
PERIODIC A POLYTECHNICA SER. EL. ENG. VOL. 35, NO. 3, PP. 165-192 {1991}

A BMF FOR SEMANTICS!

E. MEIJER

Informatics Department
University of Nijmegen

Received July 31,1991

Abstract

We show how the Bird-Meertens formalism (BMF) can be based on continuous algebras
such that finite and infinite datatypes may peacefully coexist. Until recently the theory
could only deal with either finite datatypes (= initial algebra) or infinite datatypes (=
final co-algebra). In the context of continuous algebras the initial algebra coincides with
the final co-algebra. Elements of this algebra can be finite, infinite or partial. We intend
to use EBMF for semantics directed compiler generation by combining initial algebra
semantics with the calculational power of BMF.

1 Introduction

In contrast to the consensus about the formal definition of syntax by means
of some form of context free grammars, e.g. Backus-Nauer Form (BNF),
there is no agreement about a concise, readable and easily manipulat
able formalism for defining the semantics of programming languages. We
think that the Initial Algebra Semantics of the ADJ group (GOGUEN, et
al, REYNOLDS 1977) combined with the calculational power of the Bird
Meertens formalism or SquiggoZ is very adequate for this purpose. In this
paper we show how BMF (BACKHOUSE, 1988; BIRD, 1976; MEERTENS,
1986; MALCOLM, 1989b) can be built on the same ~asis as IAS: continu
ous algebras. Since programs mayor may not be recursive, our formalism
should be able to deal with both finite and infinite datatypes at the same
time. Continuous algebras allow this.

Both BMF and IAS are firmly based on algebraic grounds. The exten
sive use of initiality properties is perhaps their most characteristic feature.
Datatypes are initial algebras and programs are homomorphisms (called
caiamorphisms by Meertens) from these algebras to other, similar alge
bras. In the context of semantics 'programs' are datatypes and semantic
functions are catamorphisms. If A is initial then there exists a unique cata-

1 Report on the Phcenix project: Esprit Basic Research Action 3147

166 E. MEIJER

morphism from A to any other algebra of the same signature, thence the
following diagram commutes:

'Y
B +---' A

D-C
1/J

In other words 7J', = 'Ij;.r.p. Initiality forms the basis for transformation
steps, the promotion law, by putting 7J = id or 'Ij; = id and for correctness
proofs, the unique extension property, by putting 7J = id and 'Ij; = id. The
beauty about this is that explicit induction proofs can be circumvented by
simply checking some homomorphic properties, i.e. by calculation using
equational reasoning.

We use the above ideas to develop a transformational approach to
semantics directed compiler generation. First a semantics is defined (as a
catamorphism) which is as abstract as possible. Next an efficiency improv
ing transformation is defined as an injective homomorphism on the target
algebra. By applying the promotion law we can calculate a new, more
efficient, semantics.

This paper is couched in fairly informal terms, a more formal account
IS (MEIJER) and (FOKINGA), 1991.

1.1 Overview

First we review the basic notions of continuous functions, cpos and least
fixed points (SCHMIDT, 1986). Then in section 4 we extend some of the
Squiggol theory (FOKINGA, 1990); (MANES) and (ARBIB, 1986) to con
tinuous algebras (GOGUEN et aI, 1977). Various techniques for reasoning
and calculating with fixed points are discussed in sections 3 and 5 . The
most important ones are based on a promotion law for fixed points, which
allows us to extend transformations on nonrecursive constructs to recursive
constructs. Finally we show several examples among which an alternative
theory of infinitary objects and the definition of the meaning of flowcharts.

2 Continuous Functions and their Least Fixed Points

In this section a short overview of continuous functions and their fixed
points is given, thereby introducing a number of notational conventions that
come from Meerten's and Bird's Algorithmics. Readers already familiar
with this notation may skip to section 4.

A BMF FOR SEMANTICS 167

2.1 Partially Ordered Sets

A partially ordered set or poset is a pair (D,!;) consisting of a set D
together with a partial order !; on D that is
reflexive a!; a
transitive a !; b Ab!; c => a !; c
antisymmetric a !; b Ab!; a => a = b

A set X ~ D is a chain if all elements in X are comparable. Thus for
all a,b E X

a!; b V !; a.

The terms 'totally ordered set' and 'linearly ordered set' are used as syn
onyms for chain.

The least element, if any, in a poset is usually denoted by .L, i.e. for
allaED

.L !; a.

Given a, bED, their join a U b is the least element in D that is greater
than both a and b. In general it is not true that every two elements in D
have joins

c = a U b == (Tld :: c !; d == a !; dAb!; d).

The dual counterpart of join is called meet and is denoted by n. An easy
to verify law concerning join is .L U a = a U .L = a. The least upperbound of
a subset X ~ D is denoted by uj, conventionally written as U. Not every
X ~ D need have a lub

a = UjX == (Tic:: a!; c == (Tlb EX:: b!; c)).

2.2 CPOs

A poset D is a complete partial order or w-cpo if it contains a bottom
element and each chain D has a lub, so uj X does exist for any chain
X ~ D. For a chain X we can interpret Uj X as the 'reduction' of U over
X, since Uj satisfies:

ujO = .L,

uj({x} U X) = x U (UjX),

(this is not a definition of uj !) From now on we assume that all sources
and targets of functions are cpos unless stated otherwise.

168 E. MEIJER

A function fED' i- D is monotonic if it respects the ordering on D,

f a ~ f b ~ a ~ b.

A function fED' i- D is continuous if it respects lubs of chains, let X be
a chain:

(f . Uf) X = (uj . f*) X,

where f*X = {f x I x E X}, so f* satisfies the following equations:

f*{} = {},

f*({x} UX) = {f x} U (f*X).

If f is continuous then it follows that f is monotonic by taking the chain
X = a ~ b.

2.3 Building Domains

It is a reassuring fact that any (recursive) domain built from cpos using
sums, products and arrows is again a cpo and that any function built using
lambda notation is continuous.

The (lazy) product DIID' of two cpos D and D' and its corresponding
operation on functions are defined as:

DIID' = {(d,d') Id E D, d' E D'},

(fllg) (x, x') = (f x, 9 x'),

with ordering (Xl, X2) ~ (YI, Y2) == Xl ~ Yl /\ x2 ~ Y2. The name lazy
product stems from the fact that the least element of DIID' is (..L, ..L).

The (lifted) sum DID' of D and D' and the corresponding operation
on functions are defined as:

DID' = {..L} U {(O,d) Id E D} U {(I,d') Id' E D'},

(f I g) ..L = ..L,

(f I g) (O,x) = (O,f x),

(f I g) (1, x') = (1, 9 x'),

with ordering x ~ Y == (x = ..L) V {x = (i, x') /\ Y = (i, y') /\ Xl ~ yl).
The function space D' i- D of continuous functions from D to DI is

ordered by f ~ 9 == ('Vd E D :: f d ~ 9 d). The corresponding action on

A BMF FOR SEMANTICS 169

functions is the 'enveloping' function:

(J+-g) h = i· h· g.

Note that we write arrows from right to left; this is because function com
position also goes right to left. If we curry a function we write the arrow
from left to right as usual.

Lifting a domain D adds an additional bottom element: D..L = {1.} U
D, with ordering d !; d' == d = 1. V d !;n d'. Its associated operation on
functions is the strictifying function:

i..L 1. = 1.,

i..L d = i d, d E D,

The one point set is denoted by 1 and can be used to lift constants of type
A into nullary functions of type A +- 1. The only member of 1 ca.lled void
is denoted by O.

2.3.1 Functors

The above domain constructors or bi-functors illustrate the principle that
for each binary domain constructor t there is a corresponding combinator
structuring functions i E B +- A, g E D +- C into i t 9 E B t D +- A t C
that respects identity and composition:

id t id = id,

it 9 . h t i = (J . h)t (g. i).

A mono-functor t is a unary type constructor; its operation on functions
satisfies:

idt = id,

it· gt = (J. g)t.

A polynomial functor is any functor which can be constructed from constant
functors Dtc = C, it = id or the identity functor Dt = D, it = i through
(recursive) combinations of product and sum operations. We assume a.ll
our functors to be polynomial.

Apart from the combinators I (sum), +- (arrow) and 11 (product) we
will also need the related combinators 6. (doubling), 1t (sharing), 1 (selec
tion), .. ,~ (lifting), «,)) (projections), and - (reversaQ.

170 E. MEIJER

t (f+--g) h = f . ht· g,

D.. x = (x,x),

(f 11 g) = fllg· D..,

(f t g) .1. = .1.,

(f t g) (0, X) = f x,

(f t g) (l,x') = 9 x'.

x « y = x,

x» y = y,

• c x = c,

(f ffi g) x = (f x) EB (g x),

xEBy = y EB x,

For the above combinators a large number of laws hold of which we state
only a few:

allb· clld = (a· c)lI(b· d),

allb· c 11 d = (a· c) 11 (b· d),

a 11 b· c = (a· c) 11 (b· c),

(. a 11 b = a,

« . allb = a . «.
In subsequent derivations the following two simple .A-promotion laws will
save a lot of work, since we don't have to invent variable-free versions of
functions in order to calculate

f· (.Ax.E[x]) = .Ax.f (E[x]),

(.Ax.E[x]) . 9 = .Ax.E[g xl.

We prove them both in one go

(f . .Ax.E[x] . g) y

=
(f . .Ax.E[x]) (g y)

. f (E[g y])

=
(.Ax.f E[g x]) y.

A BMF FOR SEMANTICS 171

2.4 Least Fi;r;ed Points

An element d E D is a :fixed point of fED +- D if f d = d, it is a least
fixed point if for any other fixed point d' it holds that d !; d'.-

We now have collected enough definitions to prove that continuous
functions do have least :fixed points. Let D be a cpo and fED +- D a
continuous function. Then f has a least fixed point /Lf. The proof is by con
struction of the required element. Let iterate E (D +-- D) -> ({D} +- D)
be defined as

iterate f x = {i x liE IN }.

Then iterate satifies iterate f = {_} 0 (f*' iterate I), where {_} x = {x}.
The least fixed point of f is obtained by (this is Kleenes first recursion

theorem):

/L E (D +- D) -> D,

/Lf = (ul . iterate I) .L

First we show that f (/LI) = /Lf by calculating:

f (/LI)

=
(f . UI . iterate I) ..L

= {iterate f .1. is a chain}

(ul . f* . iterate I) ..L

={l.ux=x}

..L U (UI . f * . iterate I) ..L

= {property of U}

U I ({..L} U (f* . iterate I) ..L)

= {lifting}

U I (({-} 0 (f*' iterate I)) ..L)

= {property of iterate}

(UI . iterate I) ..L

=

/Lf·

Next we show that /Lf is also least. Assume that e is also a fixed point of
f then f e !; e and

172

JLf r;;; e

=={fe[;e}

E. MEIJER

(U/ . iterate 1) 1- r;;; (u/ . iterate f) e

<:= {f monotonic}

true.

An important fact is that the least fixed point operator JL itself is continuous.

3 Calculation and Induction Rules for Fixed Points

Although we will try to avoid using (any form of) induction as much as
possible, there are occasions where it is inevitable to use the Fixed Point
Induction Principle (STOY, 1977). The three Fixed Point Promotion Laws
allow easy calculation in the presence of fixed points.

3.1 Fixed Point Induction

Let FED +- D a continuous function from cpo D into itself and P an
inclusive predicate on D, then:

P (JLF) <:= P 1-

/\ p. F <:= P.
V

3.1.1 Inclusive Predicates

A predicate is called inclusive or admissible if it respects lubs of chains, for
any chain X:

(/\/. P*) X:::} (p. Uf) X.

Clearly not every predicate is inclusive, but if f and g are continuous
the predicate P (f, g) == f = g is inclusive and if f is continuous and g
monotonic then P (f, g) == f r;;; g is inclusive (BIRD, 1976).

A BMF FOR SEMANTICS 173

3.2 Fixed Point Promotion Theorems

In our derivations we often end up at the expression 9 (J-Lf), and the ques
tion is: can we proceed by putting 9 (J-Lt) = J-Lh for some h. This question
is answered by the following fixed point promotion theorems.

3.2.1 FPPT1

€!> A,B cpos.
€!> f E B +- B, hE A +- A continuous.
€!> 9 EA+- B strict and continuous.
€!> g. f = h· g.

Then J-Lh exists and satisfies

9 (J-L f) = J-Lh.

In diagrammatic form the theorem reads

f
B-B

A-A
h

J-Lf

A large number of applications of the fixed point promotion theorem were
investigated by (MEYER, 1985). He actually proved a slightly stronger
theorem which only requires h to be monotonic. Although mentioned as
an example property of fixed points in (STOY, 1977), the theorem was not
put into use by that author. The following fixed point induction proof is
taken from (STOY 1977). Let P (x, y) == 9 x = y. Since 9 is assumed to be
strict P (..L,..L) holds. So we may assume P (x,y) and calculate:

P (f x, h y)

9 (f x) = h y

== {assumption}

h (g x) = h y

== {induction hypothesis}

h y = h y

true.

174 E. MEI1ER

Hence P (J.Lf, J.Lh), i.e., 9 (J.Lf) = J.Lh.
A fixed point operator cP is called uniform if it satisfies FPPTl. The

least fixed point operator J.L is the unique uniform fixed point operator
(GUNTER, et al1989).

3.2.2 FPPT2

When constructing circular datatypes, bound variables are used a lot to
'tie knots'. The following direct corollary of FPPT1 is formulated in terms
of bound variables

9 J.L(Ax.E[x]) = J.L(Ax.E'[x]) ~ 9 E[x] = E'[g x].

The proof uses the lambda-promotion law twice:

g. (Ax.E[x])

AX.g E[x]

Ax.E'[g x]

=
(Ax.E[x]) . g.

3.2.3 FPPT3

The third fixed point promotion theorem can be used if all else fails. In
order to apply it f and 9 must be known but not h. If in addition we know
that i E C +- Cl is a continuous inclusion such that g·i = id, in other words
Cl is a retract of C (this happens quite often), we can uniquely calculate
h provided f is canonical. If Cl is a retract of C we write Cl 5:i,g C.

Let C' 5:i,j C and D' 5:k,1 D, then fED +- C is canonical iff

j c = j c' => (1 . f) c = (l. f) c'.

We can now formulate a second promotion theorem FPPT3 (DE BRUIN,
and DE VINK, 1989) as follows. Let,

• C, Cl cpos such that C' 5:i,g C, so 9 . i = id,
• f E C +- C continuous and canonical, so 9 c = 9 Cl => (g. 1) c =

(g.1) Cl,

• 9 strict and continuous, then

A BMF FOR SEMANTICS 175

In order to apply FPPT1 we have to show that f being canonical implies
that g . f = h . g where h = (g +- i) f = g . f . i.

g c =g c

{i. 9 = id} ==
(g . i . g) c = g c

{t canonical} :::::}

(g . f . i . g) c = (g . f) c

{h=g·f·i}=
(h . g) c = (g . f) c.

4 Reflexive Domains and Continuous AIgebras

It is possible to work with infinitary objects when a datatype definition is
interpreted as a reflexive domain equation or initial continuous algebra. A
continuous t-algebra (A, cp) is a pair consisting of a domain A called the
carrier set and a strict continuous signature cp EA+- At (GOGUEN, et al,
REYNOLDS, 1977). Homomorphisms between such algebras are strict and
continuous structure preserving mappings. Let (A, cp) and (B,'I/J) be two
continuous t-algebras, a function h E B +- A is called a t-homomorphism,
if

Ell h is strict (i.e. h 1. = 1.) and continuous.
Ell h· cp = 'I/J . ht.

In diagrammatic form the homomorphism property states that the
following diagram commutes:

A~At

h 1 1 ht

B~Bt
tj;

4.1 Catamorphisms

A catamorphism (from the Greek preposition KQTQ meaning 'downwards'
as in catastrophe) is a homomorphism with as source an initial algebra.

176 E. MEIJER

The class of continuous t-algebras has initial algebra J.Lt consisting of
a type L and a function in EL+- Lt such that

i· in = rp' it

has the unique strict solution i = QrpDt for any strict rp EA+- At. When
the subscript t is clear from the context it will be omitted. In other words
i = QrpD is the unique homomorphism that makes the following diagram
commute.

in
L +--- Lt

Q~D 1 1 Q~Dt
A +--- At

~

The initial algebra (L, in) which is the 'least' solution of the domain equa
tion L = Lt (hence our notation J.Lt) can be constructed by means of
Scott's inverse limit construction. In short, the inverse limit construction
constructs a chain of cpos whose lub is the required solution. The alge
bra (L, in) is isomorphic with the algebra (Lt, int), with out E Lt +- L
and in EL+- Lt strict functions such that out· in = id, in· out = id

and ,u(inJ..out) = id. For more details on the construction of L we refer
to (SCHMIDT, 1986) since this requires a fair amount of purely technical
detail. We shall only prove that L is initial indeed, i.e.:

h = QrpD := J.L(rpJ..out) == (h strict) /\ (h· in = rp' ht). (1)

The =? part of the proof follows from the proposition that for strictness

. preserving functors t the function ,u(rpJ..1/;) is strict, if rp and 'ljJ are strict.
For proving -{= we use fixed point induction using the inclusive pred-

icate P(F, G) = h· F = G with F inl-out and G = <,DJ-out. The base
case P (1.,1.) follows from strictness of h. So assume P (j, g) == h· f = 9
and calculate:

A BMP POR SEMANTICS

P (F i,G g)

h . in . it . out = SO • gt . out

== {h. in = cp. ht. functor calculus}

SO· (h· f)t· out = SO· gt· out

== {induction hypothesis}

SO • gt . out = SO • gt . out

true.

Hence P (OinD, OsoD), and since OinD = id we are done.

177

In the framework of continuous algebras an initial algebra is far richer
than the conventional word algebra or Herbrand universe. Initial contin
uous algebras contain proper, partially defined and infinite elements. The
imposition of strictness and continuity upon homomorphisms forces these
elements to behave. Especially the strictness requirement is not to be taken
too lightly, least fixed point semantics is a useful and powerful tool but
whenever possible we should do without it.

Often we will use the traditional 'algebraic data type' notation for
initial algebras, i.e.,

IN ::= °
10" IN

instead of (IN ,0 1 0") = JLt where Nt = 1 I N. Also instead of Osoo !
... 1 SOn-ID we write Osoo, ... , SOn-ID. Using such instantiations for specific
datatypes makes formulas much more readable.

When interpreting the definition for IN as the initial word algebra
we have:

IN ={O,O"O,(O"·O")O, ... }.

When interpreting it as an initial continuous algebra we get:

IN = {.1..,O,O" .1..,0" 0,(0"'0") .1..,(0"'0") 0, ... ,co}.

Intuitively we can see .1.. as a yet unfinished number.

178 E. MEIJER

4.2 Anamorphisms

By reversing the arrows in the catamorphism diagram we get anamorphisms
(from the Greek preposition QVQ meaning 'upwards' as in anabolism):

out
L ~ Lt

K<p]i i KIO]t
A +---- At

10

with K <p] a strict and continuous function which makes the diagram com
mute. In (PATTERSON, 1988) anamorphisms are called generators, since
they generate an L object of the required structure from a given 'seed'
value taken from A.

By dualizing the proof of (1) we can prove that (L, out) is a final
co-algebra:

h = K<p] := JL(inJ-<p) == (out· h = ht· cp)

4.3 Paramorphisms

Not all functions on a data type are cata- or anamorphisms. There is for
example no simple cp such that:

lac E IN -+ IN ,

lac = OcpD·

The problem with the factorial function is that it 'eats its argument and
keeps it too' (WADLER, 1987).

lac 0 = 0" 0,

lac (0" n) = 0" n X lac n

= ((x)· (0" 11 lac)) n.

Paramorphisms were invented by (MEERTENS, 1990) to cover this type of
recursive pattern, for strict cp:

[cplt = JL()..I·cp· (id 11 f)t· out).

The factorial function above can be defined as (0" 0 I (x) . (q 11 lac)].

A BMF FOR SEMANTICS 179

A nice result is that any paramorphism can be written as the com
position of a cata- and an anamorphism. Let (L, in) = J.Lt be given, then
define

For the naturals we get:

X:f: = (LIIX)t,

h:f: = (idllh)t,

(M, IN) = J.L:f:.

X:f: = (IN IIX)t

= IllN IIX

(IN* [11 >+) = J.Lt,
hence J.L:f: is the type of 'lists of natural numbers'.

Now define preds E M t- L as follows:

For the naturals we get:

preds E IN* t-lN ,

preds = [id I .6. . out].

That is given a natural number N = (J"n 0, the expression preds N yields
the list (J"n-l 0 >+ ... >+ 0 >+ [1.

Using preds we start calculating:

OfPDt . preds

=

= {theorem proved in section 6.1}

J.L()..f·fP· f:t:·.6.t· out)

= {definition t and A}

J.L()..f·fP· (idllJ)t· (id 11 id)t . out)

= {functor calculus}

J.L()..f·fP . (id 11 J)t . out)

180 E. MEIJER

Thus [cp]t = QcpDt . preds. Since QIND t = id we immediately get preds =
[IN]t·

5 Calculation and Induction Rules for Data Structures

5.1 Unique Extension Property

Since cata- and anamorphisms are unique, we have the unique extension
property:

f = 9 = QcpD == (f strict 1\ f . in = cp' ft) 1\ (g strict 1\ 9 . in = cp . gt).

f = 9 = [cp] == out· f = ft· cp) 1\ out· 9 = gt· cp).

The UEP can be used to prove equality of two functions f and 9 without
using induction, but by only checking the promotability property.

5.2 Promotion Law

The promotion law:

f· QwD = QcpD ~ (f. W = cp' ft) 1\ (f strict)

[cp] = Kw] . f ~ (w· f = ft· cp)

can be used to transform one function into another (computationally more
efficient) one.

The promotion law for catamorphisms follows from the FPPT
(FOKKINGA, 1990):

A BMF FOR SEMANTICS

i . J.L(7fi?-out) = J.L(cp?-out)

<:= {FPPTl}

t ~
«(t.) . (7fi+-out)) 9 = «cpt-!-out) . (t.)) 9

i . 7fi . gt . out = cp . (t . g)t . out

i . 7fi . gt . out = cp . it . gt . out

== {I .1j; = 'P . It}
cp • it . gt . out = cp . it . gt . out

true.

181

The promotion law for anamorphisms can be proved by fixed point induc

tion using the inclusive predicate P (H, G) == H = G· i with H = in?-cp

and G = in?-7fi.

5.3 Partial Structural Induction

Fixed point induction is useful when we want to prove a property for a
specific recursively defined object. If we want to prove a property for each
a E A we use partial structural induction. Let (A, cp) be a continuous
t-algebra and P an inclusive predicate on A, then

Pa<:=Pl.

1\ p. cp <:= A~ . Pt,
'cl I

where At E Bool +- Boolt, generalizes normal conjunction.

6 Examples

As an illustration of the elegance of cata- and anamorphisms based on ini
tial continuous algebras, we will present an alternative theory of infinite
data structures by building infinite objects using the fixed point opera
tor explicitly and compare them to infinite objects built by anamorphisms.

182 E. MEIJER

Subsection 6.3 uses the FP PT to give semantics to a language of flowcharts,
an archetypical example of the use of our extended BMF for deriving pro
gramming language implementations. We start by giving some interesting
theorems about ana- and cata.-morphisms taken from the excellent thesis
(PATERSON, 1988).

6.1 Theorems about Ana- and Catamorphisms

The composition of a catamorphism QcpD and an anamorphism ['IjJ] is equal
to:

The proof is by fixed point induction using the inclusive predicate

P (F, G, H) == F· G = H with F = cpJ.-out , G = inJ.-'IjJ and H = cpJ.-'ljJ.
The base case P (..l,..l,..l) is obviously true. So assuming I . 9 = h we
calculate:

cp' It . out . in' gt . 'IjJ = cp . ht . 'IjJ

cp' (f. g)t. 'IjJ = cp' ht· 'IjJ

cp' ht· 'IjJ = cp' ht· 'IjJ

true.

The following interesting laws can be used in conjunction with the 'the
orems for free theorem'. Informally the RWB theorem (WADLER, 1989)
states that any polymorphic function I E a:): ~ at is a natural transfor
mation :): ,..:- t, i.e. for strict 9 we get the following theorem for free:

The first law shows the equivalence of some cata- and anamorphisms:

The proof is straightforward:

A BMF FOR SBMANTICS

As an example of this law take the binary trees based on the functor

Xt = 11 a 1 XliX,
(tree a, [11 [-11 *) = J.£ t·

Then reversing a binary tree can be defined as either:

reverse = Gin· id 1 id 1 "'D,
reverse = [id 1 id 1 ",. out],

183

Another useful law concerns the composition of two morphisms of different
signature:

GcpOt· Gin ·"pOt = GCP ·"pDt ~ it ."p = "p . ft,
["p. out]t· [cp]t = ["p. cp]t ~"p. it = ft ."p.

The proof is the promotion theorem:

=

hence by the promotion law for catamorphisms we have GcpOt . Gin ·"pOt =
GCP . "pOt·

A nice application of this law is the fact that reverse· reverse = id,
this directly follows from the fact that id 1 id 1 '" E t ...:- t and '" . ,...., = id.

184 E. MEIJER

6.2 An Alternative Theory of Infinite Data Structures

In (MALCOLM, 1989a) infinite data structures were presented using a vari
ant of anamorphisms. In his approach the objects generated by anamor
phisms constitute a completely different type than the types reduced by
catamorphisms. Technically speaking Malcolm works in the category Set
where initial algebras are least fixed point of functors while greatest fixed
points yield final co-algebras which contain only infinite elements (MANES
and ARBIB, 1986). As we have seen however it is quite nice to be able
to mix cata- and anamorphisms and also many catamorphisms can be de
scribed as anamorphisms. In this section we present an alternative theory
of infinite data structures. We will repeat some of Malcolms calculations
by building infinite objects using both anamorphisms as well as using the
fixed point operator explicitly. It is not clear to us yet when it is better
to use the one or the other. As a rule of thumb we have that systematic
generation of infinite objects is most naturally described by anamorphisms
while building a specific infinite object is done by tying knots with the least
fixed point operator.

6.2.1 List of Function Results

The data type of cons-lists are defined as follows:

Xt 11 alIX,
ht = id 1 idllh,

(a*, in) = p,t where in [11 >+.
As discussed earlier, this type contains finite, partial and infinite lists.
Infinite lists can be constructed using the least fixed point operator p,. An
example of an infinite list is zeros = p,(AzeTos.O >+ zeros).

List catamorphisms GcpD and anamorphisms ['ljJ] are defined as follows

GcpD E (3 ~ a*,

G'PD' in = 'P' G'PDt,
['ljJ] E a* ~ (3,

out· ['ljJ] = ['ljJ]t· 'ljJ.

Let 'P = e 1 EB, then according to the conventions introduced in section 4.1
we write Ge, EBD· From strictness and by instantiating in and Ge, EBDt we
get the following equations

A BMF FOR SEMANTICS

Ge,61D .1.. = .1..,

Ge,61D [] = e,

Ge, 61D . >+ = 61' idllGe, 61D·

Ge,61D recursively replaces [] by e and >+ by 61.

185

For readers not familiar with the Squiggol notation the above defini
tion probably may look a little daunting. In a more traditional functional
programming setting one would write:

and list catamorphisms are written using pattern matching as:

h [] = e,

h (a >+ as) = a 61 (h as).

The promotion theorem is instantiated for lists as follows: Let f E,+- (3
be a strict function such that f· 61 = ®. idllf, in other words f (a 61 as) =
a ® (f as), then f· Ge, 61D = Gf e, ®D·

Perhaps the most often used homomorphism on lists is map; define
it = id I fllid, then for f E f3 +- a,

f* E (3* +- a*,

f* = Gin' f:j:D

= or], >+ . fllidD

f* = [it· out].

In more traditional notation: f*[1 = [1, f*(a >+ as) = (f a) >+ (fMS).
Using list promotion it is easy to verify that f* . g* = (f. g)* and

id* = id; * is a functor.
Another law concerning * that we will need is the following, let f be

a strict function, then

f· GcpD = G'if1D . g* ~ f· cp = 'if1. it· g:j:,

[cp] . f = g*' ['if1] ~ cp' f = g:j:. ft· 'if1.

The law can be proved (for catamorphisms) by fixed point induction using

the inclusive predicate P (A, B, C) == f· A = B· C where A = cpJ..out , B =

'if1J.. out and C = in· gJ..out.
We have already seen the definition of natural numbers:

186 E. MEIJER

IN ::= 0

ler IN .

An IN -homomorphism Ge, cpO E a+- IN is defined as:

Ge, cpO 0 =e,
Ge, cpO . er =cp . Ge, cpD·

A more useful example of an infinite list than zeros as given above, is the
list of all natural numbers:

nats = JL(.\ns.O >+ er*ns).

The recursive pattern occurring in nats appears quite often (BIRD,
and WADLER, 1988) so it deserves to be defined as a separate higher order
function:

iterate E (a* +- a) +- (a +- a),

iterate 1 x = JL(.\xs.x >+ 1*xs).

The first n elements of iterate 1 x can be computed in 0 (n) steps assuming
that 1 x can be computed in 0(1) steps. It is also possible to specify iterate
by means of an anamorphism:

iterate' f = [(1,) . id 1t J]

= JL('\h.>+. id 1t (h. 1)).

(Remember that (1,) is the right injection function). This anamorphism
also builds the infinite list x >+ 1 x >+ (f . 1) x >+ ... without building
a cyclic list but by using an accumulating argument. A big difference
between iterate and iterate' is that iterate' is by definition strict in its
second argument.

Now let 9 . f = h . 9 then

g* . iterate 1 = iterate h· g.

Assuming that (g. r) x takes O(n) steps, this law turns an O(n2) algorithm
into an O(n) algorithm. Using FPPT2 we can calculate:

A BMF FOR SEMANTICS

(g* . iterate f) x = (iterate h . g) x

g* J.L(AXS.X >+ f *xs) = J.L(AXS.g x >+ h*xs)

<= {FPPT2}

g* (x >+ f*xs) = 9 x >+ (h· g)*xs

9 x >+ (h· g)*xs = 9 x >+ (h· g)*xs

true.

187

For strict 9 it is also possible to apply the law we derived for maps since
we have:

(1,) . id it f . 9

(1,) . 9 it (f. g)

(1,) . 9 it (g . h)

(1,) . gllg . id it h

=
g:j: . gt . (1,) . id it h.

The following corollary may be used to derive an efficient computation of
the list of function results. Let f = Ge, <pD be a IN -homomorphism, then
f*nats = iterate e <po Informally it states that instead of first building an
intermediate list of naturals, and then replacing each occurrence of 0 by e
and (j by <p in each natural in that list, we might as well directly build a
list of /3's built of e and <po

6.2.2 Initial Segments

Besides the recursive pattern ... >+ / x >+ ... generated by iterate f x,
the pattern a >+ a EB ao >+ (a EB ao) EB a 1 >+ . .. also appears quite often in

188 E. MEIJER

practice. The function scan takes a possibly infinite list· ao >+ al >+ ...
into the latter sequence given a seed a and an operator 131

scan (131) a as = J..L(>,xs..a >+ (xs y as)).
EB

Informally y (zip, think of a 'zipper') is defined as:
EB

(ao >+ al >+ ...) Y (bo >+ b1 >+ ...) = ao 131 bo >+ al 131 b1 >+
EB

Just like iterate the first n elements of scan (131) a as can be computed in
O(n) steps assuming that x 131 y can be computed in 0(1) steps. An appli
cation of scan is the function inits which returns the list of the reversed
initial segments of a cons-list

inits = scan (>+) [].

To get the initial segments in the right order one could use

scan (87) []where a 131 1 = Ga >+ [], >+D 1.

The operator x 131 I appends the element x at the end of the list 1.
In what follows we need the following zip promotion law JEURING,

1989): let f· 131 = ® . gllh and g, h strict, then

Using zip and fixed point promotion it is not difficult to prove:

Ge, EBD* . inits = scan (131) e.

Again an 0(n2) algorithm is turned into a linear one. If f is strict we get
the following theorem for free:

inits· f* = f** . inits.

Now if f . 131 = ® . gllf and f, 9 strict, we can show that

f*· scan (131) e = scan (®) (f e)· g*.

A BMF FOR SEMANTICS 189

6.3 Semantics Directed Compiler Generation

The last introductory application of the FP PT will be the semantics of
flowcharts REYNOLDS, 1977). The abstract syntax of flowcharts is defined
as follows:

E, FE prog ::= skip

Jvar := expr

Jprog ; prog

Jexpr --) prog [J prog

The meaning of a flowchart program is given by the catamorphism M[_] E
success +- prog where

TJ Estate == var - IN

statetransf == state +- state

M[_] = a SKIP,:=,;,_- -,- D

SKIP TJ = TJ

(x := e) TJ = TJ[x := e TJl
;=®

assuming that £[_] E expr - (IN +- state) is given separately. We model
sequential composition as strict composition for the following reason. Let
E be a prog with M[E] TJ = ..L, then we want the £[E ;F] to denote ..L as
well, regardless of the meaning of F.

Although prog does not contain a syntactic recursion operator, we
can build circular (recursive) programs and get recursion on the semantic
level as well

f ac = n : = read ; r : = 1 ; f ac' ,

fac' = J.L()..fac'.n = 0 --) skip [] (r := r*n ; n := n-l ; fac')).

The FPPT shows that the meaning of the above program is the following
recursive function:

fac = n := READ; l' := 1 ; fac',

fac' = J.L()..fac'.n = 0 - SKIP, (1' := l' * n ; n := n - 1 ; fac')).

For an arbitrary circular program J.L()..f E prog.E[J]) where E is an expres
sion built from the constructors of prog we have M[E[fJ] = E'[M[J]J and
thus by FPPT2:

190 E. MEIJER

M[J.L(.\f E prog.E[f])] = J.L(.\f E statetransf.E'[f]).

The J.L in the rhs shows that we have 'semantic recursion'.

6.3.1 Continuation Semantics

It is remarkably simple to transform the above direct semantics into a
continuation semantics; just define Cont e a = e ; a, and calculate:

Cont (e ; f) a

e·f·a , ,

(Cont e· Cont f) a.

Hence Cont· (;) = (.) . ContllCont. Similarly it follows that

Cont 1- = 1-,

Cont· (_ -r _, _) = (_ -r _, _) . idllContllCont.

For the elementary actions we show the derivation of the new semantic
function := from the old one :=:

Cont (x:=e) a TJ

«(x:=e) ; a) TJ

a TJ[x := e TJl

(x:=e) a TJ.

Similarly we can derive SKIP a = a. Hence Cont is a homomorphisms
mapping direct semantics into continuation semantics.The promotion law
shows that

Ml] = Cont· Ml] = QSKIP, :=,', _ -r _, -D E statetransf f- statetransf.

We can go from the continuation semantics to the direct semantics by
means of Dir e = e id. It is straightforward to prove that (Dir·Cont) = id;

A BMF FOR SEMANTICS 191

so the continuation semantics is a correct implementation of the direct
semantics.

Acknowledgements

We would like to thank John-Jules Meyer, Hans Meijer and the members of the STOP Al
gorithmics club, especially Maarten Fokkinga, for helpful discussions on the topics treated
here.

References

BACKHOUSE, R. (1988): An Exploration of BMF. Technical Report CS 8810, RUG.
BIRD, R. (1976): Programs and Machines: An Introduction to the Theory of Computation.

Wiley, 1976.
BIRD, R. (1988): Constructive Functional Programming. In Marktoberdorf International

Summer School on Constructive Methods in Computer Science.
BIRD, R. - WADLER P. (1988): Introduction to Functional Programming. Prentice-Hall,

1988.
DE BRUIN, A - DE VINK, E.P. (1989): Retractions in Comparing Prolog Semantics. In

Computer Science in the Netherlands 1989" pp. 71-90. SION.
FOKKINGA, M. M. (1990) personal communication.
FOKKINGA, M. M. (1990): Homo- and Catamorphisms, Reductions and Maps, an Overview.

STOP Algorithmics Internal Note. February 1990.
FOKKINGA, M. - MEIJER, E. (1991) Program calculation properties of continnous alge

bras. Techmical report 1991 4. CWI Amsterdam. University of Nijmegen, CWI.
GOGUEN, J.A. - THATCHER, J.W. - WAGNER, E.G. - WRIGHT, J.B. (1977): Initial

Algebra Semantics and Continuous Algebras. JACM, vol 24(1) pp. 68-95.
GUNTER, C. - MOSSES, P. - SCOTT, D. Semantic Domains and Denotational Semantics.

In Marktoberdorf International Summer School on Logic, Algebra and Computation,
1989. to appear in: Handbook of Theoretical Computer Science, North Holland.

JEURING, J. (1989): Deriving Algorithms on Binary Trees. In Computer Science in the
Netherlands 1989, pp. 229-249. SION.

MALCOLM. G. (1989a): An Algebraic Approach to Infinite Data Structures. Technical
Report CS 8909, RUG.

MALCOLM, G. (1989b): Homomorphisms and Promotability. In J.L.A. van de Snepscheut,
editor, Conference on the Mathematics of Program Construction: LNCS 375, pp.
335-347.

MANES, E. G. - ARBIB, M. A. (1986): Algebraic Approaches to Program Semantics.
Springer Verlag.

MEERTENS, L. (1986): Algorithmics - towards Programming as a Mathematical Activity.
In Proceedings of the CWI Symposium on Mathematics and Computer Science, pp.
289-334. North-Holland.

MEERTENS, L. (1989): Constructing a Calculus of Programs. In J.L.A. van de Snepscheut,
editor, Conference on the Mathematics of Program Construction: LNCS 375, pp
66-90.

MEERTENS, L. (1990): Paramorphisms. STOP Algorithmics Internal Note, February 1990.
MEYER, .1-.1. CIl. (1985): Programming Calculi Based on Fixed Point Transformations:

Semant.ics and Applications. PhD Thesis, Vrije Universiteit, Amsterdam.

192 E. MEIJER

PATERSON, R. (1988): Reasoning about Functional Programs. PhD Thesis, University of
Queensland, Brisbane.

REYNOLDS, J. C. (1977): Semantics of the Domain of Flowcharts. ACM Toplas, vol.
24(3) pp. 484-503.

SCHMlDT, D. A. (1986): Denotational Semantics. Allyn and Bacon.
STOY, J. E. (1977): Denotational Semantics, The Scott-Strachey Approach to Program

ming Language Theory. The MIT press.
WADLER, P. (1987): Views: A Way for Pattern Matching to Cohabit with Data Ab

straction. Technical Report 34, Programming Methodology Group, University of
Goteborg and Chalmers University of Technology, March 1987.

WADLER, P. (1989): Theorems for free! In Proc. 1989 ACM Conference on Lisp and
Functional Programming, pp. 347-359.

Address:

Erik MEIJER

Informatics Department
University of Nijmegen
Toernooiveld 1
NL-6525 ED Nijmegen
The Netherlands

