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Abstract 

We show how the Bird-Meertens formalism (BMF) can be based on continuous algebras 
such that finite and infinite datatypes may peacefully coexist. Until recently the theory 
could only deal with either finite datatypes (= initial algebra) or infinite datatypes (= 
final co-algebra). In the context of continuous algebras the initial algebra coincides with 
the final co-algebra. Elements of this algebra can be finite, infinite or partial. We intend 
to use EBMF for semantics directed compiler generation by combining initial algebra 
semantics with the calculational power of BMF. 

1 Introduction 

In contrast to the consensus about the formal definition of syntax by means 
of some form of context free grammars, e.g. Backus-Nauer Form (BNF), 
there is no agreement about a concise, readable and easily manipulat­
able formalism for defining the semantics of programming languages. We 
think that the Initial Algebra Semantics of the ADJ group (GOGUEN, et 
al, REYNOLDS 1977) combined with the calculational power of the Bird­
Meertens formalism or SquiggoZ is very adequate for this purpose. In this 
paper we show how BMF (BACKHOUSE, 1988; BIRD, 1976; MEERTENS, 
1986; MALCOLM, 1989b) can be built on the same ~asis as IAS: continu­
ous algebras. Since programs mayor may not be recursive, our formalism 
should be able to deal with both finite and infinite datatypes at the same 
time. Continuous algebras allow this. 

Both BMF and IAS are firmly based on algebraic grounds. The exten­
sive use of initiality properties is perhaps their most characteristic feature. 
Datatypes are initial algebras and programs are homomorphisms (called 
caiamorphisms by Meertens) from these algebras to other, similar alge­
bras. In the context of semantics 'programs' are datatypes and semantic 
functions are catamorphisms. If A is initial then there exists a unique cata-

1 Report on the Phcenix project: Esprit Basic Research Action 3147 



166 E. MEIJER 

morphism from A to any other algebra of the same signature, thence the 
following diagram commutes: 

'Y 
B +---' A 

D-C 
1/J 

In other words 7J', = 'Ij;.r.p. Initiality forms the basis for transformation 
steps, the promotion law, by putting 7J = id or 'Ij; = id and for correctness 
proofs, the unique extension property, by putting 7J = id and 'Ij; = id. The 
beauty about this is that explicit induction proofs can be circumvented by 
simply checking some homomorphic properties, i.e. by calculation using 
equational reasoning. 

We use the above ideas to develop a transformational approach to 
semantics directed compiler generation. First a semantics is defined (as a 
catamorphism) which is as abstract as possible. Next an efficiency improv­
ing transformation is defined as an injective homomorphism on the target 
algebra. By applying the promotion law we can calculate a new, more 
efficient, semantics. 

This paper is couched in fairly informal terms, a more formal account 
IS (MEIJER) and (FOKINGA), 1991. 

1.1 Overview 

First we review the basic notions of continuous functions, cpos and least 
fixed points (SCHMIDT, 1986). Then in section 4 we extend some of the 
Squiggol theory (FOKINGA, 1990); (MANES) and (ARBIB, 1986) to con­
tinuous algebras (GOGUEN et aI, 1977). Various techniques for reasoning 
and calculating with fixed points are discussed in sections 3 and 5 . The 
most important ones are based on a promotion law for fixed points, which 
allows us to extend transformations on nonrecursive constructs to recursive 
constructs. Finally we show several examples among which an alternative 
theory of infinitary objects and the definition of the meaning of flowcharts. 

2 Continuous Functions and their Least Fixed Points 

In this section a short overview of continuous functions and their fixed 
points is given, thereby introducing a number of notational conventions that 
come from Meerten's and Bird's Algorithmics. Readers already familiar 
with this notation may skip to section 4. 
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2.1 Partially Ordered Sets 

A partially ordered set or poset is a pair (D,!;) consisting of a set D 
together with a partial order !; on D that is 
reflexive a!; a 
transitive a !; b Ab!; c => a !; c 
antisymmetric a !; b Ab!; a => a = b 

A set X ~ D is a chain if all elements in X are comparable. Thus for 
all a,b E X 

a!; b V !; a. 

The terms 'totally ordered set' and 'linearly ordered set' are used as syn­
onyms for chain. 

The least element, if any, in a poset is usually denoted by .L, i.e. for 
allaED 

.L !; a. 

Given a, bED, their join a U b is the least element in D that is greater 
than both a and b. In general it is not true that every two elements in D 
have joins 

c = a U b == (Tld :: c !; d == a !; dAb!; d). 

The dual counterpart of join is called meet and is denoted by n. An easy 
to verify law concerning join is .L U a = a U .L = a. The least upperbound of 
a subset X ~ D is denoted by uj, conventionally written as U. Not every 
X ~ D need have a lub 

a = UjX == (Tic:: a!; c == (Tlb EX:: b!; c)). 

2.2 CPOs 

A poset D is a complete partial order or w-cpo if it contains a bottom 
element and each chain D has a lub, so uj X does exist for any chain 
X ~ D. For a chain X we can interpret Uj X as the 'reduction' of U over 
X, since Uj satisfies: 

ujO = .L, 

uj({x} U X) = x U (UjX), 

(this is not a definition of uj !) From now on we assume that all sources 
and targets of functions are cpos unless stated otherwise. 
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A function fED' i- D is monotonic if it respects the ordering on D, 

f a ~ f b ~ a ~ b. 

A function fED' i- D is continuous if it respects lubs of chains, let X be 
a chain: 

(f . Uf) X = (uj . f*) X, 

where f*X = {f x I x E X}, so f* satisfies the following equations: 

f*{} = {}, 

f*({x} UX) = {f x} U (f*X). 

If f is continuous then it follows that f is monotonic by taking the chain 
X = a ~ b. 

2.3 Building Domains 

It is a reassuring fact that any (recursive) domain built from cpos using 
sums, products and arrows is again a cpo and that any function built using 
lambda notation is continuous. 

The (lazy) product DIID' of two cpos D and D' and its corresponding 
operation on functions are defined as: 

DIID' = {(d,d') Id E D, d' E D'}, 

(fllg) (x, x') = (f x, 9 x'), 

with ordering (Xl, X2) ~ (YI, Y2) == Xl ~ Yl /\ x2 ~ Y2. The name lazy 
product stems from the fact that the least element of DIID' is (..L, ..L). 

The (lifted) sum DID' of D and D' and the corresponding operation 
on functions are defined as: 

DID' = {..L} U {(O,d) Id E D} U {(I,d') Id' E D'}, 

(f I g) ..L = ..L, 

(f I g) (O,x) = (O,f x), 

(f I g) (1, x') = (1, 9 x'), 

with ordering x ~ Y == (x = ..L) V {x = (i, x') /\ Y = (i, y') /\ Xl ~ yl). 
The function space D' i- D of continuous functions from D to DI is 

ordered by f ~ 9 == ('Vd E D :: f d ~ 9 d). The corresponding action on 
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functions is the 'enveloping' function: 

(J+-g) h = i· h· g. 

Note that we write arrows from right to left; this is because function com­
position also goes right to left. If we curry a function we write the arrow 
from left to right as usual. 

Lifting a domain D adds an additional bottom element: D..L = {1.} U 
D, with ordering d !; d' == d = 1. V d !;n d'. Its associated operation on 
functions is the strictifying function: 

i..L 1. = 1., 

i..L d = i d, d E D, 

The one point set is denoted by 1 and can be used to lift constants of type 
A into nullary functions of type A +- 1. The only member of 1 ca.lled void 
is denoted by O. 

2.3.1 Functors 

The above domain constructors or bi-functors illustrate the principle that 
for each binary domain constructor t there is a corresponding combinator 
structuring functions i E B +- A, g E D +- C into i t 9 E B t D +- A t C 
that respects identity and composition: 

id t id = id, 

it 9 . h t i = (J . h)t (g. i). 

A mono-functor t is a unary type constructor; its operation on functions 
satisfies: 

idt = id, 

it· gt = (J. g)t. 

A polynomial functor is any functor which can be constructed from constant 
functors Dtc = C, it = id or the identity functor Dt = D, it = i through 
(recursive) combinations of product and sum operations. We assume a.ll 
our functors to be polynomial. 

Apart from the combinators I (sum), +- (arrow) and 11 (product) we 
will also need the related combinators 6. (doubling), 1t (sharing), 1 (selec­
tion), .. ,~ (lifting), «,)) (projections), and - (reversaQ. 
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t (f+--g) h = f . ht· g, 

D.. x = (x,x), 

(f 11 g) = fllg· D.., 

(f t g) .1. = .1., 

(f t g) (0, X) = f x, 

(f t g) (l,x') = 9 x'. 

x « y = x, 

x» y = y, 

• c x = c, 

(f ffi g) x = (f x) EB (g x), 

xEBy = y EB x, 

For the above combinators a large number of laws hold of which we state 
only a few: 

allb· clld = (a· c)lI(b· d), 

allb· c 11 d = (a· c) 11 (b· d), 

a 11 b· c = (a· c) 11 (b· c), 

( . a 11 b = a, 

« . allb = a . «. 
In subsequent derivations the following two simple .A-promotion laws will 
save a lot of work, since we don't have to invent variable-free versions of 
functions in order to calculate 

f· (.Ax.E[x]) = .Ax.f (E[x]), 

(.Ax.E[x]) . 9 = .Ax.E[g xl. 

We prove them both in one go 

(f . .Ax.E[x] . g) y 

= 
(f . .Ax.E[x]) (g y) 

. f (E[g y]) 

= 
(.Ax.f E[g x]) y. 
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2.4 Least Fi;r;ed Points 

An element d E D is a :fixed point of fED +- D if f d = d, it is a least 
fixed point if for any other fixed point d' it holds that d !; d'.-

We now have collected enough definitions to prove that continuous 
functions do have least :fixed points. Let D be a cpo and fED +- D a 
continuous function. Then f has a least fixed point /Lf. The proof is by con­
struction of the required element. Let iterate E (D +-- D) -> ({D} +- D) 
be defined as 

iterate f x = {i x liE IN }. 

Then iterate satifies iterate f = {_} 0 (f*' iterate I), where {_} x = {x}. 
The least fixed point of f is obtained by (this is Kleenes first recursion 

theorem): 

/L E (D +- D) -> D, 

/Lf = (ul . iterate I) .L 

First we show that f (/LI) = /Lf by calculating: 

f (/LI) 

= 
(f . UI . iterate I) ..L 

= {iterate f .1. is a chain} 

(ul . f* . iterate I) ..L 

={l.ux=x} 

..L U (UI . f * . iterate I) ..L 

= {property of U} 

U I ({..L} U (f* . iterate I) ..L) 

= {lifting} 

U I (( {-} 0 (f*' iterate I)) ..L) 

= {property of iterate} 

(UI . iterate I) ..L 

= 

/Lf· 

Next we show that /Lf is also least. Assume that e is also a fixed point of 
f then f e !; e and 
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JLf r;;; e 

=={fe[;e} 
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(U/ . iterate 1) 1- r;;; (u/ . iterate f) e 

<:= {f monotonic} 

true. 

An important fact is that the least fixed point operator JL itself is continuous. 

3 Calculation and Induction Rules for Fixed Points 

Although we will try to avoid using (any form of) induction as much as 
possible, there are occasions where it is inevitable to use the Fixed Point 
Induction Principle (STOY, 1977). The three Fixed Point Promotion Laws 
allow easy calculation in the presence of fixed points. 

3.1 Fixed Point Induction 

Let FED +- D a continuous function from cpo D into itself and P an 
inclusive predicate on D, then: 

P (JLF) <:= P 1-

/\ p. F <:= P. 
V 

3.1.1 Inclusive Predicates 

A predicate is called inclusive or admissible if it respects lubs of chains, for 
any chain X: 

(/\/. P*) X:::} (p. Uf) X. 

Clearly not every predicate is inclusive, but if f and g are continuous 
the predicate P (f, g) == f = g is inclusive and if f is continuous and g 
monotonic then P (f, g) == f r;;; g is inclusive (BIRD, 1976). 
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3.2 Fixed Point Promotion Theorems 

In our derivations we often end up at the expression 9 (J-Lf), and the ques­
tion is: can we proceed by putting 9 (J-Lt) = J-Lh for some h. This question 
is answered by the following fixed point promotion theorems. 

3.2.1 FPPT1 

€!> A,B cpos. 
€!> f E B +- B, hE A +- A continuous. 
€!> 9 EA+- B strict and continuous. 
€!> g. f = h· g. 

Then J-Lh exists and satisfies 

9 (J-L f) = J-Lh. 

In diagrammatic form the theorem reads 

f 
B-B 

A-A 
h 

J-Lf 

A large number of applications of the fixed point promotion theorem were 
investigated by (MEYER, 1985). He actually proved a slightly stronger 
theorem which only requires h to be monotonic. Although mentioned as 
an example property of fixed points in (STOY, 1977), the theorem was not 
put into use by that author. The following fixed point induction proof is 
taken from (STOY 1977). Let P (x, y) == 9 x = y. Since 9 is assumed to be 
strict P (..L,..L) holds. So we may assume P (x,y) and calculate: 

P (f x, h y) 

9 (f x) = h y 

== {assumption} 

h (g x) = h y 

== {induction hypothesis} 

h y = h y 

true. 
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Hence P (J.Lf, J.Lh), i.e., 9 (J.Lf) = J.Lh. 
A fixed point operator cP is called uniform if it satisfies FPPTl. The 

least fixed point operator J.L is the unique uniform fixed point operator 
(GUNTER, et al1989). 

3.2.2 FPPT2 

When constructing circular datatypes, bound variables are used a lot to 
'tie knots'. The following direct corollary of FPPT1 is formulated in terms 
of bound variables 

9 J.L(Ax.E[x]) = J.L(Ax.E'[x]) ~ 9 E[x] = E'[g x]. 

The proof uses the lambda-promotion law twice: 

g. (Ax.E[x]) 

AX.g E[x] 

Ax.E'[g x] 

= 
(Ax.E[x]) . g. 

3.2.3 FPPT3 

The third fixed point promotion theorem can be used if all else fails. In 
order to apply it f and 9 must be known but not h. If in addition we know 
that i E C +- Cl is a continuous inclusion such that g·i = id, in other words 
Cl is a retract of C (this happens quite often), we can uniquely calculate 
h provided f is canonical. If Cl is a retract of C we write Cl 5:i,g C. 

Let C' 5:i,j C and D' 5:k,1 D, then fED +- C is canonical iff 

j c = j c' => (1 . f) c = (l. f) c'. 

We can now formulate a second promotion theorem FPPT3 (DE BRUIN, 
and DE VINK, 1989) as follows. Let, 

• C, Cl cpos such that C' 5:i,g C, so 9 . i = id, 
• f E C +- C continuous and canonical, so 9 c = 9 Cl => (g. 1) c = 

(g.1) Cl, 

• 9 strict and continuous, then 
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In order to apply FPPT1 we have to show that f being canonical implies 
that g . f = h . g where h = (g +- i) f = g . f . i. 

g c =g c 

{i. 9 = id} == 
(g . i . g) c = g c 

{t canonical} :::::} 

(g . f . i . g) c = (g . f) c 

{h=g·f·i}= 
(h . g) c = (g . f) c. 

4 Reflexive Domains and Continuous AIgebras 

It is possible to work with infinitary objects when a datatype definition is 
interpreted as a reflexive domain equation or initial continuous algebra. A 
continuous t-algebra (A, cp) is a pair consisting of a domain A called the 
carrier set and a strict continuous signature cp EA+- At (GOGUEN, et al, 
REYNOLDS, 1977). Homomorphisms between such algebras are strict and 
continuous structure preserving mappings. Let (A, cp) and (B,'I/J) be two 
continuous t-algebras, a function h E B +- A is called a t-homomorphism, 
if 

Ell h is strict (i.e. h 1. = 1.) and continuous. 
Ell h· cp = 'I/J . ht. 

In diagrammatic form the homomorphism property states that the 
following diagram commutes: 

A~At 

h 1 1 ht 

B~Bt 
tj; 

4.1 Catamorphisms 

A catamorphism (from the Greek preposition KQTQ meaning 'downwards' 
as in catastrophe) is a homomorphism with as source an initial algebra. 
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The class of continuous t-algebras has initial algebra J.Lt consisting of 
a type L and a function in EL+- Lt such that 

i· in = rp' it 

has the unique strict solution i = QrpDt for any strict rp EA+- At. When 
the subscript t is clear from the context it will be omitted. In other words 
i = QrpD is the unique homomorphism that makes the following diagram 
commute. 

in 
L +--- Lt 

Q~D 1 1 Q~Dt 
A +--- At 

~ 

The initial algebra (L, in) which is the 'least' solution of the domain equa­
tion L = Lt (hence our notation J.Lt) can be constructed by means of 
Scott's inverse limit construction. In short, the inverse limit construction 
constructs a chain of cpos whose lub is the required solution. The alge­
bra (L, in) is isomorphic with the algebra (Lt, int), with out E Lt +- L 
and in EL+- Lt strict functions such that out· in = id, in· out = id 

and ,u(inJ..out) = id. For more details on the construction of L we refer 
to (SCHMIDT, 1986) since this requires a fair amount of purely technical 
detail. We shall only prove that L is initial indeed, i.e.: 

h = QrpD := J.L(rpJ..out) == (h strict) /\ (h· in = rp' ht). (1) 

The =? part of the proof follows from the proposition that for strictness 

. preserving functors t the function ,u( rpJ..1/;) is strict, if rp and 'ljJ are strict. 
For proving -{= we use fixed point induction using the inclusive pred-

icate P(F, G) = h· F = G with F inl-out and G = <,DJ-out. The base 
case P (1.,1.) follows from strictness of h. So assume P (j, g) == h· f = 9 
and calculate: 
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P (F i,G g) 

h . in . it . out = SO • gt . out 

== {h. in = cp. ht. functor calculus} 

SO· (h· f)t· out = SO· gt· out 

== {induction hypothesis} 

SO • gt . out = SO • gt . out 

true. 

Hence P (OinD, OsoD), and since OinD = id we are done. 

177 

In the framework of continuous algebras an initial algebra is far richer 
than the conventional word algebra or Herbrand universe. Initial contin­
uous algebras contain proper, partially defined and infinite elements. The 
imposition of strictness and continuity upon homomorphisms forces these 
elements to behave. Especially the strictness requirement is not to be taken 
too lightly, least fixed point semantics is a useful and powerful tool but 
whenever possible we should do without it. 

Often we will use the traditional 'algebraic data type' notation for 
initial algebras, i.e., 

IN ::= ° 
10" IN 

instead of (IN ,0 1 0") = JLt where Nt = 1 I N. Also instead of Osoo ! 
... 1 SOn-ID we write Osoo, ... , SOn-ID. Using such instantiations for specific 
datatypes makes formulas much more readable. 

When interpreting the definition for IN as the initial word algebra 
we have: 

IN ={O,O"O,(O"·O")O, ... }. 

When interpreting it as an initial continuous algebra we get: 

IN = {.1..,O,O" .1..,0" 0,(0"'0") .1..,(0"'0") 0, ... ,co}. 

Intuitively we can see .1.. as a yet unfinished number. 
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4.2 Anamorphisms 

By reversing the arrows in the catamorphism diagram we get anamorphisms 
(from the Greek preposition QVQ meaning 'upwards' as in anabolism): 

out 
L ~ Lt 

K<p]i i KIO]t 
A +---- At 

10 

with K <p] a strict and continuous function which makes the diagram com­
mute. In (PATTERSON, 1988) anamorphisms are called generators, since 
they generate an L object of the required structure from a given 'seed' 
value taken from A. 

By dualizing the proof of (1) we can prove that (L, out) is a final 
co-algebra: 

h = K<p] := JL(inJ-<p) == (out· h = ht· cp) 

4.3 Paramorphisms 

Not all functions on a data type are cata- or anamorphisms. There is for 
example no simple cp such that: 

lac E IN -+ IN , 

lac = OcpD· 

The problem with the factorial function is that it 'eats its argument and 
keeps it too' (WADLER, 1987). 

lac 0 = 0" 0, 

lac (0" n) = 0" n X lac n 

= ((x)· (0" 11 lac)) n. 

Paramorphisms were invented by (MEERTENS, 1990) to cover this type of 
recursive pattern, for strict cp: 

[cplt = JL()..I·cp· (id 11 f)t· out). 

The factorial function above can be defined as (0" 0 I (x) . (q 11 lac)]. 
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A nice result is that any paramorphism can be written as the com­
position of a cata- and an anamorphism. Let (L, in) = J.Lt be given, then 
define 

For the naturals we get: 

X:f: = (LIIX)t, 

h:f: = (idllh)t, 

(M, IN) = J.L:f:. 

X:f: = (IN IIX)t 

= IllN IIX 

(IN* [11 >+) = J.Lt, 
hence J.L:f: is the type of 'lists of natural numbers'. 

Now define preds E M t- L as follows: 

For the naturals we get: 

preds E IN* t-lN , 

preds = [id I .6. . out]. 

That is given a natural number N = (J"n 0, the expression preds N yields 
the list (J"n-l 0 >+ ... >+ 0 >+ [ 1. 

Using preds we start calculating: 

OfPDt . preds 

= 

= {theorem proved in section 6.1} 

J.L()..f·fP· f:t:·.6.t· out) 

= {definition t and A} 

J.L()..f·fP· (idllJ)t· (id 11 id)t . out) 

= {functor calculus} 

J.L( )..f·fP . (id 11 J)t . out) 
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Thus [cp]t = QcpDt . preds. Since QIND t = id we immediately get preds = 
[IN]t· 

5 Calculation and Induction Rules for Data Structures 

5.1 Unique Extension Property 

Since cata- and anamorphisms are unique, we have the unique extension 
property: 

f = 9 = QcpD == (f strict 1\ f . in = cp' ft) 1\ (g strict 1\ 9 . in = cp . gt). 

f = 9 = [cp] == out· f = ft· cp) 1\ out· 9 = gt· cp). 

The UEP can be used to prove equality of two functions f and 9 without 
using induction, but by only checking the promotability property. 

5.2 Promotion Law 

The promotion law: 

f· QwD = QcpD ~ (f. W = cp' ft) 1\ (f strict) 

[cp] = Kw] . f ~ (w· f = ft· cp) 

can be used to transform one function into another (computationally more 
efficient) one. 

The promotion law for catamorphisms follows from the FPPT 
(FOKKINGA, 1990): 
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i . J.L( 7fi?-out) = J.L( cp?-out) 

<:= {FPPTl} 

t ~ 
«(t.) . (7fi+-out)) 9 = «cpt-!-out) . (t.)) 9 

i . 7fi . gt . out = cp . (t . g)t . out 

i . 7fi . gt . out = cp . it . gt . out 

== {I .1j; = 'P . It} 
cp • it . gt . out = cp . it . gt . out 

true. 
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The promotion law for anamorphisms can be proved by fixed point induc­

tion using the inclusive predicate P (H, G) == H = G· i with H = in?-cp 

and G = in?-7fi. 

5.3 Partial Structural Induction 

Fixed point induction is useful when we want to prove a property for a 
specific recursively defined object. If we want to prove a property for each 
a E A we use partial structural induction. Let (A, cp) be a continuous 
t-algebra and P an inclusive predicate on A, then 

Pa<:=Pl. 

1\ p. cp <:= A~ . Pt, 
'cl I 

where At E Bool +- Boolt, generalizes normal conjunction. 

6 Examples 

As an illustration of the elegance of cata- and anamorphisms based on ini­
tial continuous algebras, we will present an alternative theory of infinite 
data structures by building infinite objects using the fixed point opera­
tor explicitly and compare them to infinite objects built by anamorphisms. 
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Subsection 6.3 uses the FP PT to give semantics to a language of flowcharts, 
an archetypical example of the use of our extended BMF for deriving pro­
gramming language implementations. We start by giving some interesting 
theorems about ana- and cata.-morphisms taken from the excellent thesis 
(PATERSON, 1988). 

6.1 Theorems about Ana- and Catamorphisms 

The composition of a catamorphism QcpD and an anamorphism ['IjJ] is equal 
to: 

The proof is by fixed point induction using the inclusive predicate 

P (F, G, H) == F· G = H with F = cpJ.-out , G = inJ.-'IjJ and H = cpJ.-'ljJ. 
The base case P (..l,..l,..l) is obviously true. So assuming I . 9 = h we 
calculate: 

cp' It . out . in' gt . 'IjJ = cp . ht . 'IjJ 

cp' (f. g)t. 'IjJ = cp' ht· 'IjJ 

cp' ht· 'IjJ = cp' ht· 'IjJ 

true. 

The following interesting laws can be used in conjunction with the 'the­
orems for free theorem'. Informally the RWB theorem (WADLER, 1989) 
states that any polymorphic function I E a:): ~ at is a natural transfor­
mation :): ,..:- t, i.e. for strict 9 we get the following theorem for free: 

The first law shows the equivalence of some cata- and anamorphisms: 

The proof is straightforward: 
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As an example of this law take the binary trees based on the functor 

Xt = 11 a 1 XliX, 
(tree a, [11 [-11 *) = J.£ t· 

Then reversing a binary tree can be defined as either: 

reverse = Gin· id 1 id 1 "'D, 
reverse = [id 1 id 1 ",. out], 
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Another useful law concerns the composition of two morphisms of different 
signature: 

GcpOt· Gin ·"pOt = GCP ·"pDt ~ it ."p = "p . ft, 
["p. out]t· [cp]t = ["p. cp]t ~"p. it = ft ."p. 

The proof is the promotion theorem: 

= 

hence by the promotion law for catamorphisms we have GcpOt . Gin ·"pOt = 
GCP . "pOt· 

A nice application of this law is the fact that reverse· reverse = id, 
this directly follows from the fact that id 1 id 1 '" E t ...:- t and '" . ,...., = id. 
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6.2 An Alternative Theory of Infinite Data Structures 

In (MALCOLM, 1989a) infinite data structures were presented using a vari­
ant of anamorphisms. In his approach the objects generated by anamor­
phisms constitute a completely different type than the types reduced by 
catamorphisms. Technically speaking Malcolm works in the category Set 
where initial algebras are least fixed point of functors while greatest fixed 
points yield final co-algebras which contain only infinite elements (MANES 
and ARBIB, 1986). As we have seen however it is quite nice to be able 
to mix cata- and anamorphisms and also many catamorphisms can be de­
scribed as anamorphisms. In this section we present an alternative theory 
of infinite data structures. We will repeat some of Malcolms calculations 
by building infinite objects using both anamorphisms as well as using the 
fixed point operator explicitly. It is not clear to us yet when it is better 
to use the one or the other. As a rule of thumb we have that systematic 
generation of infinite objects is most naturally described by anamorphisms 
while building a specific infinite object is done by tying knots with the least 
fixed point operator. 

6.2.1 List of Function Results 

The data type of cons-lists are defined as follows: 

Xt 11 alIX, 
ht = id 1 idllh, 

(a*, in) = p,t where in [ 11 >+. 
As discussed earlier, this type contains finite, partial and infinite lists. 
Infinite lists can be constructed using the least fixed point operator p,. An 
example of an infinite list is zeros = p,( AzeTos.O >+ zeros). 

List catamorphisms GcpD and anamorphisms ['ljJ] are defined as follows 

GcpD E (3 ~ a*, 

G'PD' in = 'P' G'PDt, 
['ljJ] E a* ~ (3, 

out· ['ljJ] = ['ljJ]t· 'ljJ. 

Let 'P = e 1 EB, then according to the conventions introduced in section 4.1 
we write Ge, EBD· From strictness and by instantiating in and Ge, EBDt we 
get the following equations 
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Ge,61D .1.. = .1.., 

Ge,61D [ ] = e, 

Ge, 61D . >+ = 61' idllGe, 61D· 

Ge,61D recursively replaces [ ] by e and >+ by 61. 
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For readers not familiar with the Squiggol notation the above defini­
tion probably may look a little daunting. In a more traditional functional 
programming setting one would write: 

and list catamorphisms are written using pattern matching as: 

h [] = e, 

h (a >+ as) = a 61 (h as). 

The promotion theorem is instantiated for lists as follows: Let f E,+- (3 
be a strict function such that f· 61 = ®. idllf, in other words f (a 61 as) = 
a ® (f as), then f· Ge, 61D = Gf e, ®D· 

Perhaps the most often used homomorphism on lists is map; define 
it = id I fllid, then for f E f3 +- a, 

f* E (3* +- a*, 

f* = Gin' f:j:D 

= or ], >+ . fllidD 

f* = [it· out]. 

In more traditional notation: f*[ 1 = [ 1, f*(a >+ as) = (f a) >+ (fMS). 
Using list promotion it is easy to verify that f* . g* = (f. g)* and 

id* = id; * is a functor. 
Another law concerning * that we will need is the following, let f be 

a strict function, then 

f· GcpD = G'if1D . g* ~ f· cp = 'if1. it· g:j:, 

[cp] . f = g*' ['if1] ~ cp' f = g:j:. ft· 'if1. 

The law can be proved (for catamorphisms) by fixed point induction using 

the inclusive predicate P (A, B, C) == f· A = B· C where A = cpJ..out , B = 

'if1J.. out and C = in· gJ..out. 
We have already seen the definition of natural numbers: 
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IN ::= 0 

ler IN . 

An IN -homomorphism Ge, cpO E a+- IN is defined as: 

Ge, cpO 0 =e, 
Ge, cpO . er =cp . Ge, cpD· 

A more useful example of an infinite list than zeros as given above, is the 
list of all natural numbers: 

nats = JL(.\ns.O >+ er*ns). 

The recursive pattern occurring in nats appears quite often (BIRD, 
and WADLER, 1988) so it deserves to be defined as a separate higher order 
function: 

iterate E (a* +- a) +- (a +- a), 

iterate 1 x = JL(.\xs.x >+ 1*xs). 

The first n elements of iterate 1 x can be computed in 0 (n) steps assuming 
that 1 x can be computed in 0(1) steps. It is also possible to specify iterate 
by means of an anamorphism: 

iterate' f = [(1,) . id 1t J] 

= JL('\h.>+. id 1t (h. 1)). 

(Remember that (1,) is the right injection function). This anamorphism 
also builds the infinite list x >+ 1 x >+ (f . 1) x >+ ... without building 
a cyclic list but by using an accumulating argument. A big difference 
between iterate and iterate' is that iterate' is by definition strict in its 
second argument. 

Now let 9 . f = h . 9 then 

g* . iterate 1 = iterate h· g. 

Assuming that (g. r) x takes O(n) steps, this law turns an O(n2 ) algorithm 
into an O(n) algorithm. Using FPPT2 we can calculate: 
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(g* . iterate f) x = (iterate h . g) x 

g* J.L( AXS.X >+ f *xs) = J.L( AXS.g x >+ h*xs) 

<= {FPPT2} 

g* (x >+ f*xs) = 9 x >+ (h· g)*xs 

9 x >+ (h· g)*xs = 9 x >+ (h· g)*xs 

true. 
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For strict 9 it is also possible to apply the law we derived for maps since 
we have: 

(1, ) . id it f . 9 

(1,) . 9 it (f. g) 

( 1, ) . 9 it (g . h) 

(1,) . gllg . id it h 

= 
g:j: . gt . (1,) . id it h. 

The following corollary may be used to derive an efficient computation of 
the list of function results. Let f = Ge, <pD be a IN -homomorphism, then 
f*nats = iterate e <po Informally it states that instead of first building an 
intermediate list of naturals, and then replacing each occurrence of 0 by e 
and (j by <p in each natural in that list, we might as well directly build a 
list of /3's built of e and <po 

6.2.2 Initial Segments 

Besides the recursive pattern ... >+ / x >+ ... generated by iterate f x, 
the pattern a >+ a EB ao >+ (a EB ao) EB a 1 >+ . .. also appears quite often in 
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practice. The function scan takes a possibly infinite list· ao >+ al >+ ... 
into the latter sequence given a seed a and an operator 131 

scan (131) a as = J..L(>,xs..a >+ (xs y as)). 
EB 

Informally y (zip, think of a 'zipper') is defined as: 
EB 

(ao >+ al >+ ... ) Y (bo >+ b1 >+ ... ) = ao 131 bo >+ al 131 b1 >+ .... 
EB 

Just like iterate the first n elements of scan (131) a as can be computed in 
O(n) steps assuming that x 131 y can be computed in 0(1) steps. An appli­
cation of scan is the function inits which returns the list of the reversed 
initial segments of a cons-list 

inits = scan (>+) [ ]. 

To get the initial segments in the right order one could use 

scan (87) [ ]where a 131 1 = Ga >+ [ ], >+D 1. 

The operator x 131 I appends the element x at the end of the list 1. 
In what follows we need the following zip promotion law JEURING, 

1989): let f· 131 = ® . gllh and g, h strict, then 

Using zip and fixed point promotion it is not difficult to prove: 

Ge, EBD* . inits = scan (131) e. 

Again an 0(n2) algorithm is turned into a linear one. If f is strict we get 
the following theorem for free: 

inits· f* = f** . inits. 

Now if f . 131 = ® . gllf and f, 9 strict, we can show that 

f*· scan (131) e = scan (®) (f e)· g*. 
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6.3 Semantics Directed Compiler Generation 

The last introductory application of the FP PT will be the semantics of 
flowcharts REYNOLDS, 1977). The abstract syntax of flowcharts is defined 
as follows: 

E, FE prog ::= skip 

Jvar := expr 

Jprog ; prog 

Jexpr --) prog [J prog 

The meaning of a flowchart program is given by the catamorphism M[_] E 
success +- prog where 

TJ Estate == var - IN 

statetransf == state +- state 

M[_] = a SKIP,:=,;,_- -,- D 

SKIP TJ = TJ 

(x := e) TJ = TJ[x := e TJl 
;=® 

assuming that £[_] E expr - (IN +- state) is given separately. We model 
sequential composition as strict composition for the following reason. Let 
E be a prog with M[E] TJ = ..L, then we want the £[E ;F] to denote ..L as 
well, regardless of the meaning of F. 

Although prog does not contain a syntactic recursion operator, we 
can build circular (recursive) programs and get recursion on the semantic 
level as well 

f ac = n : = read ; r : = 1 ; f ac' , 

fac' = J.L()..fac'.n = 0 --) skip [] (r := r*n ; n := n-l ; fac')). 

The FPPT shows that the meaning of the above program is the following 
recursive function: 

fac = n := READ; l' := 1 ; fac', 

fac' = J.L()..fac'.n = 0 - SKIP, (1' := l' * n ; n := n - 1 ; fac')). 

For an arbitrary circular program J.L()..f E prog.E[J]) where E is an expres­
sion built from the constructors of prog we have M[E[fJ] = E'[M[J]J and 
thus by FPPT2: 
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M[J.L(.\f E prog.E[f])] = J.L(.\f E statetransf.E'[f]). 

The J.L in the rhs shows that we have 'semantic recursion'. 

6.3.1 Continuation Semantics 

It is remarkably simple to transform the above direct semantics into a 
continuation semantics; just define Cont e a = e ; a, and calculate: 

Cont (e ; f) a 

e·f·a , , 

(Cont e· Cont f) a. 

Hence Cont· (;) = (.) . ContllCont. Similarly it follows that 

Cont 1- = 1-, 

Cont· (_ -r _, _) = (_ -r _, _) . idllContllCont. 

For the elementary actions we show the derivation of the new semantic 
function := from the old one :=: 

Cont (x:=e) a TJ 

«(x:=e) ; a) TJ 

a TJ[x := e TJl 

(x:=e) a TJ. 

Similarly we can derive SKIP a = a. Hence Cont is a homomorphisms 
mapping direct semantics into continuation semantics.The promotion law 
shows that 

Ml] = Cont· Ml ] = QSKIP, :=,', _ -r _, -D E statetransf f- statetransf. 

We can go from the continuation semantics to the direct semantics by 
means of Dir e = e id. It is straightforward to prove that (Dir·Cont) = id; 
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so the continuation semantics is a correct implementation of the direct 
semantics. 
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