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Abstract 

In recent years many abstract machines have been introduced. In this paper a description 
language for abstract machines is presented. A formal semantics for this language is 
defined, and some implementation questions are raised. A few simple examples are given. 

The language presented has similarities to graph rewrite systems, and also to classi
cal assembler languages. It could provide a meeting point for formal and implementational 
specifications. 
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1 Introduction 

There seems as yet to be no standard notation for describing abstract ma
chines. In functional language circles some form of tuple notation seems 
to be popular (FAIRBAIRN and WRAY, 1987), an imperative programming 
style is also often used (LOCK, 1990; JONES and SALKILD) as are infor
mal descriptions (WARREN, 1983). In recent years the Bird-Meertens for
malism (BMF, 1989) has been gaining in popularity. Work on abstract 
machine description in squiggol has been done, and has indeed led to new 
insights into classes of abstract machines (MEIJER, 1990), but it is still a 
major step from a squiggol 'programme' to a Von Neumann implementa
tion. Update plans, introduced in (MEIJER, 1986) (on which parts of this 
article are based), provide a specification method, with sufficient similar
ity to traditional machine code constructs to be easy to implement, yet of 
sufficient abstractive power to provide a useful development tool. 

The abstractive power is achieved by 
Ell assuming the existence of a separate (static) environment, in which 

(implementational) details of basic types are specified. 
Ell using only one data structure concept - locations - closely allied 

to array indexes, addresses and pointers. This, especially, is an im-

lReport on the Phoenix project: Esprit Basic Research Action 3147 
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provement on tuple notations in providing clarity in describing graph 
like structures. Update plans can indeed also be seen as a conditional 
graph rewrite system . 

• allowing complex state transformations to be described in one transi
tion specification (update scheme) . 

• factoring out backtracking. 
We will not be dealing with this last point in this article. The interested 
reader is referred to (MEIJER, 1986). 

2 An Informal View 

Update Plans can be read as describing state transitions in some abstract 
machine. This machine is considered to consist of some finite number 
of stores, each store containing a countable set of cells and addressed 
by a completely ordered set of locations. Conceptually it is not the cells 
themselves that are addressed, but the boundaries between cells, so that 
a sequence is not considered to be at certain locations, but rather between 
locations. A motivation for this convention is to be found in (MEIJER, 

1986). For example, rather than representing the string 'CAT' by an array 
of characters, and considering the substring 'AT' to be the subarray from 
location 1 to location 2 one considers 'CAT' to be a sequence of characters 
between location 0 and location 3, and 'AT' to be the subsequence between 
locations 1 and 3. The basic notation for such a sequence is 

O['CAT'j3. 

A singleton sequence is identified with its element. Such a triple 

(location) [ (sequence)] (location) 

is called a locaior expression. A bag of locator expressions can be used to 
describe a (sub ) configuration of the machine. 

The immediate constituent part of an update plan, an update scheme, 
is constructed from two bags of locator expressions forming the left hand 
side and the right hand side, and from a boolean expression, known as the 
guard. 

(locator expression) * :(boolean expression):(locator expression)* 

Variables (indicated by lower case words) are allowed in the constituent 
expressions of an update scheme. An update scheme containing only con
stants (indicated either by a value or, symbolically, by upper case words) 
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is known as an update rule. Given a substitution mapping variables to (se
quences of) constants an update scheme can be instantiated to an update 
rule. 

An update rule is applicable to a given configuration if it specifies a 
subset of that configuration and its guard is TRUE. The result of applying 
an applicable update rule to a configuration, C, is the superset of the 
right hand side that is minimally different from C. An update scheme is 
applicable to a given configuration if there is a substitution that instantiates 
the scheme to an applicable update rule. 

The following example illustrates the concepts introduced above. It 
is here assumed that the substitution is given, though in practice this is 
derived from the update scheme and configuration to which it is applied 
(see subsection 4.5 ). Consider the configuration (partially) described by 
the locator expression 

0[21 35 2748 1]5 (1) 

and the update scheme 

k[a]ll[b]m: TRUE: l[b-a]m. (2) 

Given the substitution 

{k ~ 0, 1 ~ 1, m ~ 2, a ~ 21, b ~ 35} (3) 

the update scheme in (2) can be instantiated to the update rule 

0[21]1 1[35]2 : TRUE: 1[14]2 

which is applicable to configuration (1), and which when applied yields 

0[21 14 27 48 1]5. 

As mentioned above, an update plan, P, is a bag of update schemes. For 
any configuration C a development of C by P is defined to be 

• C, if P contains no update scheme applicable to C 
@ D, where D is a development of a configuration yielded by application 

of an instantiation of an element of P to C. 
The following plan, taken from (MEIJER, 1986) will develop any con

figuration having natural numbers x and y between locations A and B 
and between C and D respectively to one containing the greatest common 
divisor of x and y between these locations. 

A[x]B C[y]D 

A[x]B C[y]D 

x> y: A[x - y]B, 

x < y: Cry - x]D. 
(4) 
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3 Syntax 

3.1 BMic Syntax 

The basic syntax for update plans is given by the following context free 
grammar. 

(plan) ---+ 

(scheme) * 

(scheme) ---+ 

(locator) * : (guard) : (locator) * 

(guard) ---+ 

(expression) 

(locator) ---+ 

(expression) [(expression) ] (expression) . 

(expression) ---+ 

(primary) I 
(monadic) (expression) 
(dyadic) (expression) (expression) 

(primary) ---+ 

(constant) 
(variable) 

(variable) ---+ 

(lower case letter) + 

(constant) ---+ 

(upper case letter) + I 
(value) 
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9.2 Syntactic Sugar 

Commands 
The update schemes in (4) in section 2 are very restricted, in that they 
can only be applied to numbers appearing between fixed locations. . More 
useful update schemes would also allow one to specify the locations, and 
might look like 

A[a]B O[c1D a[z1b c[y]d 

A[a]B O[c1D a[z1b c[y]d 

z>y 

z<y 

a[z - y]b, 

cry - z1d. 
(5) 

In the context of a larger plan, however, the applicability of such schemes 
is not easily determinable. The obvious solution is to introduce some form 
of command stream, and to rewrite (5) to 

PO[pc]p pc[GOD a clqc a[x1b c[y]d x> y 

PO[pc]p pc[GOD a clqc a[xJb c[y]d x < y 

a[x - y]b, 

cry - xJd. 

Such an update scheme is called a command, and may be written as 

GOD a c a[x1b c[y]d 

GCD a c a[x]b c[y]d 

x>y 

x<y 

a[x - y]b, 

cry - x]d. 

More generally, any update scheme exhibiting the pattern 

PC[pc]p pc[OP arg]qc 

may be rewritten as 

OP arg next 

Alternative right hand sides 

(6) 

(7) 

Two update schemes having the same left hand side, such as (7) may be 
rewritten to share the left hand side, so that (7) becomes 

GC D a c a[x]b c[yJd 

Omitting locations 

x>y 

x<y 

a[x - y]b, 

cry - x]d. 
(8) 

It is not always necessary to give both locations in a locator expression. 
Any location not needed in the dynamic context (see section 4.5) may be 
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omitted, so that (8) becomes, assuming that the length of a natural number 
is fixed, 

GOD a c a[x] c[y] x>y 

x<y 

a[x - y], 

c[y - x]. 
(9) 

Two consecutive sequences may be concatenated. Two expressions x[s]y 
and y[t]z ~ay then be written as x[s]y[t]z or, if y is not needed in the 
dynamic context, as x[s t]z. 

Omitting guards 

A tautological guard may be omitted. 

4 Semantics 

In the informal presentation in section 2, a store resembled a classical 
computer memory, consisting of a sequence of cells each containing some 
object. An equivalent, but for formal specification more useful viewpoint 
is to see a store as a function from a countable set of locations to a set of 
objects. Conceptually then, s 1 = 0 is equivalent to 'the cell at location 1 
in store s contains the object 0'. 

4.1 Configurations 

As above, a configuration consists of a finite number of stores. The domains 
of these stores are pairwise disjoint. All stores have the same range, which 
is a superset of the union of their domains. For any update plan both the 
number of stores in a configuration and the range of those stores is fixed. 

4.2 Sequences 

Since the domain of a store s is countable there is a complete ordering 
on that domain, which we will assume given, and call <so The sequence 
t between locations p and q in store s is defined to be the list of objects 
s * [p .. q), where [p .. q) is the list lp, sucCs p, ... ,preds q], sucCs and preds 

being the successor and predecessor functions defined by <so Again, a 
singleton sequence will, where necessary, be identified with its element. 
Any resultant ambiguity will be resolved by type information. For example, 
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a singleton sequence occurring as a location in a locator expression must 
obviously be interpreted as its element, and not as a sequence. 

4.3 Update Rules 

The left and right hand sides of an update rule both define partial config
urations in a natural way. Consider the locator expression l[so .. sn]1'. This 
can be interpreted by 

I[l[so .. sn]1'] = f where f (l-r i) = Si. 

A bag of constant locator expressions is well formed if the interpretations 
of its constituent locator expressions are consistent, i.e. if 

where E is defined by 

f E 9 {::> Vl : f 1 = ..L V 9 1 = ..L V f 1 = 9 l. 

As mentioned in section 2, an update rule (lhs,gua1'd, rhs) is applicable to 
a configuration c if its left hand side is consistent with c (i.e. I[lhs] !: c) 
and its guard is TRUE. The result of updating c by (lhs,gua1'd,rhs) is 
given by 

A[(lhs,guard,1'hs)] c = c' 
where c' 1 =I[rhs] 1,I[rhs] l::j:. ..LI\I[lhs]!: cl\guard 

= cl, otherwise. 

4..4 Functions 

The following functions will be needed in the discussion of the interpreta
tion of update plans. The following conventions apply. 

1. N is the set of natural numbers. 
2. Z is the set of integers. 
3. £, is the union of the domains of the stores (locations). 

The three functions presented here may be noted both infix and prefix. 
-f-: (N X £,) I-t £, n -f- I = pred~ l. 
-r: (£, X N) I-t £, 1 -r n = succ~ 1. 
~: (£, X £,) I-t Z 1 ~ r = n, if I -r n = l' 

= -n, if n -f- 1 = r. 
The length function on sequences is noted #. It satisfies # [l..l -r n) = n 
and # In -f- 1 .. 1) = n. 
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4.5 Deriving Dynamic Contexts 

Given an update scheme and a configuration, a substitution from variables 
to (sequences of) constants, such as that given in (3) in section 2 can be 
derived. This can easily be generalised to provide a method for, given an 
update scheme, deriving a mapping from configurations to substitutions. 
In the example above, rather than deriving the substitution (3) in section 2 
the dynamic context c defined by 

c config =f 

would be derived. 
Deriving constraints 

where f l = 
f m= 

f a= 
f b = 

1 
2 
config 0 
config (f l) 

Given a locator expression, e = l[x]r, and a configuration c, there is a very 
obvious constraint that any substitution s must satisfy if the instantiation 
of e by s is to be applicable to c, namely 

c* [s l,s r)=s x. 

This applies, of course, to all locator expressions appearing on the left 
hand side of an update scheme, and a set of constraints for any substitu
tion can be found that must be satisfied if the instantiation of the update 
scheme is to be applicable. This is encapsulated il1. the follmving mapping, 
where again singleton sequences are, where necessary, identified with their 
elements. 

C[ll[sl]rl ... In[sn]rn] c t-+ f 

if f const = const, if const is a constant 

f sI = c * [J ll, f rl) 

f sn = c* [f In,f rn) 

4.6 Interpretation 

Given the obvious semantics of a substitution, the semantics of an update 
plan can now be defined. For notational convenience we redefine C to map 
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from update schemes to substitutions, rather than from bags of locator ex
pressions to substitutions. Here C[(lhs,guard,rhs)] is equivalent to C(lhs] 
as defined in section 4.5. The set of instantiable update rules for an update 
scheme s in a configuration c is then given by (c[s] c) *s and will be, 
for the sake of brevity, written SC[s] c' The update of a configuration by a 
scheme is then simply 

Us coni sch = (A* SChC[sch] con!) coni 

and therefore the update of a configuration by a plan is 

Up plan coni = uj ((Usconf)* plan) 

which leads to the following definition of the semantics of an update plan 

U plan conis = uj ((Up plan)* conis). 

The meaning of an update plan p applied to an initial configuration i is 
then 

y (U p {i}). 

5 Implementational Aspects 

Resolving constraints 
Obviously, the derivation method given in section 4.5 can only be a first 
approximation in any implementation, since the si, li and ri's can all be 
complicated expressions, containing both constants and variables. Some 
method is needed for resolving these constraints to some simple substitution 
function. Since this is simply a question of manipulating symbols, C is 
redefined to produce text rather than a function. The interpretation of the 
text is the obvious one. 

C[h[SI]i"l .,. In[snjrn] = {(SI 

(h 
(rl 

c* [h,I'I)) 

+- # SI I'1) 

-4 h # SI) 

c* [in, i"n)) 

+- # Sn I'n) 
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Here the first reduction step has already been executed, deriving expres
sions for 11 ... In and rl ... rn. However, Si, Ii and ri can themselves be 
complicated expressions, which need to be transformed. The aim is to ar
rive at a set of constraints of the form {(v,expr)lc E variable}. This is 
achieved by a simple rewriting function, the result of which is then filtered 
to leave only those constraints of the desired form. The rewriting function 
'R, is defined by 

'R, c=cU 

{(r, I) I (I, r) E c}U 

{( a, 0 r) I (0 a, r) E c} U 

{(al,II$ a2 r),(a2,$1I al r),I($ al a2,rEc}. 

where 0 is a monadic function and 0 its inverse, and $ is a dyadic function 
and "$ and $11 its left and right inverses, respectively. In the current pro
totype only those functions having deterministic inverses may be inverted. 
The resolution of the constraints is the least fixed point of 'R, c filtered to 
leave only constraints of the desired form. 

6 Examples 

An update plan for deriving greatest common divisors has already been 
given. For an example of anon-trivial application of update plans see (MEI
JER, 1986). Update plans have also been written for TiM (FAIRBAIRN and 
WRAY, 1987) and are being developed for other. abstract machines. The 
following examples are intended to illustrate some of the possibilities of 
update plans. 
Semaphores 
(Assuming a static context in which n is a natural number) 

Turing Machines 

P[s] s[n+1] 
V[s] srn] 

srn]. 
s[n+1]. 

A classical definition of a Turing machine, such as given in (LEWIS and 
PAPADIMITRIOU, 1981) usually is of the form 

(K,~, 8, s). 

where K is a set of states, ~ is the alphabet, s is the initial state, and 8 
is the transition function, 8 ~ (K X ~) ---- (K X (~ U {L, R} ». The same 
machine can be specified by an update plan. 



K[k] 

UPDATE PLANS 

I[P] p[O"] : 8(k,0") = (l,~) 

: 8 (k, 0") = (l, L) 

: 8(k,0") = (l,R) 

A stack arithmetic machine 
PUSH x SPIt] 
POP SP[s] s[x]t 
PLUS SP[s] s[x]t[y] 
MONMIN SP[s] s[x] 

.. 

.. 

.. 

.. 
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