, Logic of
Programming and CalC'llli of Discrete Design. NATO ASI Series, Vol. F 36, pp. 5-
42. Springer-Verlag, Berlin.

BIRD, R. S. - BACKHOUSE, R. C. - MALCOLM, G. - DE MOOR, O. - JEURING, J. T. -
JONES, G. - FOKKINGA, M M. - SHEERAN, M. - MEERTENS, L. G. L. T. (1989):
International Summer School on Constructive Algorithmics, Ameland, September
1989. Lecture notes.

BJ0RNER, D. - ERSHOV, A. P. - JONES, N. D. editors (1988): Partial Evaluation and
Mixed Computation. North-Holland Publishing Company, Amsterdam.

BOITEN, E. - PEMBERTON, S. - VOGT, H. (1988): Het Prospectra systeem in Bremen.
STOP Internal Note (in Dutch), March 1989.

BOYER R. S. - MOORE, J. S. (1979): A Computational Logic. ACM Monograph. Aca­
demic Press, New York.

BRFOWN, A. W. (1988): A View Mechanism for an Integrated Project Support Environ­
ment. Report 275, University of Newcastle upon Tyne.

CHEATHAM, T. E. Jr - HOLLOWAY, G. H. - TOWNLEY, J. A. (1979): A System for
Program Refinement. Proceedings of 4th International Conference on Software En­
gineering, Munich, West Germany, September 1979. IEEE, New York.

CIP (1985): BAUER, F. L. - BERGHAMMER, R. - BROY, M. - DOSCH, W. - GEISEL­
BRECHTINGER, F. - GNATZ, R. - HANGEL, E. - HESSE, W. - KRIEG-BRUCKNER,
B. - LAuT, A. - MATZNEll., T. - MaLLER, B. - NICKL, F. - PARTSCH, H. - PEP­
PER, P. - SAMELSON, K. - WIRSING, M. - WassNER, H.: The Munich Project
CIP. Volume I: The Wide Spectrum Language CIP-L, Lecture Notes in Computer
Science 183. Springer-Verlag, Berlin/Heidelberg/New York.

CIP (1987): BAUER, F. L. - EHLER, H. - HORSCH, A. - MaLLER, B. - PARTSCH,
H. - PAUKNER, O. - PEPPER, P.: The Munich Project CIP. Volume II : The
Transformation System CIP-S, Lecture Notes in Computer Science 292. Springer­
Verlag, Berlin/Heidelberg/New York.

COMPASS (1989): ESPRIT Basic Research Working Group No. 3264 COMPASS. A
COMprehensive Algebraic Approach to System Specification and Development. Ob­
jectives, State of the Art, References. Bericht 6/89, Universitiit Bremen.

DARLINGTON, J. (1981): The Structured Description of Algorithm Derivations. In
J. de Bakker and H. van Vliet, editors, Algorithmic Languages, pp. 221-250. North­
Holland Publishing Company, Amsterdam.

122 E. A. BOITEN et al.

DEVA (1989): SINTZOFF, M. - WEBER, M. - DE GROOTE, PH. - CAZIN, J: Definition
1.1 of the Generic Development Language Deva. Report, Universite Catholique de
Louvain, Faculte des Sciences Appliquees, Unite d'Informatique.

VAN DIEPEN, N. W. P. - PARTSCH, H. A. (1990): Formalising Informal Requirements,
Some Aspects. In J. A. Bergstra, and L: M. G. Feijs, editors, Algebraic Methods
II: Theory, Tools and Applications, Lecture Notes in Computer Science. Springer­
Verlag, Berlin.

DIJKSTRA, E. W. (1976): A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
N.J.

EHLER, H. (1985): Making Formal Specifications Readable. Technical Report TUM-I8527,
Institut fUr Informatik der T. U.
Munchen.

EHRIG, H. - MAHR, B. (1985): Foundations of Algebraic Specifications 1: Equations and
Initial Semantics, Volume 6, EATCS Monographs on Theoretical Computer Science.
Springer-Verlag. Berlin/Heidelberg/New York.

FAIRLEY, R. E. (1985): Software Engineering Concepts. McGraw-Hill, New York.
FEATHER. M. S. (1987): A Survey and Classification of some Program Transformation

Approaches and Techniques. In L.G.L.T Meertens, editor, Program Specification
and Transformation. Proceedings of the IFIP TC2/ WG2.1 Working Conference on
Program Specification and Transformation, pp. 165-196. North-Holland Publishing
Company, Amsterdam.

FICKAS, S. F. (1982): Automating the Transformational Development of Software. PhD
Thesis, Univ. of California, Irvine.

HENGLEIN, F. (1989): Polymorphic Type Inference and Semi-Unification. PhD Thesis,
Rutgers University, 1989. Technical Report 443.

HICKEY. T. - COHEN, J. (1988): Automating Program Analysis. Journal of the ACM,
Vol. 35, No. 1, pp. 185-220, January 1988.

JEURING, J. - MEERTENS, L. - PEMBERTON, S. (1988): A Transformation System. STOP
Internal Note.

JONES, C. B. (1980): The Role of Formal Specifications in Software Development. In P.J.
WaJlis, editor, Life-cycle Management, Infotech State of the Art Report. Pergamon
Infotech Ltd., Maidenhead.

KRIEG-BRUCKNER, B. (1988): Algebraic Formalisation of Program Development by Trans­
formation. Proc. European Symposium On Programming '88, Lecture Notes in Com­
puter Science Vol. 300, pp. 34--48.

KNUTH, D. E. (1984): Literate Programming. The Computer Journal, Vol. 27, No. 2,
pp. 97-111.

LUCKHAM, D. C. - VON HENKE, F. W. - KRIEG-BRUCKNER, B. - OWE, O. (1987):
Anna, a Language for Annotating Ada Programs, Reference Manual, Lecture Notes
in Computer Science Vol. 260. Springer, Berlin.

MEERTENS, L. G. L. T. (1986): Algorithmics - Towards Programming as a Mathe­
matical Activity. In J. W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors,
Proc. CWI Symposium on Mathematics and Computer Science, CWI Monographs
1, pp. 289-334.

O'REILLY, T. - QUERCIA, V. - LAMB, 1. (1878): The Definite Guide to the X-Windows
System. O'Reilly & Associates, Inc.

PAIGE, R. - CAI, J. (1987): Building Performance at Language Design-Time. Proc. AGM
Principles Of Programming Languages.

PARTSCH, H. A. (1988): Generalize and Reuse. An Exercise in Reusing Transformational
Developments. In M. Broy and M. vVirsing, editors, Methodik des Programmien;ns.

USTOPIA REqUIREMENTS 123

Eine Festschrift zu Ehren von F. L. Bauer, MIP-8915. Fakultat rur Mathematik
und Informatik, Universitat Passau.

PARTSCH, H. A. - STEINBRUGGEN, R. (1983): Program Transformation Systems. ACM
Computing Surveys, Vol. 15, No. 3, pp. 199-236.

PAULSEN, L. C. (1987): Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press.

PEPPER, P. (1984): A Simple Calculus for Program Transformation (Inclusive of Induc­
tion). Technical Report TUM-I8409, Institut fUr Informatik der T.U.Miinchen.

PROSPECTRA (1987): KRIEG-BRUCKNER, B. - HOFFMANN, B. - GANZINGER, H. -
BROY, M. - WILHELM, U. - MONCKE, U. - WEISGERBER, B. - MCGETTRIcK,
A. - CAMPBELL, 1. G. - WINTERSTEIN, G: PROgram development by SPECifi­
cation and TRAnsformation. Proc. ESPRIT Conf. '86. North-Holland Publishing
Company, Amsterdam.

REPS, T. - TEITELBAUM, T. (1989): The Synthesizer Generator: a System for Construct­
ing Language-based Editors. Springer Verlag, Berlin.

RIETHMAYER, H. O. - ERHARD, F. - EHLER, H. (1985): User Manual for the CIP­
System-Prototype. Technical Report TUM-I8511, Institut fur Informatik der T. U.
Munchen.

SHEERAN, M. (1990): Ruby - a Language of Relations and Higher Order Functions.
Proc. 3rd Banff Workshop on Higher Order, Lecture Notes in Computer Science.
Springer, 1990. Also in (BIRD et al., 1989).

SMITH, D. R. (1988): KIDS - a knowledge-Based Software Development System. Proc.
Workshop on Automating Software Design, pp. 129-136. Morgan-Kaufmann.

SOMMERVILLE, 1. (1989): Software Engineering. Addison-Wesley, Reading, Mass., 3rd
edition.

SWARTOUT, W. (1982): GIST English Generator. In Proc. of Amer. Assoc. for Art. Int.
Vol. 82, pp. 404-409, August 1982.

SWARTOUT, W. (1983): The GIST Behavior Explainer. In Proc. of the 1983 National
Conference on Artificial Intelligence, pp. 402-407, Washington, D.C., .4..AAI.

WEGBREIT, B. (1975): Mechanical Program Analysis. Journal of the A CM, Vol.18, No. 9,
pp. 528-539.

WUPPER, H. - VYTOPIL, J. (1989): A Specification Language for Reliable Real-time
Systems. In J. Zalewski and W. Ehrenberger, editors, Hardware and Software for
Real Time Process Control. Elsevier Science Publishers B.V.

ZIMMERMANN, W. (1988): How to Mechanize Complexit;y Analysis. Technical report,
GMD Forschungsstelle Karlsruhe.

Address:

Eerke A. BOITEN et al.
Department of Informatics
Faculty of Mathematics & Informatics
University of Nijmegen
Toernooiveld 1
NL-6525 ED Nijmegen
The Netherlands

