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Abstract 

The development of parallel programs following the paradigm of communicating sequen­
tial processes to be executed on distributed memory multiprocessor systems is addressed. 
The key issue in programming parallel machines today is to provide computerized tools 
supporting the development of efficient parallel software, i.e. software effectively har­
nessing the power of parallel processing systems. The critical situations where a parallel 
programmer needs help is in expressing a parallel algorithm in a programming language, 
in getting a parallel program to work and in tuning it to get optimum performance (for 
example speedup). . 

We show that the Petri net formalism is higly suitable as a performance modeling 
technique for asynchronous parallel systems, by introducing a model taking care of the 
parallel program, parallel architecture and mapping influences on overall system perfor­
mance. PRM -net (Program-Resource- Mapping) models comprise a Petri net model of the 
multiple flows of control in a parallel program, a Petri net model of the parallel hardware 
and the process-to-processor mapping information into a single integrated performance 
model. Automated analysis of PRM-net models addresses correctness and performance 
of parallel programs mapped to parallel hardware. Questions upon the correctness of 
parallel programs can be answered by investigating behavioural properties of Petri net 
programs like liveness, reach ability, boundedness, mutualy exclusiveness etc. Peformance 
of parallel programs is usefully considered only in concern with a dedicated target hard­
ware. For this reason it is essential to integrate multiprocessor hardware characteristics 
into the specification of a parallel program. The integration is done by assigning the 
concurrent processes to physical processing devices and communication patterns among 
parallel processes to communication media connecting processing elements yielding an in­
tegrated, Petri net based performance model. Evaluation of the integrated model applies 
simulation and markovian analysis to derive expressions characterising the peformance of 
the program being developed. 

Synthesis and decomposition rules for hierarchical models naturally give raise to 
use PRM-net models for graphical, performance oriented parallel programming, support­
ing top-down (stepwise refinement) as well as bottom-up development approaches. The 
graphical representation of Petri net programs visualizes phenomena like parallelism, syn­
chronisation, communication, sequential and alternative execution. Modularity of pro­
gram blocks aids reusability, prototyping is promoted by automated code generation on 
the basis of high level program specifications. 
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1. Introduction 

The performance of parallel systems (a parallel program executing on par­
allel hardware) is not only determined by the performance of the hardware 
itself (e.g. processor-, bus- or link-, memory access-speed, etc.), but also 
by the structure of the parallel program (the underlying algorithm, the 
communication pattern, synchronisation of tasks etc.) and the assignment 
of program parts (tasks that execute concurrently and cooperatively) to 
resources. Neither the approach of resource oriented performance evalu­
ation of parallel processing systems, where only the system resources are 
modeled to some extent of detail (LAZOWSKA et al., 1984), nor the program 
or process oriented approach, where exclusively software aspects are sub­
ject to performance modeling and evaluation (VERNON, 1985.) (VERNON, 
1987.), (GELENBE et/al., 1986); (CHIMENTO and TruvEDI, 1988) seem 
adequate to characterize the performance of parallel systems. The actual 
performance of such systems is always determined by the interdependencies 
between hardware performance and the requirements of parallel programs, 
i.e. the proper utilization of hardware performance by the program. 

2. PRM-nets: An Integrated Performance Model 

The main objective of the PRM-net (FERSCHA, 1990) approach is to give 
a modeling technique considering hardware, software and mapping as the 
performance influencing factors along with a computationally efficient and 
accurate method for the prediction of performance of parallel computations 
running on parallel hardware. The performance measures of interest are 
the (expected) execution time of the program and the degree of resource 
utilization at the hardware level. The problem in determining accurate 
figures of the execution time as well as resource utilization is the presence 
of two types of delay typically arising in parallel systems: synchronisation 
delay and contention delay. The first type of delay is due to the fact 
that tasks have different residence times and have to be synchronized (for 
example for communication), i.e. tasks finished earlier are made waiting for 
the completion of others. When several tasks request service from a single 
physical resource, only one of them can be granted service while the others 
have to wait. We call the delay arising because of resource contention 
contention delay. The PRM-net model explicitly accounts for these two 
critical determinants of execution time. 
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We restrict our considerations to distributed memory multiproces­
sor systems combining a variable amount of processing elements (PE's) 
connected to each other by point-to-point message links and w:orking asyn­
chronously in parallel when executing a global parallel program. The com­
putational model of parallel programs is assumed to be sequential processes 
that communicate and synchronize with each other by (synchronous) mes­
sage passing (like CSP (HOARE: 1978.)). 

2.1 P-nets 

A Petri net (REISIG, 1985); (MURATA, 1989) oriented process model is 
used to describe the structure and resource requirements of parallel pro­
grams. (Let further a Petri net P N = (P, T, R, Mstart) be characterized as 
a set of places P = {PI, P2, ... ,Pnp}, a set of transitions T = {tl' t2, ... , 
tnT }, a flow relation R ~ (P X T) U (T X P) and an initial marking 
Mstart = (ml' m2, ... ,mnp), mj E IN + U o. Let tf (tf) denote the set of 
inputplaces (outputplaces) of ti.) A process is graphically represented by a 
transition, where input places and outputplaces to the transition are used 
to model the current state of the process. A process t is ready to get active, 
if its corresponding process transition is enabled; the process gets active as 
the corresponding transition starts firing, and remains active for the fir­
ing duration. The process terminates by releasing tokens to outputplaces, 
therewith making subsequent processes (transitions) ready to get active 
(enabled). The Petri net specification of processes (components of parallel 
programs) is called a P=net. Processes can be arranged to get executed 
in sequence, in parallel, alternatively or iteratively. Concurrent processes 
are allowed to communicate on a synchronous message passing basis. In 
Fig. 1 (a) the P-net of a simple program constituted by two cyclic processes 
working in parallel and communicating with each other is given. It is built 
by a set of process transitions in a proper arrangement determining the 
dynamic behaviour of the program. The P-net is parametrized by associ­
ating resource requirements in terms of multisets of the services offered by 
physical resources to process transitions. To support hierarchical model­
ing, process compositions can be folded to form a single, compound process, 
graphically represented by a single transition (box), by aggregation of the 
resource requirements of all the constituting processes. The opposite is also 
possible: a single process can be refined by specifying its internal structure 
in terms of complex process compositions. Fig. 1 (b) shows that process 
comp 1 is constituted by three subprocesses sub 1, sub 2 and sub 3, each of them 
requiring a certain amount of the physical resource services 7l"l, 7r2 and 7r3. 

The type of resource p (processor) is also specified. When aggregating 
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sub 1, sub 2 and sub 3 to comp 1, the resource requirements are cumulated; 
decomposition of comp 1 on the other hand can help to get a more precise 
figure of its resource consumption by investigating its internals. 

Process 1 

P 
Loop 1 

Process 2 

Fig. 1. P-net model of a parallel program 

Further we give a formal presentation of P-nets and valid process 
compositions. 

Definition 2.1 (P-net) A P-Net is a process graph P = (PP,TP, RP, 
Mstart, n) where: 

(i) (Pp, T P, RP) is the underlying net with pP = {PI, P2, ... ,Pnp} and 
T P = {tl' t2, ... ,tnT }. The elements tj E T P are called processes. 

(ii) 3PE E pP with PE rf. tOVt E T. PE is the entry place ofP 
(iii) 3PA E pP with PA rf. tIVt E T. PA is the termination place ofP 
(iv) Vt E T P : t is either a primitive or a compound process 
(v) The direction of each r E RP dennes the direction of the flow of 

control. 
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(vi) Mstart = {ml,m2, ... ,mnp} is the initial marking with mE = 1 and 
mi = ° 'iPi E P \PE. 

(vii) R = {el. e2, ... , enT} is the set of resource requirements I?f { tl, t2, ... , 
t nT } where ei, the requirement of process ti, is a set of tupJes (0-, w) and 0-
is a multiset of primitive processes requiring a resource of type w. 

Primitive processes (drawn by bar transitions) are deterministic in 
behaviour, i.e. they have deterministic resource requirements in that they 
always require the same amount of services from the physical resources. 
They are no further divisible and hence represent the building blocks of 
a parallel program. We denote the set of all possible primitive processes 
within a parallel program by IT = {1rl, 1r2, ... ,1rnrr}. The graph of a prim­
itive process is a single transition (represented by a bar) with an entry 
place and one termination place. Complex structures of parallel programs 
are represented by valid compositions of primitive processes or in turn of 
process compositions. A sufficient set (to model any kind of block struc­
tured parallel program) of valid process compositions is given in terms of 
process graph compositions (see Fig. 2). 

Definition 2.2 (Sequential) A sequential process composition is a pro­
cess graph P seq = (PP,TP,RP,Mstart,R) with pP = {Pl,P2, ... PnT+l}, 

T P = {tl,t2, ... t nT }, Mstart = {l,O, ... ,a} and n = {el,e2, ... {}nT} 

where 

t .f _ { PE = PI 
1- 0 

t i - I = Pi 

i=l 

2:::; i:::; nT' 
tf = { PA = PnT+ 1 

tf+l = Pi+l 

i = nT 

1 :::; i :::; nT - 1 

P seq is aggregated to a compound process graph P = (Pp = {PE,PA}, 

T P = {t}, RP = {(PE,t),(t,PA)}, lVIstart = {l,O},R = {e}), where 
(! = U?~l (O"i, W.;) denotes the set of all tuples of multisets of primitive pro­
cesses and resource types respectively if nw different types of resources are 
required by the processes tl, t2, ... t nT . 

Let ei = U~;;l (o-k' Wk) be the resource requirement of the process 

ti E T P
, assuming that n Wj is the number of different types of resources 

required by tj. Dj = {Wl. W2, ... ,WnWj } is the set of all types of resources 

required by ti, and D = U?~l Dj the set of all types of resources wanted by 
the whole composition. The compound resource requirement (of the whole 
composition) is 

{} = U ( L O"k,Wj), 
jlWj Erl il(crk,Wj )Eg; 
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where I: is a symbol for the sum of multisets l 

By definition 2.2 consecutive (sub-)processes ti, ti+l are forced to 
be executed sequentially, i.e. ti+l becomes ready to get active as soon as 
ti has terminated (see Fig. 2(b)). Wh~n aggregating a set of sequential 
processes to a single compound process as a matter of abstraction, the 
resource requirements of the constituent processes {tl' t2, ... ,tnT } have to 
be cumulated with respect to different types of physical resources: All the 
multisets of primitive processes requiring the same type of resource are 
cumulated and associated to that resource type to form a tuple. Hence 
e of the resulting compound process comprises the union of tuples for all 
different types of resources. Definition 2.2 on the other hand implicitely 
defines decomposability of process transitions as a matter of refinement. 

Definition 2.3 (Parallel) The process graph 

P par = (Pp, T P
, RP, Mstart, n) 

of a parallel process composition with pP = {po,p!' ... P2nT+l} and 
T P = {t f' tl, t2, ... , tnT' tj} comprises two additional processes: a fork 
process t f and a join process tj such that 

nT nT 

t} = PE = Po, t? = U tf = U Pi, (i) 
i=l i=l 

nT nT 

tf = U tf = U P2i, (ii) 
i=l i=l 

(iii) 

P par is aggregated to a compound process graph P = (Pp = {PE,PA}, 
T P = {t} , RP = {(PE, t), (t,PA)}, Mstart = {I, O}, n = {e}) in the same 
way as P seg, where the compound resource requirement calculates as 

e = U ( L' O'k,Wj). 
jlwj En il(O"}:>wj )EUi 

1 A mu/tiset of IT is a linear combination of elements in IT with integer coefficients 
denoting the multiplicity of elements. The set B(IT) is the set of all multisets over IT. 
Addition of two multisets a,b E B(ll) is defined by (a + b) : x ...... a(x) + b(x), x E IT, 
multiplication by a scalar z is defined by (za) : x ...... za(x), x E IT) . 
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P, ~ Ps PnT+1 

0:-+:-0--+-0- .. I "0 
PE ~ t 2 ••• tilT p,. 

b) Sequential composition 

a) Communication 

c) Alternative composition 

e) Iterative composition 

d) Parallel composition 

Fig. 2. Graphs of process compositions 

In the graph of a parallel process composition P par the only input place to 
tf is PE and the only output place of tj is PA. The outputplaces of tf are 
t7 = U~';l tf, the inputplaces of tj are tf = U~';l tf. Fig. 2(d) shows that 
the parallel processes (tl. t2, ... ,tnT ) are allowed to get active concurrently 
if the fork process has terminated. The join process tj gets active as soon 
as the last t E {tl. t2, .. , ,tnT } has terminated. We assume that neither 
the fork-, nor the join-process require resources for their execution. 
Communication Concurrent processes, i.e. processes having afork-tran­
sition in common are allowed to communicate with each other. Interprocess 
communication is expressed by matching send (l) and receive (1) primi­
tives and takes place if both processes issuing these commands are ready for 
the message exchange at the same time ('rendez-vous' synchronisation). We 
recognize the operations ! and 1 to be primitive processes and model the 
communication of processes by a synchronisation transition (see Fig. 2(a». 
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Definition 2.4 (Alternative) Tbe grapb of an alternative process com­
position is defined byPalt = (PP,TP , RP, BpPXTP' Mstart, 'R) wbere: 

(i) BpPxTP : pP X rP 
I-t Fs assigns guards f E Fs to elements 

(p,t) E pP X rP . 

(ii) TP = {tl' t2, ... t nT } is tbe set of alternative processes. 
(iii) pP = {PE,PA} witb tf = PE 'Vti E T P and t? = PA 'Vti E r P 

Let qi = P{f(PE,t,) = t} be tbe probability tbat guard f assigned to tbe 
arc (PE, ti) is true CL::?';1 qi = 1), tben P alt is aggregated to a compound 
process witb resource requirement: 

(}= U ( L 

The graph of an alternative process composition (see Fig. 2 ( c)) P alt 
has only two places pP = {PE,PA}, i.e. an entry-place and an exit place, 
allowing at most one of the alternative processes (tl' t2, ... ,tnT ) to get 
active at the same time. If none of the guards f E {h, /2, ... ,fnT} is 
true, none of the corresponding processes can get active. If more than 
one of them are true simultaneously, one of the corresponding processes is 
selected at random to get active (nondeterministic choice). The aggregation 
of P alt hence is probabilistic. 

Definition 2.5 (Iterative) Piter = (Pp, T P , RP, Mstart, 'R) is the graph 
of an iterative process composition if: 

(i) 3PL E pP and 3tE, tA E rP with: 

(1) tk = PE, t~ = PL 

(2) t~=PL,t~=PA 
(ii) 3t E r P witb t T = to = PL 

(iii) f E Fs is a guard assigned to tbe arc (PL, t.4.). 
Let q be an estimate of tbe number of loop iterations. P iter aggregates to 
a single, compound process witb 

nw 

(} = U (q<Tk, Wk). 
k=l 

The graph of an iterative process composition P iter (see Fig. 2 (e)) contains 
a 'loop place' P L with entry- and exit-processes t E and tA., which are (for 
simplicity) assumed to require no resource services. The 'loop body' t is 
activated until the termination condition f holds. 
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2.1.1 Stochastic Aggregation in P-Nets 

The modular conception of process compositions directly supports stochas­
tic analysis on the basis of individual probability distributions of stochas­
tic resource requirements. In cases where the amount of resources of a 
given type cannot be given deterministically but only in terms of a Cox­
ian phase-type probability distribution (exponential, hyperexponential, k­
stage Erlang etc.) (TruVEDI, 1984), the aggregation to requirements of a 
compound process can be done by folding probability distributions. 

Let T P = {t1,t2, ... tnT } be a sequential process composition P seq , 
with resource requirements 'R = {el, e2,··. enT} and ei = U~;;l (Uk, Wk) as 
above. Let {Xf, Xi, ... X~T} be random variables denoting the sum of 
multiplicities of the primitive process 1r in all the Uk of ei, and let them 
be distributed according to {Fl(t), F{(t), ... F:T(t)}, F((t) being of the 
Coxian phase-type, then the multiplicity X:eq for (every) 1r in the process 
composition follows 

nT 

X 11' 
seq "" F:'eq(t) = ® F{(t), 

i=l 

(® stands for the convolution: F{(t) ® Ft+! (t) = JJ FZ+1 (t - x) dFt(x).) 
The same folding would apply to a parallel process composition being ag­
gregated to a compound process (X;ar '" F;ar(t) = ®?';1 F((t)). If 
the selection probabilities Pi = P[J(PE,t;) = tj of the alternatives T P = 
{tl' t2, ... t nT } of an alternative process composition are known, then the 
multiplicity X:lt for 1r under the assumption of definitive choice (see below) 
would follow 

nT 

X:/t '" F~t(t) = L Pi· Ft(t). 
£=1 

X~er for 1r in an iterative process composition would be 

q 

X~er '" Fiter(t) = ® Fl(t), 
i=l 

if q iterations over process tl (Xf "" F{(t)) are to be expected (proper 
termination) . 

2.1.2 Pr/T-Net Specification of P-Nets 

For process compositions with replicated structures P-nets can be specified 
in terms of Pr/T-nets (GENRICH, 1987) (GENRICH, 1988), to get a more 
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concise and easier to understand specification of compositions of huge sets 
of identical processes. This is of practical importance especially for sequen­
tial and parallel processes compositions. 

A P seq with T P = {tl' t2, ... t nT } as in Definition 2.2 is called a repli­
cated sequential process composition if all ti E T P are instances of one and 
the same process t (see Fig. 3(a». ID. this case P seq is denoted by a Pr/T-net 
as in Fig. 3(b). The variable predicate PEx initially holds for all individ­
ual processes 2:1~i~nT < i >. The transition selector x = mi~ < i > 
of t selects processes by increasing identifiers to get executed (fired) by t 
(removed from PEX and deposited into PAX). (In general: an individual 
< i > is allowed to leave PEX only if < j >, j = i - 1 has arrived in PAX). 
For brevity we denote the Pr/T-net in Fig. 3(b) as in Fig. 3(c), inscribing 
the 'range' of replication in parentheses. Multiple replications are denoted 
as in Fig. 3(d), expressing that a replicated sequential process composition 
is in turn replicated. 

The same is possible for replicated parallel process compositions with 
notations as in Fig. 4. Note that t has no transition selector, Le. t can fire 
concurrently in all modes of x. The range is enclosed in brackets (Fig. 4( c»). 

PE xyl(l=>x=>N)A(l=>y=>M) 0'<1,;> 
PExll=>x=>N l~i=>N 

l=>j~M 

I <x,y> 
'i 

PE (i=' ... N) 
<X,y>1 (x= min<.i,j » 

i 

~t er 
ll.(y=m!n<x,j» 

J , 
I <x,y> ~t 

6 6' v 

0 
P" PAxll~x::N P

A
(i=1..N) P xy I (l:::x sN)"(l:Sy=>M) 

A 

a) b) c) d) 

Fig. 3. Replicated sequential process compositions 



PETRI NET BASED MODELING 203 

~ xll~ x~ N 

Pe [i:1...N] 

P
A 

x I 1s x~N 

0) 

F}.xll~x~N 

b) 

F}. [i=1 ... N] PAxyl('sx::N)"(1~y::M) 
c) d) 

Fig. 4. Replicated parallel process compositions 

The following relation among individual tokens in multiple (hierarchi­
cal) replications and plain tokens guarantees consistency with plain P-nets: 
Let Uk :::; ik :::; Ok be the range of individuals in the k-th replication then 

L < il,i2, ... ,ik > = < il,i2, ... ,ik-l > 
(uk~ik~O/;) 

holds with L.:(u <i <0 ) < il > = ., i.e. availability of all individuals of 
1_ 1_ 1 

single replication is equivalent to the presence of the plain token. 

Firing Rules P-nets have the same firing behaviour as Place/Transition 
nets (REISIG, 1985); (REISIG, 1987) with the exception of the guarded 
transition firing in alternative or iterative process compositions. In both 
cases the conflict among enabled transitions is solved depending on data in 
the parallel program - usually performed (interactively) by a user interested 
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in the behaviour of the program when simulating the P-net. For the pur­
pose of investigating structural or performance properties of the P-net it is 
no longer necessary to consider guarded processes, one is rather interested 
in what the 'real alternatives' and the 'Feal number of loop iterations' are 
(in contrast to the situation where P-nets are acting as high level specifi­
cations of parallel programs). Hence we restrict our further considerations 
to P-nets meeting the following assumptions: 

Definitive Choice Whenever the entry-place of an alternative process 
composition is reached, at least one guard is true. 

Definitive Termination The termination condition of an iterative process 
composition will definitely hold after a finite number of iterations. 

According to these assumptions we can rewrite a general P-net to one 
with unguarded alternative processes and the arc (PL, tA) in an iterative 
process composition being a counter arc (DUGAN et al, 1984) denoting 
a specific number of loop iterations. (In the example P-net in Fig. (a) 
(PLoopl, tAl) is a counter arc labeled by n, denoting that tAl is enabled 
if there are n + 1 tokens in PLoopl. (PLoopl, Cl.l) is the corresponding 
counter-alternate arc enabling C1.1 when the count in PLoopl is between 1 
and n inclusively. Firing of Cl.l is allowed whenever a new token enters 
PLoopl, does not remove tokens from there, but places tokens to subse­
quent outputplaces. An iterative process composition can be enrolled to 
a sequential process composition constituted by n replicates of the 'loop 
body'.) P-nets rewritten in this way have exactly the same firing rules like 
Place/Transition nets and will be subject of all further investigations. 

2.1.3 Properties of P-Nets 

Every valid P-net is safe, i.e. mi ::::; 1Vpi E pP in every marking MstartMi 

reachable from the initial marking 

Mstart = {mE, m2, .. · ,mA} = {I, 0, ... ,O}, 

and satisfies the free choice condition 

by definition. For the investigation of behavioural properties of P-nets we 
first define the following extension to P-nets: 
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Definition 2.6 (Extended P-net) Let P = (Pp, T P
, RP, Mstart, R) be 

. - -P -P -P . 
a P-net. Its extensIOn to P = (P , T , R , Mstart), Wlth: 

-P P -P P -P p 
P = P , T = T U t e, R = R U (PA, t e) U (te,PE) 

is called the extension of P. 
The extension of the P-net in Fig. 1 is constructed by adding a tran­

sition te and arcs from PA and to PE thus 'looping back' the token flow 
from PA to PE. 

Corollary 2.1 The extension P of a valid P-net P is a strongly connected 
Free Choice Net (FC-P-net) (MURATA, 1989) (It meets (1) and I pI I ~ 
1, I po I ~ 1, 'it pEP). If there are no alternative or iterative process 
compositions in P, then P is a strongly connected Marked Graph (MG-P­
net) (MURATA, 1989.) (V pEP, I pI I = I po I = 1) 

To determine whether a parallel program is free of static deadlocks 
( termination) we define: 

Definition 2.7 (Termination) A P-net P with 

Mstart = {mE,m2, ... ,mA} = {1,O, ... ,a} 

is said to terminate if 

Mstop = {mE,m2, ... ,mA} = {O,O, ... ,1} 

is reachable from every marking MstartMj. 

Theorem 2.1 Let P be the extension ofP. P terminates if PE as well as 
PA are covered by all (minimal) place invariants ofF2 (Proof omitted). 

The theorem says that if an invariant does not cover PE as well as P A 
then two undesirable situations appear depending on whether the invariant 
is initially marked or not: if it is marked, then there is a cycle in the process 
causing livelock, if not, then (some) subprocesses can never get active (dead 
transitions). Fig. 5 shows the incidence matrix representation lis- of the P-

net in Fig. 5(a) along with the place invariants i found by solving lj,.i = o. 
Both i 1 and i2 cover PE as well as PA, hence P will terminate. The number 
of invariants (2) obtained simultaneously expresses the degree of exploitable 
parallelism; P can (potentially) execute on two different PE's. 

2Because of the free choice property one could also prove termination with the 
deadlock-trap method, but this would cause higher computational complexity. 
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tfork tEI CLl CL 2 tAl SRl2 tE2 C2.1 C2.2 tA2 tjoin te l1 l2 

PE -1 1 1 1 

PEI 1 -1 1 

PLoop1 1 -1 1 -1 1 

PAl 1 -1 1 

BSRI 1 -1 1 

ESR1 -1 1 1 

PE2 1 -1 1 

PLoop2 1 -1 1 -1 1 

PA2 1 -1 1 

BSR2 -1 1 1 

ESR2 1 -1 1 

PA 1 -1 1 1 

Fig. 5, Incidence matrix ofP for the P-net in Fig. l(a). 

2.2 PRM-Nets 

When modeling the performance of a parallel application the analyst should 
not have to change the formalism when modeling different aspects of the 
whole system. To this end we propose to use the Petri net formalism also 
for modeling resources and usage of resources by software processes. The 
characteristic of parallel processing systems is that resources like memory, 
processing elements and communication devices appear with some multi­
plicity (thUS forming pools of resources) allowing their concurrent usage. 
The pool of resources, their connectivity and interactivity as well as their 
potential performance are modeled by R-nets (resource nets). We assume 
that for every resource in a parallel processing environment one can identify 
its type and a set of services (primitive processes) offered to applications. 

Definition 2.8 Let Cl> = {PI,P2, ... ,Pn",} be the set of resources and 
IIp ~ II the set of primitive processes that can be executed by p. A R-net 
is a resource graph R = (pR, T R, RR, Minit. T) where: 

(i) pR = {hI, h2, ... ,hn 4>} is a finite setof 'home' places for the resources 
P E Cl>. 

(ii) TR = {il, t2, ... ,tnT } is a finite set of transitions and 
RR ~ (pR X TR) U (TR X pR) is a flow relation. 

(iii) Minit : pR ~ Cl> initially assigns resource tokens Pi E Cl> to 'home' 
places hi E pR. 
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(iv) T = {Tl' T2, ... ,Tn~} is a set of functions, each Ti : IIpi ~ Z assigning 
deterministic timing information to primitive processes executa.ble by 

Pi· 
Every resource in the system is modeled by a token in the R-net hav­

ing its proper home place. Presence of the (resource-) token in that place 
indicates the availability of the resource (idle to serve). Arcs in RR describe 
the direction of resource flows and help, together with transitions in T R , to 
model interactions and interdependencies between resources. With every 
resource P is associated a set of primitive processes IIp along with timing in­
formation TCrr) for each 1r E IIp. T(1r) is the time it would take P to serve 1r. 

The assignment of parallel (software) processes to resources is ex­
pressed by a set of arcs combining P-nets and R-nets to a single Petri net 
which we call PRM-net (program-resource-mapping-net). 

Definition 2.9 A mapping is a set of arcs M ~ (pR X T P) U (TP 
X pR) 

where 
(i) pR X T P is the set of arcs leading from home places to processes such 

that if (hi, tj) E pR X T P and the type of Pi is w, then 1r E II p, rh E er 
for all tuples (er,w) E (lj. 

(ii) T P X pR is the set of arcs leading from processes to home places with 
(tj, hd E T P 

X pR =?- 3(hi' tj) E pR X T P as in (i). 
Assigning home places to process transitions is allowed only if all the 

primitive processes required by the transition are offered as services by the 
resource (the resource also has to have the desired type). We finally call 
the triple P RM = {P, R, M}, the combination of a P-net and a R-net by 
a mapping to a single, integrated net model, the PRM-net model. 

See Fig. 6 for sample mappings of the P-net in Fig. lea) to a set of 
resources. Assume that the compound processes 01.1, 01.2, 02.1 and 02.2 
all require resources of type p (processor) for being served, and Proces­
sor 1 and Processor 2 being resources of that type, then the process transi­
tions are allowed to get mapped to them if they can be served completely. 
Fig. lea) shows the assignment of the parallel program to two processors 
connected to each other by a communication link, fully exploiting the in­
herent parallelism. During one iteration step 01.1 and 02.1 can be executed 
concurrently by Processor 1 and Processor 2. The communication process 
SR12 synchronizes the two processes when being executed by a link type 
resource. (The link resource is made available only if both processes are 
ready for communication, i.e. there is a flow token both in B SRI as well as 
in BSR2. This is expressed by bidirectional arcs between BSRl (BSR2) 
and the transition preceding place Link, enabling this transition only if 
BSRl and BSR2 are marked. Both are not drawn in Fig. lea) for sake of 
readability.) Finally 01.2 and 02.2 are executed concurrently. In the sec-
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Fig. 6. PRM-nets for two processor (a), and one processor (b) mapping 

ond case (Fig. l(b» the program is mapped (without change in the software 
structure) to a single processor capable of serving a communication process. 
All the processes C1.l, C1.2, C2.1 and C2.2, as well as SR12 are executed 
sequentially. Processes are scheduled according to their flow precedence 
in the P-net: When starting a new loop iteration only CLl and C1.2 are 
ready to get active. This is due to CLl and Cl.2 being enabled because of 
mLoop1 = 1, mLoop2 = 1 and the residence of the resource token of Proces­
sor 1 in its home-place (mprocessorl = 1). The conflict among CLl and C1.2 

is resolved as in ordinary Petri nets by nondeterministic selection of one 
transition (process) to fire (execute). Assume C1.1 being chosen to execute 
first, then, after replacing the resource used in its home-place, only C1.2 is 
enabled and gets fired. After that control flow in the P-net forces the com­
munication SR12 to happen (mBsR1 = 1, mBSR2 = 1 and mprocessorl = 1), 
etc. (We neglect the overhead of scheduling for simplicity.) 
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To conclude, a transition (process) assigned to some resource is en­
abled (ready to get active) if both, all its inputplaces in'the P-net bear a 
(flow-) token, and the required resource token is in its home place. The 
transition (process) fires (executes) by removing all the flow tokens from 
the inputplaces in the P-net and the resource token from the R-net, making 
the resource unavailable for other processes. After a certain firing period 
flow tokens are placed to outputplaces in the P-net, while the resource to­
ken is placed back in its home place (R-net), making the resource available 
again. 

2.2.1 Timing in PRM-nets 

To support independent modeling of programs and resources we introduce 
the notion of interactive timing in the evaluation of PRM-nets. At the 
time a parallel program is being developed the configuration of the target 
hardware is generally not known. The number, type and arrangement of 
processing elements for example is often determined on the basis of the par­
allel program so as to achieve optimum performance. To this end a model 
of the program has to reveal the amount and services of resources required, 
independently of an actual resource constellation. The P-net provides all 
these informations: the amount of resources required is implicitely speci­
fied by the number of processes and the resource types required by them. 
The services and amount of resource usage are explicitly in the model by 
the resource requirements associated to process transitions. The resource 
requirements are expressed in terms of multisets of primitive processes dur­
ing the parametrization of the P-net, and aggregated in the case of process 
compostions according to the rules given above. 

The actual execution time of some process can only be determined in 
terms of performance characteristics of an assigned resource; these char­
acteristics are explicitly in the R-net model in the shape of timing func­
tions for primitive processes, the assignment information is explicitly in the 
PRM-net model. Given now a process transition ti with resource require­
ments ei = «(j, w), where (j = I::kl1l"/: Ell; nk . 1fk is a multiset of primitive 
processes out of ITi ~ IT (nk denotes the multiplicity of 1fk in ITj), assigned 
to a resource Pj with services ITj ~ IT and service times Tj (1f), 1f E ITj 

(ITi ~ IT j), The (deterministic) firing time for that transition is interac­
tively (at the firing instant) calculated as 

L nk' Tj(1fk). 
klrrk Ell; 
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The compound process C1.1 in Fig. 6(b) with resource requirements as in 
Fig. 1 (b), assigned to resource Processor 1 with execution times Tl(1l'1), 
Tl (1l'2) and Tl (1l'3) for the primitive processes 1l'1, 1l'2 and 1l'3 would take 
2 . Tl (1l'1) + 2 . Tl (1l'2) + 4 . Tl (1l'3) time steps to execute. 

2.2.2 Evaluation of PRM-nets 

Overall execution time of the parallel program is evaluated by means of 
deterministic simulation of the PRM-net model. Existing tools (CHIOLA, 

1987) have proven useful for this task, although preprocessing is necessary 
to simulate interactive timing (a coloured timed Petri net simulator will 
help for evaluating PRM-nets in the future). With the simulation of the 
PRM-net one simultaneously observes token distributions of home-places 
in the R-net, representing the basis for the derivation of figures describing 
resource usage. 

3 Example: Systolic Matrix Multiplication 

The common principle to pipelined parallel algorithms is that data is flow­
ing through a cascade of processing cells (pipeline stages) being modified by 
process activities. The major characteristic of systolic computation in con­
trast to pipelining in general is the homogeneity of processing cells (L1 and 
JAYAKUMAR, 1986), (NELSON, 1987) i.e. the set of operations applied to 
the incoming data stream(s) is the same in each cell. All cells operate syn­
chronously in parallel (in that every cell causes (approximately) the same 
processing time) in compute-communicate cycles. In the compute phase all 
the cells are busy operating, while in the communicate phase cells propa­
gate and receive data to and from direct neighbouring cells (GANNoN, et 
al 1985.) ('locality of communication'). In the following section a PRM­
net for a skeleton of a systolic computation is developed and illustrated in 
terms of a very simple example: matrix multiplication. 

3.1 PRM-net Module for Systolic Computations 

A simple matrix multiplication algorithm can be expressed in asystolic 
fashion, as is illustrated in Fig. 7 for the problem instance C = B . A., 
A. and B being 2 x 2 matrices: columns of A. and rows of B are flowing 
through a grid of inner product cells in a west-to-east and north-to-south 
lock-step manner. 
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b1.2 

b2.1~~~~~~ 
b

2
.
2 T I Tb2,2j 

V, V, 

Fig. 7. Systolic matrix multiplication 

The building block of a systolic computation is (as already mentioned) 
a cell, represented by a process with input ports for accepting data from 
previous cells, a process body comprising a set of operations to be applied 
to the input stream and output ports to pass (possibly modified) data on to 
succeeding cells. Fig. 8 (a) shows a cell (concurrently) accepting two input 
streams a and b, applying the functionality c := c + a . band outputting 
the streams a and b. The corresponding P-net representation for a cell 
performing the receive-compute-send cycle N times is given in Fig. 8(b). 
The process first performs two parallel receive (?) operations from north 
and west, then executes a multiset of primitive processes and finally sends 
(!) data to the east and south concurrently. 

In Fig. 9a PRM-net model for an N x N systolic grid of processes of 
the kind of Fig. 8 (b) is given. (For brevity we do not draw the 'boarder 
processes' at the top and the left hand side of the grid acting as data stream 
sources. Also not drawn are the data stream sink processes to the left and 
at the bottom of the grid.) 

The process grid is assigned to a grid of PE's on the R-net level, while 
synchronisation transitions between cells are mapped to hardware links. 
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Pig, 8. Systolic cell (a), P -net representation (b) 

The home place for the PE's is modeled by the dynamic relation Ppq and 
initially marked with all PE's (i, j), the home place for the link elements is 
modeled by the dynamic relation Labcd (drawn twice in the figure, on the 
left for west-east links, on the right for north-south links). PE's (i,j) are 
used to execute cells (x, y) in iteration z. (compute is concurrently enabled 
in several modes of z, as the transition selector (x = i) 1\ (y = j) binds PE's 
to cells independently of z. The concurrent enabling in compute expresses 
the (temporal) degree of parallelism in the systolic array!) A link is made 
available for west-east communication if neighbouring processes (r, s, t) and 
(u, v, w) are ready for communication at the same time (P-net) and the 
assigned PE's (a,b) (a = r,b = s) and (c,d) (c = u,d = v) are in (removable 
from) their home places (R-net), etc. 
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3.2 Performance Considerations and Optimal Placement 

The systolic algorithm shown with the simple example in Fig . . 7 can gener­
ally be considered for the problem C = A· B, given that A has dimension 
n1 X n2, B has dimension n2 X n3, and processing elements are arranged 
in a N x M grid, if: 

(i) 3lA I n1divN = lA, i.e. A can be partitioned into N equal sized row 
blocks. 

(ii) 3lB I n3divM = IB, i.e. B can be partitioned into M equal sized 
column blocks. 

(iii) 3s I n2divs = 1, with 1 $. I $. n2 and 1 E IN is a partition of columns 
of A (rows of B) into s iterations such that 

(iv) 

[ 

a1,1 

a2I 
A= ' 

a n'
l
,l 

a2,n2 A2'1 al,n2] [ All 

an;,n, ~ A~'l 
A1,2 

A2,2 

where Ai,j is a lA x I submatrix of A with elements 

AI,S] A2,s 
. , 

AN,s 

[ 

aIA(i-1)+1,1(j-1)+1 

aIA(i-1)+2,1(j -1)+1 
A-. -

t,) - : 

aIAi,I(j-1)+1 

aIA (i-1)+I,I(j-I)+2 
alA (i-1)+2,1(j-1)+2 

aIA(i-I)+l,lj] 
aIA(i-I)+2,lj 

. , 

alAi,lj 

and B is analogously partitioned into sM submatrices of dimension 
I X lB. 
Every systolic cell performs multiplication of lA X 1 submatrices of A 

and 1 X IB submatrices of B locally according to 

1 

Ci,j = Ci,j + L ai,h . bh,j Vi,j I (1 $. i $. lA), (1 $. j $. IB), 
h=l 

thus yielding 1.4. x lB submatrices Ci,j of the solution C in every cell after 
s iterations. 

To evaluate the minimum execution time (and possible speedup) for 
matrix multiplication applying this algorithm we have to consider two data 
streams (pipelines). Let the firing time of a north-south synchronisation 
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transition be (n_s and (,Le for a west-east transition, respectively. The 
firing time of a process cell transition performing multiplication of subma­
trices is denoted by e3

• Then under the assumption of concurrent send 
and receive operations the execution time in a cell is e + 2 . max( (n...s , ('Le) 
because of inhomogeneous submatrix transfer times. The fill-time of the 
first (leftmost) n_s pipeline (i.e. the time the first submatrix of A uses to 
reach the last cell in the array) with N stages (cells) is 

tjiiTN(l) = max((n_s, (w_e) + N. (8 + (n_s), 

as computation in the first cell can start at time max((n_s, (w_e) at the 
earliest. The second north-to-south pipeline can start computation at 
max((n_s, (w_e) + (e + (w_e), and the fill-time of pipeline i is hence 

Analogously the fill-time for the i-th M-stage w-e pipeline is 

After filling both groups of pipelines, submatrices are released in time in­
tervals of 

As s submatrices have to be propagated through every pipeline, the exe­
cution time is 

3 Given n 1, n2, n3 and a partition 1.4, I Band s. Let c be the computation time for 
one inner product then 

and 

nl n3 n2 ~ ~ 
B = - . - . - . c = 14 ·IB . I . c. 

N Ms' . 

.w-e ~ nl n2 ~ ~ I I ~ 
~ = (J + - . - . T = (J + A' . T, N s 
.n-s ~ n2 n3 ~ ~ I ~ 
~ = (J + -;- . M . T = (J + . IB . T, 

respectively (0: denotes the data transfer setup time and T is the propagation time for a 
single number). 
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and 

respectively. The execution time TNxM of a systolic computation on a 
N x M grid with a data stream length of s is therefore 

Example To compare analytical performance prediciton with PRM-net 
simulations we define a small example resulting from an experiment inves­
tigated on multitransputer hardware (T414, 17MHz) with c = 3.001 JLsec, 
0' = 2.903 J.Lsec and T = 3.999 JLsec for transmitting a single integer. 

Assume A to be 6 x 8, B be 8 X 12 and the availability of 2 x 3 
(N 2, M = 3) PE's to calculate C = A· B. Choosing s = 4 impiies A to 
be partitioned into 2·4 = 8 submatrices with dimension! x ~, whereas B 
is partitioned into 4 . 3 = 12 submatrices with dimension ~ x 1]. In every 
cell submatrices of A and B are multiplied to ~ x I] submatrices of C, 
which are cumulated in s = 4 iterations. 

The resource requirements for the synchronisation transitions SyLe are 
(! = {(![6)) + (?[6)),1)}, as in one single communication step a submatrix 
of A (~ . i = 6 integers) has to be transmitted, taking 6·3.999 + 2.903 = 
26.897 J.Lsec if assigned to a resource of type 1. Transition Sn_s requires 
(! = {(![8]) + (?[8]),1)} (i x 13

2 = 8 integers) and takes 8·3.999 + 2.903 
34.895 J.Lsec to fire. The computation transition requires (! = {(24( (*) + 
(+) + (:=)),p)} for ~. 13

2 ·2= 24 inner products yielding in a firing delay 
of 24 . 3.001 = 72.024 J.Lsec if assigned to a resource of type p. The overall 
execution time T2x3{ 4) is because of e = 72.024 J.Lsec and max( (n_s, (ILe) = 
max{34.895 J.Lsec, 26.897 J.Lsec): 

T2x3 (4) = max{34.895 + (3 - 1)·98.921 + 2·106.919 + (4 - 1)·141.814, 

34.895 + (2 - 1) . 106.919 + 3·98.921 + (4 - 1) . 141.814) = 

max(872.017, 864.019) = 872.017 JLsec. 
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A B Topology Size Subm. IP Exec. Time Proc. Speedup 

nl n2 nz n3 NxM s n--s iLe i TPRM(s) NxM P Sp 

6 8 8 12 2 X 3 1 32 24 96 1742.755 6 1.436 
6 8 8 12 2x3 2 16 12 48 1156.457 6 2.164 
6 8 8 12 2x3 4 8 6 24 872.017 6 2.869 
6 8 8 12 2 x 3 8 4 3 12 747.215 6 3.349 

6 8 8 12 3 X 2 1 48 16 96 1998.691 6 1.252 
6 8 8 12 3x2 2 24 8 48 1348.409 6 1.856 
6 8 8 12 3 X 2 4 12 4 24 1031.977 6 2.425 
6 8 8 12 3x2 8 6 2 12 891.179 6 2.808 
6 8 8 12 6 X 1 1 96 8 96 4436.225 6 0.564 
6 8 8 12 6 X 1 2 48 4 48 2762.031 6 0.906 
6 8 8 12 6 xl 4 24 2 24 1933.643 6 1.294 
6 8 8 12 6 X 1 8 12 1 12 1536.867 6 1.628 
6 8 8 12 1 X 6 1 16 48 96 3092.561 6 0.809 
6 8 8 12 1 X 6 2 8 24 48 1898.247 6 1.318 
6 8 8 12 1 X 6 4 4 12 24 1309.799 6 1.910 
6 8 8 12 1 X 6 8 2 6 12 1032.993 6 2.422 

Fig. 10: Speedup for Matrix Multiplication using 6 PE's 

Simulating the PRM-net in Fig. 9 revealed the following execution 
times: 
Tl.AM (4) = 872.017029 JLsec, T!x1M (3) = 730.203003 JLsec, Tl.AM (2) 
588.389038 JLsec, T!x~ (1) = 446.575012 JLsec, which are identical to ana­
lytical results. Moreover PRM-net simulations (see Fig. 10) showed that 
there is an even better partitioning into submatrices for 2 X 3 PE's (i.e. 
s = 8), and discovered that one cannot gain higher speedup when rearrang­
ing the systolic array. In fact an inappropriate arrangement (e.g. 6 xl) 
of PE's can make parallel matrix multiplication even slower than in the 
sequential case using a single PE. 

4 Conclusion and Perspectives 

A Petri net based model for multiprocessor hardware executing a parallel 
program has been developed, integrating all the performance influencing 
factors (performance characteristics of hardware resources, structure and 
resource requirements of parallel programs and the process-to-processor 
mapping). The model allows investigations into structural properties of 
the parallel program by applying methods known from the Petri net theory 
(e.g. the invariant method). Performance is evaluated by deterministic 
or stochastic simulation of the derived timed Petri net model as well as 
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analytically. In any case existing computerized tools are used (CHIOLA, 

1987) for automated analysis. 
Synthesis and decomposition rules for hierarchical (parallel) program 

net models along with the specification power of Coloured Petri nets (JEN­
SEN, 1987), will be used further for the performance oriented, graphical 
development of parallel programs. The clear Petri net formalism as well as 
the general methods developed so far in theory give rise for an integration 
into a set of tools assisting the development process of parallel software in 
all phases of the software life cycle. The architecture of the toolset will 
comprise graphical editing facilities using a Petri net metaphor, tools for 
automatic generation of the performance model from high level program 
specifications along with its evaluation and result interpretation for per­
formance prediction, tools for automated mapping support, program code 
generation, measurement and monitoring facilities and a set of tools for vi­
sualising multiprocessor performance and runtime behaviour of algorithms. 
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