
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 95, NO. 9, PP. 159-169 {1991}

UPDATE PLANS!

H.OSBORNE

Department of Informatics
Faculty of Mathematics and Informatics

University of Nijmegen

Received: Aug. 30, 1990.

Abstract

In recent years many abstract machines have been introduced. In this paper a description
language for abstract machines is presented. A formal semantics for this language is
defined, and some implementation questions are raised. A few simple examples are given.

The language presented has similarities to graph rewrite systems, and also to classi
cal assembler languages. It could provide a meeting point for formal and implementational
specifications.

Keywords: abstract machines, low level implementation, rewrite systems.

1 Introduction

There seems as yet to be no standard notation for describing abstract ma
chines. In functional language circles some form of tuple notation seems
to be popular (FAIRBAIRN and WRAY, 1987), an imperative programming
style is also often used (LOCK, 1990; JONES and SALKILD) as are infor
mal descriptions (WARREN, 1983). In recent years the Bird-Meertens for
malism (BMF, 1989) has been gaining in popularity. Work on abstract
machine description in squiggol has been done, and has indeed led to new
insights into classes of abstract machines (MEIJER, 1990), but it is still a
major step from a squiggol 'programme' to a Von Neumann implementa
tion. Update plans, introduced in (MEIJER, 1986) (on which parts of this
article are based), provide a specification method, with sufficient similar
ity to traditional machine code constructs to be easy to implement, yet of
sufficient abstractive power to provide a useful development tool.

The abstractive power is achieved by
Ell assuming the existence of a separate (static) environment, in which

(implementational) details of basic types are specified.
Ell using only one data structure concept - locations - closely allied

to array indexes, addresses and pointers. This, especially, is an im-

lReport on the Phoenix project: Esprit Basic Research Action 3147

154 H.OSBORNE

provement on tuple notations in providing clarity in describing graph
like structures. Update plans can indeed also be seen as a conditional
graph rewrite system .

• allowing complex state transformations to be described in one transi
tion specification (update scheme) .

• factoring out backtracking.
We will not be dealing with this last point in this article. The interested
reader is referred to (MEIJER, 1986).

2 An Informal View

Update Plans can be read as describing state transitions in some abstract
machine. This machine is considered to consist of some finite number
of stores, each store containing a countable set of cells and addressed
by a completely ordered set of locations. Conceptually it is not the cells
themselves that are addressed, but the boundaries between cells, so that
a sequence is not considered to be at certain locations, but rather between
locations. A motivation for this convention is to be found in (MEIJER,

1986). For example, rather than representing the string 'CAT' by an array
of characters, and considering the substring 'AT' to be the subarray from
location 1 to location 2 one considers 'CAT' to be a sequence of characters
between location 0 and location 3, and 'AT' to be the subsequence between
locations 1 and 3. The basic notation for such a sequence is

O['CAT'j3.

A singleton sequence is identified with its element. Such a triple

(location) [(sequence)] (location)

is called a locaior expression. A bag of locator expressions can be used to
describe a (sub) configuration of the machine.

The immediate constituent part of an update plan, an update scheme,
is constructed from two bags of locator expressions forming the left hand
side and the right hand side, and from a boolean expression, known as the
guard.

(locator expression) * :(boolean expression):(locator expression)*

Variables (indicated by lower case words) are allowed in the constituent
expressions of an update scheme. An update scheme containing only con
stants (indicated either by a value or, symbolically, by upper case words)

UPDATE PLANS 155

is known as an update rule. Given a substitution mapping variables to (se
quences of) constants an update scheme can be instantiated to an update
rule.

An update rule is applicable to a given configuration if it specifies a
subset of that configuration and its guard is TRUE. The result of applying
an applicable update rule to a configuration, C, is the superset of the
right hand side that is minimally different from C. An update scheme is
applicable to a given configuration if there is a substitution that instantiates
the scheme to an applicable update rule.

The following example illustrates the concepts introduced above. It
is here assumed that the substitution is given, though in practice this is
derived from the update scheme and configuration to which it is applied
(see subsection 4.5). Consider the configuration (partially) described by
the locator expression

0[21 35 2748 1]5 (1)

and the update scheme

k[a]ll[b]m: TRUE: l[b-a]m. (2)

Given the substitution

{k ~ 0, 1 ~ 1, m ~ 2, a ~ 21, b ~ 35} (3)

the update scheme in (2) can be instantiated to the update rule

0[21]1 1[35]2 : TRUE: 1[14]2

which is applicable to configuration (1), and which when applied yields

0[21 14 27 48 1]5.

As mentioned above, an update plan, P, is a bag of update schemes. For
any configuration C a development of C by P is defined to be

• C, if P contains no update scheme applicable to C
@ D, where D is a development of a configuration yielded by application

of an instantiation of an element of P to C.
The following plan, taken from (MEIJER, 1986) will develop any con

figuration having natural numbers x and y between locations A and B
and between C and D respectively to one containing the greatest common
divisor of x and y between these locations.

A[x]B C[y]D

A[x]B C[y]D

x> y: A[x - y]B,

x < y: Cry - x]D.
(4)

156 H.OSBORNB

3 Syntax

3.1 BMic Syntax

The basic syntax for update plans is given by the following context free
grammar.

(plan) ---+

(scheme) *

(scheme) ---+

(locator) * : (guard) : (locator) *

(guard) ---+

(expression)

(locator) ---+

(expression) [(expression)] (expression) .

(expression) ---+

(primary) I
(monadic) (expression)
(dyadic) (expression) (expression)

(primary) ---+

(constant)
(variable)

(variable) ---+

(lower case letter) +

(constant) ---+

(upper case letter) + I
(value)

UPDATE PLANS 157

9.2 Syntactic Sugar

Commands
The update schemes in (4) in section 2 are very restricted, in that they
can only be applied to numbers appearing between fixed locations. . More
useful update schemes would also allow one to specify the locations, and
might look like

A[a]B O[c1D a[z1b c[y]d

A[a]B O[c1D a[z1b c[y]d

z>y

z<y

a[z - y]b,

cry - z1d.
(5)

In the context of a larger plan, however, the applicability of such schemes
is not easily determinable. The obvious solution is to introduce some form
of command stream, and to rewrite (5) to

PO[pc]p pc[GOD a clqc a[x1b c[y]d x> y

PO[pc]p pc[GOD a clqc a[xJb c[y]d x < y

a[x - y]b,

cry - xJd.

Such an update scheme is called a command, and may be written as

GOD a c a[x1b c[y]d

GCD a c a[x]b c[y]d

x>y

x<y

a[x - y]b,

cry - x]d.

More generally, any update scheme exhibiting the pattern

PC[pc]p pc[OP arg]qc

may be rewritten as

OP arg next

Alternative right hand sides

(6)

(7)

Two update schemes having the same left hand side, such as (7) may be
rewritten to share the left hand side, so that (7) becomes

GC D a c a[x]b c[yJd

Omitting locations

x>y

x<y

a[x - y]b,

cry - x]d.
(8)

It is not always necessary to give both locations in a locator expression.
Any location not needed in the dynamic context (see section 4.5) may be

158 H.OSBORNB

omitted, so that (8) becomes, assuming that the length of a natural number
is fixed,

GOD a c a[x] c[y] x>y

x<y

a[x - y],

c[y - x].
(9)

Two consecutive sequences may be concatenated. Two expressions x[s]y
and y[t]z ~ay then be written as x[s]y[t]z or, if y is not needed in the
dynamic context, as x[s t]z.

Omitting guards

A tautological guard may be omitted.

4 Semantics

In the informal presentation in section 2, a store resembled a classical
computer memory, consisting of a sequence of cells each containing some
object. An equivalent, but for formal specification more useful viewpoint
is to see a store as a function from a countable set of locations to a set of
objects. Conceptually then, s 1 = 0 is equivalent to 'the cell at location 1
in store s contains the object 0'.

4.1 Configurations

As above, a configuration consists of a finite number of stores. The domains
of these stores are pairwise disjoint. All stores have the same range, which
is a superset of the union of their domains. For any update plan both the
number of stores in a configuration and the range of those stores is fixed.

4.2 Sequences

Since the domain of a store s is countable there is a complete ordering
on that domain, which we will assume given, and call <so The sequence
t between locations p and q in store s is defined to be the list of objects
s * [p .. q), where [p .. q) is the list lp, sucCs p, ... ,preds q], sucCs and preds

being the successor and predecessor functions defined by <so Again, a
singleton sequence will, where necessary, be identified with its element.
Any resultant ambiguity will be resolved by type information. For example,

UPDATE PLANS 159

a singleton sequence occurring as a location in a locator expression must
obviously be interpreted as its element, and not as a sequence.

4.3 Update Rules

The left and right hand sides of an update rule both define partial config
urations in a natural way. Consider the locator expression l[so .. sn]1'. This
can be interpreted by

I[l[so .. sn]1'] = f where f (l-r i) = Si.

A bag of constant locator expressions is well formed if the interpretations
of its constituent locator expressions are consistent, i.e. if

where E is defined by

f E 9 {::> Vl : f 1 = ..L V 9 1 = ..L V f 1 = 9 l.

As mentioned in section 2, an update rule (lhs,gua1'd, rhs) is applicable to
a configuration c if its left hand side is consistent with c (i.e. I[lhs] !: c)
and its guard is TRUE. The result of updating c by (lhs,gua1'd,rhs) is
given by

A[(lhs,guard,1'hs)] c = c'
where c' 1 =I[rhs] 1,I[rhs] l::j:. ..LI\I[lhs]!: cl\guard

= cl, otherwise.

4..4 Functions

The following functions will be needed in the discussion of the interpreta
tion of update plans. The following conventions apply.

1. N is the set of natural numbers.
2. Z is the set of integers.
3. £, is the union of the domains of the stores (locations).

The three functions presented here may be noted both infix and prefix.
-f-: (N X £,) I-t £, n -f- I = pred~ l.
-r: (£, X N) I-t £, 1 -r n = succ~ 1.
~: (£, X £,) I-t Z 1 ~ r = n, if I -r n = l'

= -n, if n -f- 1 = r.
The length function on sequences is noted #. It satisfies # [l..l -r n) = n
and # In -f- 1 .. 1) = n.

160 H.OSBORNE

4.5 Deriving Dynamic Contexts

Given an update scheme and a configuration, a substitution from variables
to (sequences of) constants, such as that given in (3) in section 2 can be
derived. This can easily be generalised to provide a method for, given an
update scheme, deriving a mapping from configurations to substitutions.
In the example above, rather than deriving the substitution (3) in section 2
the dynamic context c defined by

c config =f

would be derived.
Deriving constraints

where f l =
f m=

f a=
f b =

1
2
config 0
config (f l)

Given a locator expression, e = l[x]r, and a configuration c, there is a very
obvious constraint that any substitution s must satisfy if the instantiation
of e by s is to be applicable to c, namely

c* [s l,s r)=s x.

This applies, of course, to all locator expressions appearing on the left
hand side of an update scheme, and a set of constraints for any substitu
tion can be found that must be satisfied if the instantiation of the update
scheme is to be applicable. This is encapsulated il1. the follmving mapping,
where again singleton sequences are, where necessary, identified with their
elements.

C[ll[sl]rl ... In[sn]rn] c t-+ f

if f const = const, if const is a constant

f sI = c * [J ll, f rl)

f sn = c* [f In,f rn)

4.6 Interpretation

Given the obvious semantics of a substitution, the semantics of an update
plan can now be defined. For notational convenience we redefine C to map

UPDATE PLANS 161

from update schemes to substitutions, rather than from bags of locator ex
pressions to substitutions. Here C[(lhs,guard,rhs)] is equivalent to C(lhs]
as defined in section 4.5. The set of instantiable update rules for an update
scheme s in a configuration c is then given by (c[s] c) *s and will be,
for the sake of brevity, written SC[s] c' The update of a configuration by a
scheme is then simply

Us coni sch = (A* SChC[sch] con!) coni

and therefore the update of a configuration by a plan is

Up plan coni = uj ((Usconf)* plan)

which leads to the following definition of the semantics of an update plan

U plan conis = uj ((Up plan)* conis).

The meaning of an update plan p applied to an initial configuration i is
then

y (U p {i}).

5 Implementational Aspects

Resolving constraints
Obviously, the derivation method given in section 4.5 can only be a first
approximation in any implementation, since the si, li and ri's can all be
complicated expressions, containing both constants and variables. Some
method is needed for resolving these constraints to some simple substitution
function. Since this is simply a question of manipulating symbols, C is
redefined to produce text rather than a function. The interpretation of the
text is the obvious one.

C[h[SI]i"l .,. In[snjrn] = {(SI

(h
(rl

c* [h,I'I))

+- # SI I'1)

-4 h # SI)

c* [in, i"n))

+- # Sn I'n)

162 H.OSBORNB

Here the first reduction step has already been executed, deriving expres
sions for 11 ... In and rl ... rn. However, Si, Ii and ri can themselves be
complicated expressions, which need to be transformed. The aim is to ar
rive at a set of constraints of the form {(v,expr)lc E variable}. This is
achieved by a simple rewriting function, the result of which is then filtered
to leave only those constraints of the desired form. The rewriting function
'R, is defined by

'R, c=cU

{(r, I) I (I, r) E c}U

{(a, 0 r) I (0 a, r) E c} U

{(al,II$ a2 r),(a2,$1I al r),I($ al a2,rEc}.

where 0 is a monadic function and 0 its inverse, and $ is a dyadic function
and "$ and $11 its left and right inverses, respectively. In the current pro
totype only those functions having deterministic inverses may be inverted.
The resolution of the constraints is the least fixed point of 'R, c filtered to
leave only constraints of the desired form.

6 Examples

An update plan for deriving greatest common divisors has already been
given. For an example of anon-trivial application of update plans see (MEI
JER, 1986). Update plans have also been written for TiM (FAIRBAIRN and
WRAY, 1987) and are being developed for other. abstract machines. The
following examples are intended to illustrate some of the possibilities of
update plans.
Semaphores
(Assuming a static context in which n is a natural number)

Turing Machines

P[s] s[n+1]
V[s] srn]

srn].
s[n+1].

A classical definition of a Turing machine, such as given in (LEWIS and
PAPADIMITRIOU, 1981) usually is of the form

(K,~, 8, s).

where K is a set of states, ~ is the alphabet, s is the initial state, and 8
is the transition function, 8 ~ (K X ~) ---- (K X (~ U {L, R} ». The same
machine can be specified by an update plan.

K[k]

UPDATE PLANS

I[P] p[O"] : 8(k,0") = (l,~)

: 8 (k, 0") = (l, L)

: 8(k,0") = (l,R)

A stack arithmetic machine
PUSH x SPIt]
POP SP[s] s[x]t
PLUS SP[s] s[x]t[y]
MONMIN SP[s] s[x]

..

..

..

..

References

x

K[l]
K[l]
K[l]

I[l-p]
I[P ~ 1].

SP[sj s[x]t.
SPIt]
SPIt] t[x +yj.

sf-xl·

163

BMF (1989): International Summer School on Constructive AIgorithmics, 1989 held on
Ameland, the Netherlands.

FAIRBAIRN, J. - WRAY, S. (1987): Tim: A Simple, Lazy Abstract Machine to Execute
Supercombinators. In Gilles Kahn, editor, Functional Programming Languages and
Computer Architecture: Lecture Notes in Computer Science, 274. Springer Verlag,
Berlin, Heidelberg, New York, London, Paris, Tokyo.

LOCK, H. C. R. (1990): An Abstract Machine for the Implementation of Functional Logic
Programming Languages. Technical Report, GMD Forschungstelle an der Univer
sitat Karlsruhe, Vincenz-PrieBnitz-StraBe 1, Karlsruhe, BRD. Report on ESPRIT
Basic Research Action No. 3147 (the Phoenix Project).

LEWIS, H. R. - PAPADIMITRIOU, C. H. (1981): Elements of the Theory of Computation.
Prentice-HalI.

MEIJER, H. (1986): Programmar: A Translator Generator. PhD Thesis, Universiteit van
Nijmegen, Toernooiveld 1, Nijmegen, The Netherlands.

MEIJER, E. (1990): A Taxonomy of Function Evaluating Machines. Technical report,
Universiteit van Nijmegen, Toernooiveld 1, Nijmegen, The Netherlands. Report on
ESPRIT Basic Research Action No. 3147 (the Phoenix Project).

PEYTON JONES, S. L. P. -SALKILD, J. (1989): The Spineless Tagless G-machine. Univer-
sity College, London. .

WARREN, D. H. D. (1983): An abstract Prolog Instruction Set. Technical Report 309,
Artificial Intelligence Center, SRI International, Menlo Park, California, USA.

Address:

Hugh OSBORNE

Department of Informatics
Faculty of Mathematics and Informatics
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands

