
PERlODICA POLYTECHNICA SER. EL. ENG. VOL. 35, NO . .2, PP. 1.25-146 (1991)

AN ENVIRONMENT FOR ENGINEERING
EXTENDED AFFIX GRAMMAR ENVIRONMENTS1

M. G. J. VAN DEN BRAND

Department of Informati.cs
Faculty of Mathematics and Informatics
University of Nijmegen, The Netherlands

Received: Sept. 5, 1990.

Abstract

Existing formalisms for the specification of programming environments are complex and
strongly biased by the problems of environment generation. It has been investigated
whether a simple two-level grammar, describing a programming language, can be used
without further modification for the generation of an environment for that language.

We believe that there is enough information in most language definitions - albeit
implicitly - to generate most of the tools used in syntax-directed editors.

This paper proposes some simple and elegant improvements in the use of place­
holders and templates, and in the unparsing mechanism. Although the improvements
are implemented in a completely newly designed prototype they can also be applied to
existing syntax-directed editors to improve their workability.

Keywords: programming environments, extended affix grammars.

1 Introduction

Currently, many experienced as well as inexperienced programmers are
working with programming environments, since such environments signif­
icantly simplify the process of writing programs. The environments are
either hand-made or generated from some specification formalism. Such
a formalism is usually based on attribute grammars. Nevertheless con­
structing an environment is still a major effort because each part of the
environment must be explicitly specified.

A programming environment generator is a useful tool for a language
designer as well, to check whether the language under development is easy
to use. If, however, the generation of an environment requires a lot of extra
effort the language designer may refrain from prototyping.

We are, therefore, investigating the possibility of using a given EAG
(Extended Affix Grammar, \\TATT, 1974), describing both the syntax and

IThis project is financed by NWO, the Dutch Organisation for Scientific Research; project
number: 612-317-020

126 M. G. J. VAN DEN BRAND

static semantics of a language, as a specification of a programming envi­
ronment for that language. It is our ambition to safeguard the EAG writer
from the need to adapt his language definition. This research is particularly
characterized by the fact that the EAG specification need not be changed
to derive the different parts of the programming environment.

We have generated a syntax-directed editor for the EAG formalism,
given in appendix A, to test the prototype of the generator and to explore
the functionality of the generated editors.

2 Syntax-directed Editor Generators

We have to consider three aspects of a system for generating programming
environments.

(I) The generator itself, which is not very interesting.

It is merely a transducer from the formalism to the environment. A
transducer is sufficient if the specification contains explicit definitions
for all parts of the environment, which is usually the case. In sev­
eral existing systems, such as the Synthesizer Generator (REPs, 1984;
REPS and TEITELBAUM, 1989a), YACC (JOHNSON, 1975) is used for
the generator.

(I) The input, namely the formalism to specify the language for which
the environment is generated.

Various specification formalisms have been proposed. They must be
expressive, since they have to be read and written by human be­
ings, and they must allow for an automatic implementation. Most
of the specification formalisms for generating programming environ­
ments are based on attribute grammars (KNUTH, 1968), usually en­
riched with unparsing rules, tools for the definition of templates and
a mechanism for the specification of the abstract syntax of the lan­
guage. As a result, most of the resulting specifications consist of
several parts. HEERING (1983) describes three major parts: the syn­
tax rules, the semantic rules, and the unparsing rules. KLINT (1983)
further distinguishes lexical, concrete, and abstract syntax rules and
static and dynamic semantic rules. In attribute grammars, syntax and
static semantics are defined by different means. The static semantics
are usually operationalized using a programming language such as C
or Pascal.

A second way of specifying an environment is by means of an alge­
braic specification (BERGSTRA et aI, 1989). The specification formal-

AN ENVIRONMENT FOR ENGINEERING EAG 127

ism ASF jSDF of GIPE (HEERING et al, 1986) is based on algebraic
specifications. The syntax and the static and dynamic semantics are
defined in the same formalism.

et The output, namely the generated environment.

A complete programming environment should consist of several parts:
certainly not only a syntax-directed editor and an unparser but also
an interpreter and a compiler, and possibly even a debugger.

There are two fundamentally different classes of syntax-directed edi­
tors: template editors and text editors - hybrid editors combine fea­
tures of both editor classes.

Template editors. The editor generated by the ALOE generator of
the GANDALF system (MEDINA-MoRA and FElLER, 1981; MEDINA­
MORA, 1982) is a template editor. The greatest drawback of such
an editor is the tedious way of editing small-scale constructs such as
expressions. It is also often not easy to replace a construct by another
construct, for example a while-loop by an until-loop. On the other
hand it is impossible to create syntactically incorrect programs with
this kind of editor.

Text editors. The editor used in the environment of the SAGA
system (CAMPBELL and KIRSLIS, 1984) is a text editor. The disad­
vantage of such an editor is that the syntax-directedness is limited to
the way in which the structure of the abstract syntax tree is shown
to the user.

Hybrid editors. The editors in the environments generated by the
Synthesizer Generator and the PSG system (BAHLKE and SNELTING,
1986) are hybrid editors. A hybrid editor offers the possibility of
using both template editing and text editing. The disadvantages of
the other two types of editors are eliminated, whereas their advantages
are combined.

3 Simple Specification Formalism

Most designers of environment generators are developing more and more
complicated specification formalisms to specify the various parts of the
environments. We believe that most of the relevant information for the
generation of these parts can be derived implicitly. Our main objective is
to keep the formalism as simple as possible.

The basis of our formalism is Extended Affix Grammar, which initially
was developed for the specification of compilers (MEIJER, 1986). An EAG

128 M. G. J. VAN DEN BRAND

can be characterized as a context-free grammar decorated with attributes;
EAG and attribute grammars are to a certain extent very similar (MEIJER,
1990).

In this paper we concentrate on the syntactical part of the generated
editors, therefore only the context-free part of the EAG will be considered
in the rest of this paper.

The specification formalism may be 'polluted' in three ways:

(j) adaptions;

(j) extensions;

(j) restrictions.

These three can be avoided if the specification formalism is elegant
and the generators are powerful enough. We will not give an exhaustive
list of unnecessary restrictions, extensions and adaptions but give a striking
example of each.

3.1 Adaptions

The specification writer has to rewrite the grammar in some way before
he can transform it into a specification. Possible rewritings are for exam­
ple: left recursion elimination and the separation of lexical and syntactical
properties of the grammar. This last rewriting will be further clarified.

Most systems known to us are based on YACC (JoHNSON, 1975) and
LEX (LESK, 1975), each of these tools has its own specification formalism.
In formalisms of systems based on these tools the YACC and LEX parts
are clearly recognizable. The frequent use of these tools by most people
made the YACCjLEX way of specifying grammars more or less a standard,
although it is not the most natural way of writing context-free grammars.
The Van Wijngaarden style (VAN WIJNGAARDEN et aI, 1976), which is the
basis of our formalism, frees the specification writer from the burden of
transforming his intuitive ideas into a (YACC) program.

3.2 Extensions

The specification writer has· to add text not directly related to the grammar
in order to specify some part or tool in the editor. Examples are the
specification of templates, names of the placeholders and unparsing rules.

Most syntax-directed editors allow the use of templates. In the spec­
ification formalism these templates are defined explicitly in some way. In

AN ENVIRONMENT FOR ENGINEERING EAG 129

the formalism SSL (REPS and TEITELBAUM, 1989b), for example, the tem­
plates for a nonterminal [expJ are defined as:

transform exp on "+"
on 11_"

on "*"
on 11/11

[expJ:
[exp] :
[expJ:
[exp] :

Sum([expJ, [exp]),
Diff([exp], [exp]),
Prod([exp], [exp]),
Quot([exp], [exp])

Where the unparsing rules for the nodes Sum, Diff, Prod, Quot are defined
as:

exp: Sum [I!) . "= 11 (11 I!) 11+11 I!) ") 11]
I Ditf [I!) : := 11(11 I!) 11_11 I!) ") IIJ
I Prod [I!) : := 11(11 I!) "*" I!) ") IIJ
I Quot [!!l : := 11(11 !!l "/" !!l ") IIJ

This kind of information is also implicitly available in the context-free gram­
mar and need not be explicitly defined. This will reduce both the amount
of work and the possibility of making mistakes.

3.3 Restrictions

The specification writer is not allowed to transform an arbitrary gram­
mar into a specification because the incorporated parser in the generated
syntax-directed editor may not be powerful enough.

Most generators are based on YACC, thus the underlying grammar
of the specification has to be LALR(l). Although most programming lan­
guages fulfil this condition, it may be interesting to experiment with syntax­
directed editing of ambiguous grammars.

We have solved this problem by using an elegant specimen of a back­
track parser (AHO and ULLMAN, 1972; KOSTER, 1975). The consequence
is an increase in complexity, but because real syntax-directed editors are
highly incremental this reduction of parsing speed is not observable in the
performance of the system.

4 Generated Editors and Ambiguous Grammars

Imposing no restrictions on the grammar may lead to ambiguity. By using
a backtrack parser we are able to edit the largest class of languages in
a syntax-directed way. Before we describe the mechanism in more detail
some remarks on the parser are necessary.

130 M. G. J. VAN DEN BRAND

4.1 Backtrack Parser

For a description of backtrack parsing in general we refer to (AHo and
ULLMAN, 1972) and for a description of.our version to (KOSTER, 1975).

The backtrack parser described in (AHO and ULLMAN, 1972) stops
after finding a successful parse, to find the other parses the parser must be
forced in backtrack mode.

The syntax tree is also built by backtracking, i. e. in the recognition
phase the tree is built and in the backtrack phase it is dismantled. The
syntax tree is complete whenever a successful parse is found.

4.2 Our Solution

The edit actions have to be performed on the syntax tree, which is built by
the parser. As the tree will be dismantled in the backtrack phase it has to
be copied each time a successful parse is found. In case of an ambiguous
input sentence the parser may build several different syntax trees. The
editor can only use one tree and selecting one of the yielded trees would
contradict our philosophy of generality.

This is solved by combining all syntax trees in one parse tree, which
has a 3-dimensional structure. For this purpose, a special kind of node
ambiguous is introduced. Its sons are subtrees which have the same root and
represent the same substring in the input sentence. The internal structure
of each of these subtrees is different.

In each two syntax trees yielded by the parser for the same input
sentence the following condition holds; either two different alternatives were
chosen for the start nonterminal or, in both trees, the same alternative
was chosen and the condition holds re cursively for each nonterminal in
the right hand sides of the corresponding alternatives. In Fig. 1 the two
nodes for which different alternatives were chosen have the labels SI and
S2, respectively.

T T

Fig. 1. Two arbitrary parse trees for an ambiguous sentence

AN ENVIRONMENT FOR ENGINEERING EAG 131

T

Fig. 2. 3-dimensional parse tree for an ambiguous sentence

The frontier of 81 equals the frontier of 82, however, they represent different
alternatives of the same nonterminal in the grammar. In Fig. 1 the two
parse trees are combined in one 3-dimensional parse tree.

4.3 Unparsing of 3-dimensional Parse Trees

The unparser, to be discussed in Section 6, is in fact a tree-traversal routine.
The pretty print of a program is obtained by inserting blanks and newlines
between the terminals. The unparser knows how each type of node must
be pretty printed.

For an ambiguous input sentence it is possible that the parses of this
sentence have different pretty prints. If no unique pretty print can be
found, not pretty printing the text at all seems to be the best alternative.
In fact it is also a way of stressing which part of the program is ambiguous.
So, the unparse routine does not insert layout in the subtrees of a node of
type ambiguous.

4.4 Ambiguity and Incremental Techniques Contradict

In order to guarantee that the user of the environment generated for an
ambiguous grammar gets all possible information, the entire program must
be reparsed after each alteration. All facilities and techniques introduced
to maximalize the amount of incremental work seem to be superfluous.

Although ambiguity in general renders incremental techniques useless,
the techniques introduced above are still very useful in Section 5 where the
extension of the language with untyped placeholders leads to very 'local'
ambiguity.

132 M. G. J. VAN: DEN BRAND

5 Another Look at Placeholders and Templates

The tradional hybrid editor uses placeholders and templates. The deriva­
tion of templates from the specification formalism will be discussed in Sec­
tion 5.2. In Section 5.1 we will improve the flexibility of the hybrid editor
by introducing a new kind of placeholder.

5.1 Placeholders

In Section 2 we discussed the restrictions of several types of syntax-directed
editors. The hybrid editor proved to be the most flexible. We believe,
however, that this type of editor can be made even more flexible.

Editors generated by the Synthesizer Generator offer the possibility of
editing the text of a complete syntactical construct using text edit mode.
This selected construct may contain several placeholders. The parser is
always called immediately after leaving the text mode. The changed pro­
gram text is rejected if it contains placeholders, because the parser cannot
recognize placeholders. So, the text containing placeholders created by the
editor cannot be recognized by the same editor.

The inflexibility is caused by a too sharp distinction between text
and template mode. It is not permitted to manipulate placeholders in text
mode, other than replacing them by plain program text.

The traditional placeholder consisting of a special open bracket and
close bracket enclosing the name of the replaced syntactic construct will be
called a typed placeholder in the rest of this paper. We also introduce the
untyped placeholderj a. new kind of terminal symbol not associated with
some specific syntactic structure.

The introduction of these two types of placeholders enable the user to
edit syntactic structures containing several placeholders without replacing
them all, as well as to replace placeholders by templates or by pla.in text.
Furthermore, it will be possible to insert placeholders in the text mode of
the hybrid editor.

5.1.1 Typed Placeholders

The parsers in the hybrid editors of other systems are not able to recognize
typed placeholders. However, by a simple extension of the specification
recognition becomes possible.

As an example we modify an SSL specification. In appendix A of
(REPS and TEITELBAUM, 1989b) a specification of a simple desk-calculator

AN ENVIRONMENT FOR ENGINEERING EAG 133

is given. We will give the new production rule for Exp in the Parse syntax
part.

Exp
I
I
I
I
I
I

•. = (' [exp] ')
(INTEGER.)
(Exp '+' Exp)
(Exp ,-, Exp)
(Exp '*' Exp)
(Exp 'I' Exp)
C'(, Exp ')')

{$$.abs = Null()j}
{$$.abs = Const(STR.toINT(INTEGER.»j}
{$$.abs = Sum(Exp$2.abs.Exp$3.abs)j}
{$$.abs = Diff(Exp$2.abs.Exp$3.abs)j}
{$$.abs = Prod(Exp$2.abs.Exp$3.abs)i}
{$$.abs = Quot(Exp$2.abs,Exp$3.abs) i}
{$$.abs = Quot(Exp$2.absj}

The parser in the new generated editor is now able to recognize typed
placeholders in text mode. However, the specification writer has to do the
adaption, which contradicts our philosophy.

Instead of letting the specification writer transform his specification
our system implicitly transforms the specification. Each production rule in
the context-free grammar is extended with an extra alternative to recognize
the typed placeholder.

A:
(A: [A] j

. => lA:
The member in the right hand side of the new alternative is not just a
terminal symbol. The placeholder replaces a complete language construct,
which should also be marked in the syntax tree.

5.1.2 Untyped Placeholders

The introduction of typed placeholders increases the flexibility of the editor,
but to use these typed placeholder optimaliy, the user of the editor must
know the exact names of all placeholders. This is impossible for a language
such as Algol 68 (VAN WIJNGAARDEN et al, 1976).

Therefore, we allow the user to specify the place where he wants a
placeholder by a special kind of placeholder symbol which represents almost
all syntactical constructs in the language.

To recognize untyped placeholders the parser is extended in a way
similar to that for typed placeholders. Each production rule gets an extra
alternative to recognize the untyped placeholder symbol '0'.

{

A:

A: => A:

A:

D' ,
[A];

134 M. G. J. VAN DEN BRAND

This extension of the grammar causes ambiguity. Parsers in hybrid editors
of other systems do not offer this facility, they do not allow the grammar
to be ambiguous.

5.1.3 3-dimensional Syntax Trees

The main problem is the assignment of names to the untyped placeholders
during recognition. An untyped placeholder can be replaced by several
typed ones, each of the substitutions results in a successful parse and a
corresponding syntax tree. These syntax trees can be combined using the
technique discussed in Subsection 4.2.

Suppose we have generated a syntax-directed editor for the language
specified in appendix A. Almost all production rules are extended with the
extra alternatives. The user of the editor has inserted the text:

[startnonterminal] 0 0 : .

The parser has found 8 different parses for the string. We give only the
subtrees for the substring '00:.'. All these subtrees start with the non­
terminal productionrules. The parser yields among others the parse trees
shown in Figs 3 and 4.

Fig. 3. Parse tree of the first parse

AN ENVIRONMENT FOR ENGINEERING EAG 135

Fig. 4. Parse tree of the last parse

Eventually these eight parse trees are combined in one 3-dimensional
parse tree shown in Fig. 5.

5.1.4 Selection Methods

For a text with untyped placeholders in it several different parse trees may
be found. An untyped placeholder in this string is probably replaced in
each parse tree by a different typed placeholder. The user of the editor can
only work with the untyped placeholder if the unparsing (the textual rep­
resentation) of the untyped placeholder is linked to all typed replacements.

The unparsing of an untyped placeholder which replaces only one
typed placeholder is the unparsing of this typed placeholder. If it replaces
several different typed ones the unparsing will be the symbol '0'.

The system offers the user a focus mechanism for selecting syntactical
parts of the program. Focussing on some part of the program corresponds
to selecting the corresponding subtree in the parse tree.

Fig. 5. Part of the 3-dimensional syntax tree

t-'
<;.)
0>

~
!'l
~

~
~

£ I t:I
~

~
~

AN ENVIRONMENT FOR ENGINEERING EAG 137

In order to make this focussing mechanism workable, each terminal
symbol on the screen is connected to the corresponding node in the parse
tree. The untyped placeholder symbols on the screen are connected to
several nodes representing the typed placeholders in the subtrees in the
parse tree.

Each untyped placeholder symbol on the screen is connected to a list
which contains the links to the representations in the subtrees. A tree­
traversal process stores the links in the lists.

If the user focuses on an untyped placeholder all possible typed place­
holders are shown and the user can ask for all possible templates. A se­
lection causes the replacement of an untyped placeholder by a typed one
or a template. In both cases the subtrees, which are now superfluous, are
removed from the parse tree.

5.2 Templates

In our system templates are not explicitly defined but derived from the
context-free grammar of the specified language. The production rules are
transformed into template specifications using the following rules:

1. the nonterminals on the right hand side are transformed into typed
placeholders;

2. the terminals are not transformed;

3. commas and points are removed.

The right hand sides of all the alternatives of a production rule are
templates for the nonterminal in the left hand side of the production rule.
So, the nonterminal has a set of templates, denoted by T(A). The set of
templates for the production rule:

hyper productionrule:
hyper nonterminal,

11.11 . ,
hyperalternatives,

11 11

IS:

T(hyperproductionrule)

= { [hypernonterminal] 1t.1I [hyperalternatives] 11 11 }

138 M. G. J. VAN DEN BRAND

The occurrence of the nonterminal layout is considered as a special kind
of nonterminal for which no typed placeholder is included in the derived
template. The specification writer must define the layout and the places
where the parser should skip layout by.inserting this nonterminal on the
right hand side of the alternatives.

To reduce the length of a specification a short hand notation is in­
vented for production rules such as:

letters:
letters,

letter;
letters:

letter.

letter:
!la" ;

letter:

letter:

letter:

These so-called 'semi-terminals' are defined as:

letters:

{abcdefghijklmnopqrstuvwxyz}+.

These semi-terminals are used for example in the definition of nonterminals
such as identifier and charsequence. The right hand sides of production
rules in which semi-terminals occur are not transformed into templates.
The typed placeholders for the corresponding left hand sides can only be
replaced by plain text.

It is possible to restrict the templates of a nonterminal to the tem­
plates obtained by the transformation of the right hand sides of the corre­
sponding production rule. We think, however, that this is not optimal. In
some cases a long derivation may be necessary to arrive at the construc­
tion the user has in mind. Consider the templates for the production rules
hypermembers, hypermember and hypernonterminal.

T(hypermembers) = { [hypermember];
[hypermembers] 11 11 , [hypermember] }

T(hypermember) =

AN ENVIRONMENT FOR ENGINEERING EAG

{ [hypernonterminal];
[terminals] ;
[hyperset] }

139

T (hypernonterminal) = { [nonterminal] [optionaldisplay] }

It will take the user three steps to transform the placeholder [hypermembers]
into [nonterminal] [optionaldisplay].

This may be considerably reduced by deriving the templates of a
production rule in a more efficient way. If the production rule has an
alternative consisting of only one member, not being a semi-terminal, the
set of templates of this nonterminal is also included in the set of templates of
the production rule. This is done recursively, except for chain productions.

The sets of templates for the nonterminals hypermembers, hypermember
and hypernonterminal using the strategy described above are thus:

T(hypermembers) ~ { [nonterminal] [optionaldisplay];
"[charsequence]";

T(hypermember) =

[set] [options] [display];
[hypermember] ;
[hypermembers] "," [hyp ermemb er] }

{ [nonterminal] [optionaldisplay];
"[charsequence]";
[set] [options] [display] }

T (hypernonterminal) = { [nonterminal] [optionaldisplay] }

6 Elegant Pretty Printing

Syntax-directed editor generator designers seem to find unparsing of limited
interest, for the problem is usually solved by either:

\i requiring unparsing rules in the specification, for example SSL, or
@) doing no unparsing at all, for example in GIPE (HEERING and KLINT,

1986): the text is pretty printed in the same way as the user has
inserted it.

We do not extend our specification formalism with extra unparsing
primitives but want the generator to extract all unparsing information from
the context-free grammar.

Our unparsing mechanism is based on the algorithm by (OPPEN,
1986). This algorithm works on a fiat representation of the syntax tree
extended with special symbols to direct the unparser. In articles of later
date this possibility is further investigated and documented (ROSE and

140 M. G. J. VAN DEN BRAND

WELSH, 1981; MATETI, 1983; RUBIN, 1983; LEAVENS, 1984; BAILES and
SALVADORI, 1984; WOODMAN, 1986; JOKINEN, 1989).

The readability of a program text increased is according to Oppen, by
spreading large syntactic program structures over several lines in a struc­
tured and consistent way. Small syntactic structures which fit on one line
must not be split. Layout may oniy be inserted between the members on
the right hand side of a production rule.

Oppen's algorithm has three passes. The first pass is a tree traversal
mechanism to send the lexical and special symbols to a scanner. The
second pass calculates the length of each syntactic structure. The last pass
calculates the pretty print of the text.

The layout of some alternatives in the grammar has a strong 'hori­
zontal' character whereas others have a 'vertical' character. If, however, a
complete vertical structure fits in the remaining space on a line it will be
printed horizontally. Members of alternatives which start and/or end with
a terminal symbol are mostly printed on new lines at the same indentation
as the first member of the alternative, so they have a 'horizontal' character.
Members of alternatives which are left or right recursive are mostly printed
after each other, so they have a 'vertical' character.

Our unparsing mechanism only traverses the syntax tree. First the
length of each syntactic structure is calculated and stored in the corre­
sponding node together with type information a:bout the structure of the
node. In the second tree traversal the pretty print is calculated using the
type and length information.

An advantage of storing the length of each node is that after an al­
teration of the text only in a small part of the tree the length needs to be
recalculated.

AN ENVIRONMENT FOR ENGINEERING EAG 141

7 Conclusions and Further Research

The introduction of both types of placeholders increases flexibility. The
resulting ambiguity turns out to be very local and can be tackled by the
techniques presented in Subsection 4.2. We had thought to generalize this
ambiguity and thus also generate editors for ambiguous grammars. Un­
fortunately, however, this conflicted with the incremental basis of syntax­
directed editing.

The basis of our specification is EAG, in which it is possible to specify
the semantics of the language. The nonterminals have sets of attributes
to specify the (flow of) semantic information. Also a set of predicates is
available for calculations. The evaluation mechanism used in our generated
editors is described in (VAN DEN BRAND, 1990).

For the implicit extension of each production rule with two alterna­
tives for recognizing placeholders the values of the attributes of the non­
terminal in the left hand side of these new alternatives must be derived.
These values are necessary to do as much attribute evaluation as' possible.
This is one of the problems we are currently investigating.

A prototype of our system is implemented. This implementation has
to be improved and extended at several points. The user-interface is one
of them; it must be made more flexible. If the user-interface is completed
we will be able to compare our system with other systems.

Acknowledgements

We would like to thank Eerke Boiten, Kees Koster, Bert Windau, Erik Meijer, and espe­
cially Hans Meijer who made useful comments on the contents ofthis paper. Furthermore,
we would like to thank Hugh Osborne for correcting our English.

References

AHO, A. V. - ULLMAN, J. D. (1972): The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing. Prentice-Hall, Englewood Cliffs, New Jersey.

BERGSTRA, J. A. - HEERING, J. KLINT, P. (1989): Algebraic Specification. ACM Press
in co-operation with Addison-YVesley.

VAN DEN BRAND, M. G. J. (1990): Incremental Affix Evaluation in Syntax Directed Ed­
itors. CSN'90. Proc. Annual Conference on Computer Science in the Netherlands.
Utrecht, The Netherlands, 1-2 November 1990, pp. 35-51.

BAILES, P. A. - SALVADORI, A. (1984): A Semantically-based Formatting Discipline for
Pascal. Software-Practice and Experience, Vol. 14, No. 3, pp. 235-251.

BAlILKE, R. - SNELTING, G. (1986): The PSG System: From Formal Language Defini­
tions to Interactive Programming Environments. A CM Transactions on Program­
ming Languages and Systems, Vol. 8, No. 4, pp. 547-576.

142 M. G. J. VAN DEN BRAND

CAMPBELL, R. H. - KlRSLlS, P. A. (1984): The SAGA Project. SIGPLAN Notices,
Vol. 19, No. 5, pp. 73-80.

HEERING, J. (1983): Taaldefinities Als Kern Voor Een Programmeeromgeving. In J.
Heering and P. Klint, editors, Colloquium Programmeeromgemngen, Volume MC
Syllabus 30, pp. 69-81, CWI, Amsterdam.

HEERlNG, J. - KLlNT, P. (1986): A Syntax Definition Formalism. Technical Report CS­
R8633, CWI, Amsterdam.

HEERING, J. - SIDI, J. - VERHOOG, A. (1986): Generation of Interactive Programming
Environments - GIPE. Technical Report CS-R8620, CWI, Amsterdam.

JOHNSON, S. C. (1975): YACC - Yet Another Compiler-Compiler. Technical Report Com­
puter Science No. 32, Bell Laboratories, Murray Hill, New Jersey.

JOKlNEN, M. O. (1989): A Language-independent Prettyprinter. Software-Practice and
Experience, Vol. 19, No. 9, pp. 839-856.

KLINT, P. (1983): A Survey of three Language-independent Programming Environments.
Technical Report CS-R83240, CWI, Amsterdam.

KNUTH, D. E. (1968): Semantics of Context-Free Languages. Mathematical Systems The­
ory, Vol. 2, pp. 127-145, February 1968.

KNUTH, D. E. (1971): Semantics of Context-Free Languages: Correction. Mathematical
Systems Theory, Vol. 5, pp. 95-96, May 1971.

KOSTER, C. H. A. (1975): A Technique for Parsing Ambiguous Grammars. In D. Siefkes,
editor, GI - 4. Jahrestagung, of Lecture Notes in Computer Science, Vol. 26.
pp. 233-246. Springer Verlag, Berlin/Heidelberg/New York.

LEAVENS, G. T. (1984): Prettyprinting Styles for Various Languages. SIGPLAN Notices,
Vol. 19, No. 2, pp. 75-79.

LEsK, M. E. (1975): Lex - A Lexical Analyzer Generato.r. Technical Report Computer
Science No. 39, Bell Laboratories, Murray Hill, New Jersey.

MATETl, P. (1983): A Specification Schema for Indenting Programs. Software-Practice
and Experience, Vol. 13, pp. 163-179.

MEDINA-MoRA, R. (1982): Syntax Directed Editing: Towards Integrated Programming
Environments. PhD Thesis, Carnegie-Mellon University.

MEDINA-MoRA, R. - FElLER, P. (1981): An Incremental Programming Environment.
IEEE Transactions on Software Engineering, Vol. 7,No. 5, pp. 472-482.

MEIJER, H. (1986): Programmar: A Translator Generator. PhD Thesis, Katholieke Uni­
versiteit Nijmegen.

MEIJER, H. (1990): The Project on EXTENDED AFFIX GRAMMARS at Nijmegen.
In: Deransart, P. - Jourdan, M., editors, Attribute Grammars and their Applica­
tions Lecture Notes in Computer Sciencs, Vol. 26, pp. 130-143. Springer Verlag,
Berlin/Heidelberg/New York.1990.

OPPEN, D. C. (1980): Prettyprinting. ACM Transactions on Programming Languages
and Systems, Vol. 2, No. 4, pp. 465-483.

REPs, T. W. (1984): Generating Language-Based Environments. MIT Press.
REPS, T. W. - TEITELBAUM, T. (1989a): The Synthesizer Generator: a System for Con­

structing Language-based Editors. Springer Verlag, Berlin/Heidelberg/New York.
REPS, T. W. - TEITELBAUM, T. (1989b): The Synthesizer Generator Reference Manual.

Springer Verlag, Berlin/Heidelberg/New York, Third edition.
RUBIN, L. F. (1983): Syntax-directed Pretty Printing-a First Step Towards a Syntax

Directed Editor. IEEE Transactions on Software Engineering, Vol. SE-9, pp. 111-
127.

ROSE, G. A. - WELSH, J. (1981): Formatted Programming Languages. Software­
Practice and Experience, Vol. 11, pp. 651-669.

AN ENVIRONMENT FOR ENGINEERING EAG 143

WATT, D. A. (1974): Analysis-Oriented Two-Level Grammars. PhD Thesis, University
of Glasgow.

VAN WIJNGAARDEN, A. - MAILLOUX, B. J. - PECK, J. E. L. - KOSTER, C. H. A.
- SINTZOFF, M. - LINDSEY, C. H. - MEERTENS, L. G. L. T. - FISKER, R. G.
(1976): Revised Report on the Algorithmic Language Algol 68. Springer Verlag,
Berlin/Heidelberg/New York.

WOODMAN, M. (1986): Formatted Syntaxes and Modula-2. Software-Practice and Ex­
perience, Vol. 16, No. 7, pp. 605-626.

Appendix A: A Simple Specification of EAG for Generation of an Editor

extendedaffixgrammar.

extendedaffixgrammar:
layout,

start nonterminal,
productionrules (nil, defs).

productionrules (olddefs, defs):
productionrule (olddefs, newdefs, defs) ,

productionrules (newdefs, defs);
productionrules (defs, defs):

productionrule (olddefs, newdefs, defs):
hyperproductionrule (olddefs, newdefs, defs):

productionrule (olddefs, olddefs, defs):
affixproductionrule.

hyperproductionrule (olddefs, newdefs, defs):
hypernonterminal (id),

enter definition (id, olddefs, ne'7defs),
":", layout,

hyperalternatives (defs),
".", layout.

hyperalternatives (defs): hyperalternative (defs),
" ; ", layout,

hyperalternatives (defs);
hyperalternatives (defs):

hyperalternative (defs).

hyperalternative (defs):
hypermembers (defs);

hyperalternative (defs):

hypermembers (defs):
hypermember (defs),

",", layout,
hypermembers (defs);

hypermembers (defs):
hypermember (defs).

hypermember (defs):
hyper nonterminal (id),

check definition (id, defs);

144

hypermember (defs):
terminals;

hypermember (defs):
hyper set.

start nonterminal:
nonterminal (id),

".", layout.
hyper nonterminal (id):

nonterminal (id),

M. G. J. VAN DEN BRAND

optional display (nrofexps).
optional display (nrofexps):

display (nrofexps)j
optional display (empty):

display (nrofexps):
"(11, layout,

affixexpressions (nrofexps),
")", layout.

affixproductionrule:
affixnonterminal,

11 : : ", layout,
affixalternatives,

".", layout.
affixalternatives:

"j", layout,
affixalternativesj

affixalternatives:
affixexpression,

"j", layout,
affixalternativesj

affixalternatives:
affixexpression.

affixexpressions (nrofafs + "i"):
typed affixexpression,

" , ", layout,
affixexpressions (nrofafs)j

affixexpressions ("i"):
typed affixexpression.

typed affixexpression:
affixexpression;

typed affixexpression:
">", layout,

affixexpression;
typed affixexpression:

affixexpression,
">", layout.

affixexpression:
affixterms.

affixterms:
affixterm,

"+" layout,

affixterms;
affixterms:

affixterm.

AN ENVIRONMENT FOR ENGINEERING EAG

affixterm:
affixnonterminal;

affixterm:
affixterminals.

nonterminal:
identifier (id),

layout.

affixnonterminal:
identifier (id),

layout.

terminals:
quotedstring,

layout.

hyperset:
set,

options,
display ("i").

set:
"{",

charsequence,
"}", layout.

options:
"+", layout;

options:
"*", layout;

options:
"+!", layout;

options:
"*!", layout;

options:

affixterminals:
quot edst ring,

layout.

quotedstring:
11111111 ,
. charsequence,

"""", layout.

enter definition (>id, >defs, newdefs):
excludes (id, defs),

add to (id, defs , newdefs);
enter definition (>id, >defs, defs):
includes (id, defs).

check definition (>id, >defs):
includes (id, defs).

excludes (>id, >nil):;

145

146 M. G. J. VAN DEN BRAND

excludes (>id, >head + "+" + tail):
not equal (id, head),

excludes (id, tail).

includes (>id, >id + "+" + tail):;
includes (>id, >head + "+" + tail):;

not equal (id, head),
includes (id, tail).

add to (>id, >defs, id + "+" + defs):.

identifier (1 + 19s):
{abcdefghijklmnopqrstuvwxyz} (1):

letgits (lgs) ,
layout.

letgits (blanks + 19s1 + 19s2):
{ }*! (blanks) ,

{abcdefghijklmnopqrstuvwxyz1234567890}+! (lgs1),
letgits (lgs2);

letgits (empty):

charsequence:
,

charsequence:
{abcdefghij klmnopqrst uvwxyzABCDEFGH I JKLMNOPQRSTUVWXYZ
0123456789}*! (chars) ,

charsequence;
charsequence:

{ ! \1l # $ % - &: * () _ - + = I \ \ - , [J ; : ' < , > . ? / } * ! (char),
charsequence.

layout:
{ \n}*! (ign) .

Address:

M. G. J. VAN DEN BRAND

Department of Informatics
Faculty of Mathematics & Informatics
University of Nijmegen
Toernooiveld 1
NL-6525 ED Nijmegen
The Netherlands

