PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 85, NO. 8, PP. 158168 (1991}

UPDATE PLANS!
H. OSBORNE

Department of Informatics
Faculty of Mathematics and Informatics
University of Nijmegen

Received: Aug. 30, 1990.

Abstract

In recent years many abstract machines have been introduced. In this paper a description
language for abstract machines is presented. A formal semantics for this language is
defined, and some implementation questions are raised. A few simple examples are given.

The language presented has similarities to graph rewrite systems, and also to classi-
cal assembler languages. It could provide a meeting point for formal and implementational
specifications.

Keywords: abstract machines, low level implementation, rewrite systems.

1 Introduction

There seems as yet to be no standard notation for describing abstract ma-
chines. In functional language circles some form of tuple notation seems
to be popular (FAIRBAIRN and WRAY, 1987), an imperative programming
style is also often used (LOCK, 1990; JONES and SALKILD) as are infor-
mal descriptions (WARREN, 1983). In recent years the Bird-Meertens for-
malism (BMF, 1989) has been gaining in popularity. Work on abstract
machine description in squiggol has been done, and has indeed led to new
insights into classes of abstract machines (MEIJER, 1990), but it is stiil a
major step from a squiggol ‘programme’ to a Von Neumann implementa-
tion. Update plans, introduced in (MEIJER, 1986) (on which parts of this
article are based), provide a specification method, with sufficient similar-
ity to traditional machine code constructs to be easy to implement, yet of
sufficient abstractive power to provide a useful development tool.
The abstractive power is achieved by
e assuming the existence of a separate (static) environment, in which
(implementational) details of basic types are specified.
e using only one data structure concept — locations — closely allied
to array indexes, addresses and pointers. This, especially, is an im-

1Report on the Phoenix project: Esprit Basic Research Action 3147

154 H. OSBORNE

provement on tuple notations in providing clarity in describing graph
like structures. Update plans can indeed also be seen as a conditional
graph rewrite system.
o allowing complex state transformations to be described in one transi-
tion specification (update scheme).
e factoring out backtracking.
We will not be dealing with this last point in this article. The interested
reader is referred to (MEIJER, 1986).

2 An Informal View

Update Plans can be read as describing state transitions in some abstract
machine. This machine is considered to consist of some finite number
of stores, each store containing a countable set of cells and addressed
by a completely ordered set of locations. Conceptually it is not the cells
themselves that are addressed, but the boundaries between cells, so that
a sequence is not considered to be at certain locations, but rather between
locations. A motivation for this convention is to be found in (MELER,
1986). For example, rather than representing the string ‘CAT’ by an array
of characters, and considering the substring ‘AT’ to be the subarray from
location 1 to location 2 one considers ‘CAT’ to be a sequence of characters
between location 0 and location 3, and ‘AT’ to be the subsequence between
locations 1 and 3. The basic notation for such a sequence is

0[‘CAT"]3.

A singleton sequence is identified with its element. Such a triple
(location) [(sequence)] (location)

is called a locator ezpression. A bag of locator expressions can be used to
describe a (sub)configuration of the machine.

The immediate constituent part of an update plan, an update scheme,
is constructed from two bags of locator expressions forming the left hand
side and the right hand side, and from a boolean expression, known as the
guard.

(locator ezpression) = :(boolean expression):(locator expression)x

Variables (indicated by lower case words) are allowed in the constituent
expressions of an update scheme. An update scheme containing only con-
stants (indicated either by a value or, symbolically, by upper case words)

UPDATE PLANS 135

is known as an update rule. Given a substitution mapping variables to (se-
quences of) constants an update scheme can be instantiated to an update
rule.

An update rule is applicable to a given configuration if it specifies a
subset of that configuration and its guard is TRUE. The result of applying
an applicable update rule to a configuration, C, is the superset of the
right hand side that is minimally different from C. An update scheme is
applicable to a given configuration if there is a substitution that instantiates
the scheme to an applicable update rule. ,

The following example illustrates the concepts introduced above. It
is here assumed that the substitution is given, though in practice this is
derived from the update scheme and configuration to which it is applied
(see subsection 4.5). Consider the configuration (partially) described by
the locator expression

0[21 35 27 48 1]5 (1)

and the update scheme
k[a]l [b]Jm : TRUE : l[b—a]m. (2)

Given the substitution
{k<0,l<1,m < 2,a < 21,b <= 35} (3)

the update scheme in (2) can be instantiated to the update rule

0[21]1 1[35]2 : TRUE : 1[14]2
which is applicable to configuration (1), and which when applied yields

0[21 14 27 48 1}5.

As mentioned above, an update plan, P, is a bag of update schemes. For
any configuration C a development of C' by P is defined to be

o C, if P contains no update scheme applicable to C

e D, where D is a development of a configuration yielded by application

of an instantiation of an element of P to C.

The following plan, taken from (MEIER, 1986) will develop any con-
figuration having natural numbers ¢ and y between locations A and B
and between C and D respectively to one containing the greatest common
divisor of z and y between these locations.

Alz]B Cly]D : =z>y: Alz—y]B,

(4)
Alz]B ClylD : z<y: Cly-=z|D.

156

H. OSBORNE

3 Symntax

3.1 Basic Syntaz

The basic syntax for update plans is given by the following context free

gramimar.

(plan) —
(scheme) *

(scheme) —
(locator) * : (guard) : (locator) *

(guard) —
(expression)

{locator) —
(expression) [(expression)] {(expression) .

(expression) —
(primary) |
(monadic) (expression) |
{dyadic) (expression) (expression)

(primary) —
(constant) |
(variable)

(variable) —
(lower case letter) -+

(constant) —
(upper case letter) + |
(value)

UPDATE PLANS 157

3.2 Syntactic Suger

Commands

The update schemes in (4) in section 2 are very restricted, in that they
can only be applied to numbers appearing between fixed locations. -More
useful update schemes would also allow one to specify the locations, and
might look like

Aje]B Clc]D afz]b cfyld : z>y : a[z—yl,

AldB CldD afep cyld : e<y : cy—gd O

In the context of a larger plan, however, the applicability of such schemes
is not easily determinable. The obvious solution is to introduce some form
of command stream, and to rewrite (5) to

PClpclp pc|GCD a clgecalzlbefyld : 2>y : afz —ylb,

6
PClpclp pc|GCD a clgcalzjbefyld : z<y : cfy — z]d. ®)
Such an update scheme is called a command, and may be written as
GCD a ¢ afzlb cfyld : z>y : afz-yl, ™
GCD a c afz]b cfygld : z<y : cy—z]d

More generally, any update scheme exhibiting the pattern

PClpclp pclOP arglge ... : ... : PClpclp pcnext]ge
may be rewritten as

OP arg ... : ... : nezt

Alternative right hend sides
Two update schemes having the same left hand side, such as (7) may be
rewritten to share the left hand side, so that (7) becomes

GCD a c afzlb cyld : z>y : afz-1ylh, ®)
z<y : cly—zld
Omitting locations
It is not always necessary to give both locations in a locator expression.
Any location not needed in the dynamic context (see section 4.5) may be

158 H. OSBORNE

omitted, so that (8) becomes, assuming that the length of a natural number
is fixed,

GCD a c afz] cy] : z>y : afz—yl, 9)

z<y : cly—z|

Two consecutive sequences may be concatenated. Two expressions z[sly
and y[t]z may then be written as z[s|y[t]z or, if y is not needed in the
dynamic context, as z[s i]z.

Omitting guards

A tautological guard may be omitted.

4 Semmantics

In the informal presentation in section 2, a store resembled a classical
computer memory, consisting of a sequence of cells each containing some
object. An equivalent, but for formal specification more useful viewpoint
is to see a store as a function from a countable set of locations to a set of
objects. Conceptually then, s | = o is equivalent to ‘the cell at location [
in store s contains the object o’

4.1 Configurations

As above, a configuration consists of a finite number of stores. The domains
of these stores are pairwise disjoint. All stores have the same range, which
is a superset of the union of their domains. For any update plan both the
number of stores in a configuration and the range of those stores is fixed.

4.2 Sequences

Since the domain of a store s is countable there is a complete ordering
on that domain, which we will assume given, and call <,. The sequence
t between locations p and ¢ in store s is defined to be the list of objects
s * [p..q), where [p..q) is the list [p, succs p,...,preds ql, succs and preds
being the successor and predecessor functions defined by <;. Again, a
singleton sequence will, where necessary, be identified with its element.
Any resultant ambiguity will be resolved by type information. For example,

UPDATE PLANS 159

a singleton sequence occurring as a location in a locator expression must
obviously be interpreted as its element, and not as a sequence.

4.3 Update Rules

The left and right hand sides of an update rule both define partial config-
urations in a natural way. Consider the locator expression I[sq..sn]r. This
can be interpreted by

ZI{![s0..sn]r] = f where f (I = i) = s;.

A bag of constant locator expressions is well formed if the interpretations
of its constituent locator expressions are consistent, i.e. if

Vi, 5 : Ie:] € Z]e;]
where 2 is defined by
fedgevi:fl=1lvgl=LlVvfl=gqgl

As mentioned in section 2, an update rule (lhs, guard, rhs) is applicable to
a configuration c if its left hand side is consistent with ¢ (i.e. Z[lhs] C ¢)
and its guard is TRUE. The result of updating ¢ by (lhs,guard,rhs) is
given by

Al(lhs,guard,rhs)] c=¢
where ¢ | = ZI[rhs] [,Z[rhs] 1 # L AZ[lhs] C c A guard

= ¢ [, otherwise.

4.4 Functions

The following functions will be needed in the discussion of the interpreta-
tion of update plans. The following conventions apply.
1. N is the set of natural numbers.
2. Z is the set of integers.
3. L is the union of the domains of the stores (locations).
The three functions presented here may be noted both infix and prefix.
—: (N X L)~ Ln—Il=pred; L
= (LXN)— L1 —n=succh I
S (LxL)y—Zler=nifl—on=r
=-n, fneIl=7
The length function on sequences is noted #. It satisfies # [[... —n)=n
and # [n+— L.I)=n.

160 H. OSBORNE

4.5 Deriving Dynamic Contezts

Given an update scheme and a configuration, a substitution from variables
to (sequences of) constants, such as that given in (3) in section 2 can be
derived. This can easily be generalised to provide a method for, given an
update scheme, deriving a mapping from configurations to substitutions.
In the example above, rather than deriving the substitution (3) in section 2
the dynamic context ¢ defined by

¢ config =f
where f [= 1
fm= 2
f a= config 0
f b= config (f I)

would be derived.

Deriving constraints

Given a locator expression, e = [[z]r, and a configuration ¢, there is a very
obvious constraint that any substitution s must satisfy if the instantiation
of e by s is to be applicable to ¢, namely

cx [slysr)=s =

This applies, of course, to all locator expressions appearing on the left
hand side of an update scheme, and a set of constraints for any substitu-
tion can be found that must be satisfied if the instantiation of the update
scheme is to be applicable. This is encapsulated in the following mapping,
where again singleton sequences are, where necessary, identified with their
elements.

Cliifsi]rl ... In[sn]rn] c+— f
if f const = const, if const is a constant

fsl= cx [fIl,f r1)

f.sn——: cx |[f Z.n,f rn)

4.6 Interpretation

Given the obvious semantics of a substitution, the semantics of an update
plan can now be defined. For notational convenience we redefine C to map

UPDATE PLANS 161

from update schemes to substitutions, rather than from bags of locator ex-
pressions to substitutions. Here C[(lhs, guard,rhs)] is equivalent to C[lhs]
as defined in section 4.5. The set of instantiable update rules for an update
scheme s in a configuration c is then given by (C[s] c¢) =#s and will be,
for the sake of brevity, written s¢fsj .. The update of a configuration by a
scheme is then simply

Us conf sch = (Ax schefsch] conf) conf
and therefore the update of a configuration by a plan is
Up plan conf =U/ ((Usconf)x plan)
which leads to the following definition of the semantics of an update plan

U plan confs=U/ ((Up plan)x confs).

The meaning of an update plan p applied to an initial configuration 7 is

then
Y U p {i}).

5 Implementational Aspects

Resolving constraints

Obviously, the derivation method given in section 4.5 can only be a first
approximation in any implementation, since the si, Iz and 7i’s can all be
complicated expressions, containing both constants and variables. Some
method is needed for resolving these constraints to some simple substitution
function. Since this is simply a question of manipulating symbols, C is
redefined to produce text rather than a function. The interpretation of the
text is the obvious one.

Cﬁll{sl}rl in{sn}.‘{‘nﬁ = {(51 ; CT*x {Ela?l))
(11 3 = # 81 E'1)
(.‘?1 y - 11 # 31)
(STl 3 C* [}-n,rn))
(I — # sp Th)

162 H. OSBORNE

Here the first reduction step has already been executed, deriving expres-
sions for };...1, and ri1...rn. However, s;, l; and r; can themselves be
complicated expressions, which need to be transformed. The aim is to ar-
rive at a set of constraints of the form {(v,ezpr)|c € variable}. This is
achieved by a simple rewriting function, the result of which is then filtered
to leave only those constraints of the desired form. The rewriting function
R is defined by

R cec=cU

{1 r)ectu
{(® r)|(® a,r)ec}U
{(al,’® a2 r),(a2,9° al r),|(® al a2,r € c}.

where @ is a monadic function and @ its inverse, and @ is a dyadic function
and °® and @° its left and right inverses, respectively. In the current pro-
totype only those functions having deterministic inverses may be inverted.
The resolution of the constraints is the least fixed point of R c filtered to
leave only constraints of the desired form.

6 Examples

An update plan for deriving greatest common divisors has already been
given. For an example of a non-trivial application of update plans see (MEI-
JER, 1986). Update plans have also been written for TiM (FAIRBAIRN and
WRAY, 1987) and are being developed for other abstract machines. The
following examples are intended to illustrate some of the possibilities of
update plans.

Semaphores

(Assuming a static context in which n is a natural number)
Pls] s[n+1] = s[n].
Vis] s[n] i s[n+1].

Turing Machines
A classical definition of a Turing machine, such as given in (LEWIS and
PAPADIMITRIOU, 1981) usually is of the form

(K,L%L,6,s).

where K is a set of states, ¥ is the alphabet, s is the initial state, and &
is the transition function, § C (K x £) — (K x (XU {L, R})). The same
machine can be specified by an update plan.

UPDATE PLANS 163

Kk I[p] ploe] :6(ko)=(1¢) : K] pls]
:6(k,0)=(,L) : K[Il p]
§(k,o)=(,R) : K[] Ilp—1].
A stack arithmetic machine
PUSH =z SPJt] & SP[s] s(z]t.
POP SP[s] s[z]t @z SP[t] .
PLUS SP[s] s[z]tly] = SP[t] tlz+y).
MONMIN SP[] s[z] i s[—z].
References

BMF (1989): International Summer School on Constructive Algorithmics, 1989 held on
Ameland, the Netherlands.

FAIRBAIRN, J. - WRrAY, S. (1987): Tim: A Simple, Lazy Abstract Machine to Execute
Supercombinators. In Gilles Kahn, editor, Functional Programming Languages and
Computer Architecture: Lecture Notes in Computer Science, 274. Springer Verlag,
Berlin, Heidelberg, New York, London, Paris, Tokyo.

Lock, H. C. R. (1990): An Abstract Machine for the Implementation of Functional Logic
Programming Languages. Technical Report, GMD Forschungstelle an der Univer-
sitdt Karlsruhe, Vincenz-PrieBnitz-Strafie 1, Karlsruhe, BRD. Report on ESPRIT
Basic Research Action No. 3147 (the Phoenix Project).

Lewis, H. R. — ParapiMiTrIOU, C. H. (1981): Elements of the Theory of Computation.
Prentice-Hall.

MEUER, H. (1986): Programmar: A Translator Generator. PhD Thesis, Universiteit van
Nijmegen, Toernooiveld 1, Nijmegen, The Netherlands.

MEUER, E. (1990): A Taxonomy of Function Evaluating Machines. Technical report,
Universiteit van Nijmegen, Toernooiveld 1, Nijmegen, The Netherlands. Report on
ESPRIT Basic Research Action No. 3147 (the Phoenix Project).

PevyTon Jones, S. L. P. -SaLkiLp, J. (1989): The Spineless Tagless G-machine. Univer-
sity College, London.

WARREN, D. H. D. (1983): An abstract Prolog Instruction Set. Technical Report 309,
Artificial Intelligence Center, SRI International, Menlo Park, California, USA.

Address:

Hugh OSBORNE

Department of Informatics

Faculty of Mathematics and Informatics
University of Nijmegen

Toernooiveld 1

6525 ED Nijmegen

The Netherlands

