
PERJODICA POLYTECHNICA SER. EL. ENG. VOL. 95, NO. 9, PP. 199-219 (1991)

PETRI NET BASED MODELING OF PARALLEL
PROGRAMS

EXECUTING ON DISTRIBUTED MEMORY
MULTIPROCESSOR SYSTEMS

A. FERSCHA, G. RARING

Institut fUr Statistik und Informatik, Universitat Wien

Received

Abstract

The development of parallel programs following the paradigm of communicating sequen­
tial processes to be executed on distributed memory multiprocessor systems is addressed.
The key issue in programming parallel machines today is to provide computerized tools
supporting the development of efficient parallel software, i.e. software effectively har­
nessing the power of parallel processing systems. The critical situations where a parallel
programmer needs help is in expressing a parallel algorithm in a programming language,
in getting a parallel program to work and in tuning it to get optimum performance (for
example speedup). .

We show that the Petri net formalism is higly suitable as a performance modeling
technique for asynchronous parallel systems, by introducing a model taking care of the
parallel program, parallel architecture and mapping influences on overall system perfor­
mance. PRM -net (Program-Resource- Mapping) models comprise a Petri net model of the
multiple flows of control in a parallel program, a Petri net model of the parallel hardware
and the process-to-processor mapping information into a single integrated performance
model. Automated analysis of PRM-net models addresses correctness and performance
of parallel programs mapped to parallel hardware. Questions upon the correctness of
parallel programs can be answered by investigating behavioural properties of Petri net
programs like liveness, reach ability, boundedness, mutualy exclusiveness etc. Peformance
of parallel programs is usefully considered only in concern with a dedicated target hard­
ware. For this reason it is essential to integrate multiprocessor hardware characteristics
into the specification of a parallel program. The integration is done by assigning the
concurrent processes to physical processing devices and communication patterns among
parallel processes to communication media connecting processing elements yielding an in­
tegrated, Petri net based performance model. Evaluation of the integrated model applies
simulation and markovian analysis to derive expressions characterising the peformance of
the program being developed.

Synthesis and decomposition rules for hierarchical models naturally give raise to
use PRM-net models for graphical, performance oriented parallel programming, support­
ing top-down (stepwise refinement) as well as bottom-up development approaches. The
graphical representation of Petri net programs visualizes phenomena like parallelism, syn­
chronisation, communication, sequential and alternative execution. Modularity of pro­
gram blocks aids reusability, prototyping is promoted by automated code generation on
the basis of high level program specifications.

194 A. FERSCHA and G. HARING

Keywords: performance evaluation, petri nets, concurrent programming, distributed mem­
ory multiprocessor systems, mapping.

1. Introduction

The performance of parallel systems (a parallel program executing on par­
allel hardware) is not only determined by the performance of the hardware
itself (e.g. processor-, bus- or link-, memory access-speed, etc.), but also
by the structure of the parallel program (the underlying algorithm, the
communication pattern, synchronisation of tasks etc.) and the assignment
of program parts (tasks that execute concurrently and cooperatively) to
resources. Neither the approach of resource oriented performance evalu­
ation of parallel processing systems, where only the system resources are
modeled to some extent of detail (LAZOWSKA et al., 1984), nor the program
or process oriented approach, where exclusively software aspects are sub­
ject to performance modeling and evaluation (VERNON, 1985.) (VERNON,
1987.), (GELENBE et/al., 1986); (CHIMENTO and TruvEDI, 1988) seem
adequate to characterize the performance of parallel systems. The actual
performance of such systems is always determined by the interdependencies
between hardware performance and the requirements of parallel programs,
i.e. the proper utilization of hardware performance by the program.

2. PRM-nets: An Integrated Performance Model

The main objective of the PRM-net (FERSCHA, 1990) approach is to give
a modeling technique considering hardware, software and mapping as the
performance influencing factors along with a computationally efficient and
accurate method for the prediction of performance of parallel computations
running on parallel hardware. The performance measures of interest are
the (expected) execution time of the program and the degree of resource
utilization at the hardware level. The problem in determining accurate
figures of the execution time as well as resource utilization is the presence
of two types of delay typically arising in parallel systems: synchronisation
delay and contention delay. The first type of delay is due to the fact
that tasks have different residence times and have to be synchronized (for
example for communication), i.e. tasks finished earlier are made waiting for
the completion of others. When several tasks request service from a single
physical resource, only one of them can be granted service while the others
have to wait. We call the delay arising because of resource contention
contention delay. The PRM-net model explicitly accounts for these two
critical determinants of execution time.

PETRI NET BASED MODELING 195

We restrict our considerations to distributed memory multiproces­
sor systems combining a variable amount of processing elements (PE's)
connected to each other by point-to-point message links and w:orking asyn­
chronously in parallel when executing a global parallel program. The com­
putational model of parallel programs is assumed to be sequential processes
that communicate and synchronize with each other by (synchronous) mes­
sage passing (like CSP (HOARE: 1978.)).

2.1 P-nets

A Petri net (REISIG, 1985); (MURATA, 1989) oriented process model is
used to describe the structure and resource requirements of parallel pro­
grams. (Let further a Petri net P N = (P, T, R, Mstart) be characterized as
a set of places P = {PI, P2, ... ,Pnp}, a set of transitions T = {tl' t2, ... ,
tnT }, a flow relation R ~ (P X T) U (T X P) and an initial marking
Mstart = (ml' m2, ... ,mnp), mj E IN + U o. Let tf (tf) denote the set of
inputplaces (outputplaces) of ti.) A process is graphically represented by a
transition, where input places and outputplaces to the transition are used
to model the current state of the process. A process t is ready to get active,
if its corresponding process transition is enabled; the process gets active as
the corresponding transition starts firing, and remains active for the fir­
ing duration. The process terminates by releasing tokens to outputplaces,
therewith making subsequent processes (transitions) ready to get active
(enabled). The Petri net specification of processes (components of parallel
programs) is called a P=net. Processes can be arranged to get executed
in sequence, in parallel, alternatively or iteratively. Concurrent processes
are allowed to communicate on a synchronous message passing basis. In
Fig. 1 (a) the P-net of a simple program constituted by two cyclic processes
working in parallel and communicating with each other is given. It is built
by a set of process transitions in a proper arrangement determining the
dynamic behaviour of the program. The P-net is parametrized by associ­
ating resource requirements in terms of multisets of the services offered by
physical resources to process transitions. To support hierarchical model­
ing, process compositions can be folded to form a single, compound process,
graphically represented by a single transition (box), by aggregation of the
resource requirements of all the constituting processes. The opposite is also
possible: a single process can be refined by specifying its internal structure
in terms of complex process compositions. Fig. 1 (b) shows that process
comp 1 is constituted by three subprocesses sub 1, sub 2 and sub 3, each of them
requiring a certain amount of the physical resource services 7l"l, 7r2 and 7r3.

The type of resource p (processor) is also specified. When aggregating

196 A. FERSCHA and G. HARING

sub 1, sub 2 and sub 3 to comp 1, the resource requirements are cumulated;
decomposition of comp 1 on the other hand can help to get a more precise
figure of its resource consumption by investigating its internals.

Process 1

P
Loop 1

Process 2

Fig. 1. P-net model of a parallel program

Further we give a formal presentation of P-nets and valid process
compositions.

Definition 2.1 (P-net) A P-Net is a process graph P = (PP,TP, RP,
Mstart, n) where:

(i) (Pp, T P, RP) is the underlying net with pP = {PI, P2, ... ,Pnp} and
T P = {tl' t2, ... ,tnT }. The elements tj E T P are called processes.

(ii) 3PE E pP with PE rf. tOVt E T. PE is the entry place ofP
(iii) 3PA E pP with PA rf. tIVt E T. PA is the termination place ofP
(iv) Vt E T P : t is either a primitive or a compound process
(v) The direction of each r E RP dennes the direction of the flow of

control.

PETRI NET BASED MODELING 197

(vi) Mstart = {ml,m2, ... ,mnp} is the initial marking with mE = 1 and
mi = ° 'iPi E P \PE.

(vii) R = {el. e2, ... , enT} is the set of resource requirements I?f { tl, t2, ... ,
t nT } where ei, the requirement of process ti, is a set of tupJes (0-, w) and 0-
is a multiset of primitive processes requiring a resource of type w.

Primitive processes (drawn by bar transitions) are deterministic in
behaviour, i.e. they have deterministic resource requirements in that they
always require the same amount of services from the physical resources.
They are no further divisible and hence represent the building blocks of
a parallel program. We denote the set of all possible primitive processes
within a parallel program by IT = {1rl, 1r2, ... ,1rnrr}. The graph of a prim­
itive process is a single transition (represented by a bar) with an entry
place and one termination place. Complex structures of parallel programs
are represented by valid compositions of primitive processes or in turn of
process compositions. A sufficient set (to model any kind of block struc­
tured parallel program) of valid process compositions is given in terms of
process graph compositions (see Fig. 2).

Definition 2.2 (Sequential) A sequential process composition is a pro­
cess graph P seq = (PP,TP,RP,Mstart,R) with pP = {Pl,P2, ... PnT+l},

T P = {tl,t2, ... t nT }, Mstart = {l,O, ... ,a} and n = {el,e2, ... {}nT}

where

t .f _ { PE = PI
1- 0

t i - I = Pi

i=l

2:::; i:::; nT'
tf = { PA = PnT+ 1

tf+l = Pi+l

i = nT

1 :::; i :::; nT - 1

P seq is aggregated to a compound process graph P = (Pp = {PE,PA},

T P = {t}, RP = {(PE,t),(t,PA)}, lVIstart = {l,O},R = {e}), where
(! = U?~l (O"i, W.;) denotes the set of all tuples of multisets of primitive pro­
cesses and resource types respectively if nw different types of resources are
required by the processes tl, t2, ... t nT .

Let ei = U~;;l (o-k' Wk) be the resource requirement of the process

ti E T P
, assuming that n Wj is the number of different types of resources

required by tj. Dj = {Wl. W2, ... ,WnWj } is the set of all types of resources

required by ti, and D = U?~l Dj the set of all types of resources wanted by
the whole composition. The compound resource requirement (of the whole
composition) is

{} = U (L O"k,Wj),
jlWj Erl il(crk,Wj)Eg;

198 A. FERSCHA and G. HARlNG

where I: is a symbol for the sum of multisets l

By definition 2.2 consecutive (sub-)processes ti, ti+l are forced to
be executed sequentially, i.e. ti+l becomes ready to get active as soon as
ti has terminated (see Fig. 2(b)). Wh~n aggregating a set of sequential
processes to a single compound process as a matter of abstraction, the
resource requirements of the constituent processes {tl' t2, ... ,tnT } have to
be cumulated with respect to different types of physical resources: All the
multisets of primitive processes requiring the same type of resource are
cumulated and associated to that resource type to form a tuple. Hence
e of the resulting compound process comprises the union of tuples for all
different types of resources. Definition 2.2 on the other hand implicitely
defines decomposability of process transitions as a matter of refinement.

Definition 2.3 (Parallel) The process graph

P par = (Pp, T P
, RP, Mstart, n)

of a parallel process composition with pP = {po,p!' ... P2nT+l} and
T P = {t f' tl, t2, ... , tnT' tj} comprises two additional processes: a fork
process t f and a join process tj such that

nT nT

t} = PE = Po, t? = U tf = U Pi, (i)
i=l i=l

nT nT

tf = U tf = U P2i, (ii)
i=l i=l

(iii)

P par is aggregated to a compound process graph P = (Pp = {PE,PA},
T P = {t} , RP = {(PE, t), (t,PA)}, Mstart = {I, O}, n = {e}) in the same
way as P seg, where the compound resource requirement calculates as

e = U (L' O'k,Wj).
jlwj En il(O"}:>wj)EUi

1 A mu/tiset of IT is a linear combination of elements in IT with integer coefficients
denoting the multiplicity of elements. The set B(IT) is the set of all multisets over IT.
Addition of two multisets a,b E B(ll) is defined by (a + b) : x a(x) + b(x), x E IT,
multiplication by a scalar z is defined by (za) : x za(x), x E IT) .

PETRI NET BASED MODELING 199

P, ~ Ps PnT+1

0:-+:-0--+-0- .. I "0
PE ~ t 2 ••• tilT p,.

b) Sequential composition

a) Communication

c) Alternative composition

e) Iterative composition

d) Parallel composition

Fig. 2. Graphs of process compositions

In the graph of a parallel process composition P par the only input place to
tf is PE and the only output place of tj is PA. The outputplaces of tf are
t7 = U~';l tf, the inputplaces of tj are tf = U~';l tf. Fig. 2(d) shows that
the parallel processes (tl. t2, ... ,tnT) are allowed to get active concurrently
if the fork process has terminated. The join process tj gets active as soon
as the last t E {tl. t2, .. , ,tnT } has terminated. We assume that neither
the fork-, nor the join-process require resources for their execution.
Communication Concurrent processes, i.e. processes having afork-tran­
sition in common are allowed to communicate with each other. Interprocess
communication is expressed by matching send (l) and receive (1) primi­
tives and takes place if both processes issuing these commands are ready for
the message exchange at the same time ('rendez-vous' synchronisation). We
recognize the operations ! and 1 to be primitive processes and model the
communication of processes by a synchronisation transition (see Fig. 2(a».

200 A. FERSCHA and G. HARING

Definition 2.4 (Alternative) Tbe grapb of an alternative process com­
position is defined byPalt = (PP,TP , RP, BpPXTP' Mstart, 'R) wbere:

(i) BpPxTP : pP X rP
I-t Fs assigns guards f E Fs to elements

(p,t) E pP X rP .

(ii) TP = {tl' t2, ... t nT } is tbe set of alternative processes.
(iii) pP = {PE,PA} witb tf = PE 'Vti E T P and t? = PA 'Vti E r P

Let qi = P{f(PE,t,) = t} be tbe probability tbat guard f assigned to tbe
arc (PE, ti) is true CL::?';1 qi = 1), tben P alt is aggregated to a compound
process witb resource requirement:

(}= U (L

The graph of an alternative process composition (see Fig. 2 (c)) P alt
has only two places pP = {PE,PA}, i.e. an entry-place and an exit place,
allowing at most one of the alternative processes (tl' t2, ... ,tnT) to get
active at the same time. If none of the guards f E {h, /2, ... ,fnT} is
true, none of the corresponding processes can get active. If more than
one of them are true simultaneously, one of the corresponding processes is
selected at random to get active (nondeterministic choice). The aggregation
of P alt hence is probabilistic.

Definition 2.5 (Iterative) Piter = (Pp, T P , RP, Mstart, 'R) is the graph
of an iterative process composition if:

(i) 3PL E pP and 3tE, tA E rP with:

(1) tk = PE, t~ = PL

(2) t~=PL,t~=PA
(ii) 3t E r P witb t T = to = PL

(iii) f E Fs is a guard assigned to tbe arc (PL, t.4.).
Let q be an estimate of tbe number of loop iterations. P iter aggregates to
a single, compound process witb

nw

(} = U (q<Tk, Wk).
k=l

The graph of an iterative process composition P iter (see Fig. 2 (e)) contains
a 'loop place' P L with entry- and exit-processes t E and tA., which are (for
simplicity) assumed to require no resource services. The 'loop body' t is
activated until the termination condition f holds.

PETRI NET BASED MODELING 201

2.1.1 Stochastic Aggregation in P-Nets

The modular conception of process compositions directly supports stochas­
tic analysis on the basis of individual probability distributions of stochas­
tic resource requirements. In cases where the amount of resources of a
given type cannot be given deterministically but only in terms of a Cox­
ian phase-type probability distribution (exponential, hyperexponential, k­
stage Erlang etc.) (TruVEDI, 1984), the aggregation to requirements of a
compound process can be done by folding probability distributions.

Let T P = {t1,t2, ... tnT } be a sequential process composition P seq ,
with resource requirements 'R = {el, e2,··. enT} and ei = U~;;l (Uk, Wk) as
above. Let {Xf, Xi, ... X~T} be random variables denoting the sum of
multiplicities of the primitive process 1r in all the Uk of ei, and let them
be distributed according to {Fl(t), F{(t), ... F:T(t)}, F((t) being of the
Coxian phase-type, then the multiplicity X:eq for (every) 1r in the process
composition follows

nT

X 11'
seq "" F:'eq(t) = ® F{(t),

i=l

(® stands for the convolution: F{(t) ® Ft+! (t) = JJ FZ+1 (t - x) dFt(x).)
The same folding would apply to a parallel process composition being ag­
gregated to a compound process (X;ar '" F;ar(t) = ®?';1 F((t)). If
the selection probabilities Pi = P[J(PE,t;) = tj of the alternatives T P =
{tl' t2, ... t nT } of an alternative process composition are known, then the
multiplicity X:lt for 1r under the assumption of definitive choice (see below)
would follow

nT

X:/t '" F~t(t) = L Pi· Ft(t).
£=1

X~er for 1r in an iterative process composition would be

q

X~er '" Fiter(t) = ® Fl(t),
i=l

if q iterations over process tl (Xf "" F{(t)) are to be expected (proper
termination) .

2.1.2 Pr/T-Net Specification of P-Nets

For process compositions with replicated structures P-nets can be specified
in terms of Pr/T-nets (GENRICH, 1987) (GENRICH, 1988), to get a more

202 A. FERSCHA and G. HARING

concise and easier to understand specification of compositions of huge sets
of identical processes. This is of practical importance especially for sequen­
tial and parallel processes compositions.

A P seq with T P = {tl' t2, ... t nT } as in Definition 2.2 is called a repli­
cated sequential process composition if all ti E T P are instances of one and
the same process t (see Fig. 3(a». ID. this case P seq is denoted by a Pr/T-net
as in Fig. 3(b). The variable predicate PEx initially holds for all individ­
ual processes 2:1~i~nT < i >. The transition selector x = mi~ < i >
of t selects processes by increasing identifiers to get executed (fired) by t
(removed from PEX and deposited into PAX). (In general: an individual
< i > is allowed to leave PEX only if < j >, j = i - 1 has arrived in PAX).
For brevity we denote the Pr/T-net in Fig. 3(b) as in Fig. 3(c), inscribing
the 'range' of replication in parentheses. Multiple replications are denoted
as in Fig. 3(d), expressing that a replicated sequential process composition
is in turn replicated.

The same is possible for replicated parallel process compositions with
notations as in Fig. 4. Note that t has no transition selector, Le. t can fire
concurrently in all modes of x. The range is enclosed in brackets (Fig. 4(c»).

PE xyl(l=>x=>N)A(l=>y=>M) 0'<1,;>
PExll=>x=>N l~i=>N

l=>j~M

I <x,y>
'i

PE (i=' ... N)
<X,y>1 (x= min<.i,j »

i

~t er
ll.(y=m!n<x,j»

J ,
I <x,y> ~t

6 6' v

0
P" PAxll~x::N P

A
(i=1..N) P xy I (l:::x sN)"(l:Sy=>M)

A

a) b) c) d)

Fig. 3. Replicated sequential process compositions

PETRI NET BASED MODELING 203

~ xll~ x~ N

Pe [i:1...N]

P
A

x I 1s x~N

0)

F}.xll~x~N

b)

F}. [i=1 ... N] PAxyl('sx::N)"(1~y::M)
c) d)

Fig. 4. Replicated parallel process compositions

The following relation among individual tokens in multiple (hierarchi­
cal) replications and plain tokens guarantees consistency with plain P-nets:
Let Uk :::; ik :::; Ok be the range of individuals in the k-th replication then

L < il,i2, ... ,ik > = < il,i2, ... ,ik-l >
(uk~ik~O/;)

holds with L.:(u <i <0) < il > = ., i.e. availability of all individuals of
1_ 1_ 1

single replication is equivalent to the presence of the plain token.

Firing Rules P-nets have the same firing behaviour as Place/Transition
nets (REISIG, 1985); (REISIG, 1987) with the exception of the guarded
transition firing in alternative or iterative process compositions. In both
cases the conflict among enabled transitions is solved depending on data in
the parallel program - usually performed (interactively) by a user interested

204 A. FERSCHA and G. HARING

in the behaviour of the program when simulating the P-net. For the pur­
pose of investigating structural or performance properties of the P-net it is
no longer necessary to consider guarded processes, one is rather interested
in what the 'real alternatives' and the 'Feal number of loop iterations' are
(in contrast to the situation where P-nets are acting as high level specifi­
cations of parallel programs). Hence we restrict our further considerations
to P-nets meeting the following assumptions:

Definitive Choice Whenever the entry-place of an alternative process
composition is reached, at least one guard is true.

Definitive Termination The termination condition of an iterative process
composition will definitely hold after a finite number of iterations.

According to these assumptions we can rewrite a general P-net to one
with unguarded alternative processes and the arc (PL, tA) in an iterative
process composition being a counter arc (DUGAN et al, 1984) denoting
a specific number of loop iterations. (In the example P-net in Fig. (a)
(PLoopl, tAl) is a counter arc labeled by n, denoting that tAl is enabled
if there are n + 1 tokens in PLoopl. (PLoopl, Cl.l) is the corresponding
counter-alternate arc enabling C1.1 when the count in PLoopl is between 1
and n inclusively. Firing of Cl.l is allowed whenever a new token enters
PLoopl, does not remove tokens from there, but places tokens to subse­
quent outputplaces. An iterative process composition can be enrolled to
a sequential process composition constituted by n replicates of the 'loop
body'.) P-nets rewritten in this way have exactly the same firing rules like
Place/Transition nets and will be subject of all further investigations.

2.1.3 Properties of P-Nets

Every valid P-net is safe, i.e. mi ::::; 1Vpi E pP in every marking MstartMi

reachable from the initial marking

Mstart = {mE, m2, .. · ,mA} = {I, 0, ... ,O},

and satisfies the free choice condition

by definition. For the investigation of behavioural properties of P-nets we
first define the following extension to P-nets:

PETRI NET BASED MODELING 205

Definition 2.6 (Extended P-net) Let P = (Pp, T P
, RP, Mstart, R) be

. - -P -P -P .
a P-net. Its extensIOn to P = (P , T , R , Mstart), Wlth:

-P P -P P -P p
P = P , T = T U t e, R = R U (PA, t e) U (te,PE)

is called the extension of P.
The extension of the P-net in Fig. 1 is constructed by adding a tran­

sition te and arcs from PA and to PE thus 'looping back' the token flow
from PA to PE.

Corollary 2.1 The extension P of a valid P-net P is a strongly connected
Free Choice Net (FC-P-net) (MURATA, 1989) (It meets (1) and I pI I ~
1, I po I ~ 1, 'it pEP). If there are no alternative or iterative process
compositions in P, then P is a strongly connected Marked Graph (MG-P­
net) (MURATA, 1989.) (V pEP, I pI I = I po I = 1)

To determine whether a parallel program is free of static deadlocks
(termination) we define:

Definition 2.7 (Termination) A P-net P with

Mstart = {mE,m2, ... ,mA} = {1,O, ... ,a}

is said to terminate if

Mstop = {mE,m2, ... ,mA} = {O,O, ... ,1}

is reachable from every marking MstartMj.

Theorem 2.1 Let P be the extension ofP. P terminates if PE as well as
PA are covered by all (minimal) place invariants ofF2 (Proof omitted).

The theorem says that if an invariant does not cover PE as well as P A
then two undesirable situations appear depending on whether the invariant
is initially marked or not: if it is marked, then there is a cycle in the process
causing livelock, if not, then (some) subprocesses can never get active (dead
transitions). Fig. 5 shows the incidence matrix representation lis- of the P-

net in Fig. 5(a) along with the place invariants i found by solving lj,.i = o.
Both i 1 and i2 cover PE as well as PA, hence P will terminate. The number
of invariants (2) obtained simultaneously expresses the degree of exploitable
parallelism; P can (potentially) execute on two different PE's.

2Because of the free choice property one could also prove termination with the
deadlock-trap method, but this would cause higher computational complexity.

206 A. FERSCHA and G. HARlNG

tfork tEI CLl CL 2 tAl SRl2 tE2 C2.1 C2.2 tA2 tjoin te l1 l2

PE -1 1 1 1

PEI 1 -1 1

PLoop1 1 -1 1 -1 1

PAl 1 -1 1

BSRI 1 -1 1

ESR1 -1 1 1

PE2 1 -1 1

PLoop2 1 -1 1 -1 1

PA2 1 -1 1

BSR2 -1 1 1

ESR2 1 -1 1

PA 1 -1 1 1

Fig. 5, Incidence matrix ofP for the P-net in Fig. l(a).

2.2 PRM-Nets

When modeling the performance of a parallel application the analyst should
not have to change the formalism when modeling different aspects of the
whole system. To this end we propose to use the Petri net formalism also
for modeling resources and usage of resources by software processes. The
characteristic of parallel processing systems is that resources like memory,
processing elements and communication devices appear with some multi­
plicity (thUS forming pools of resources) allowing their concurrent usage.
The pool of resources, their connectivity and interactivity as well as their
potential performance are modeled by R-nets (resource nets). We assume
that for every resource in a parallel processing environment one can identify
its type and a set of services (primitive processes) offered to applications.

Definition 2.8 Let Cl> = {PI,P2, ... ,Pn",} be the set of resources and
IIp ~ II the set of primitive processes that can be executed by p. A R-net
is a resource graph R = (pR, T R, RR, Minit. T) where:

(i) pR = {hI, h2, ... ,hn 4>} is a finite setof 'home' places for the resources
P E Cl>.

(ii) TR = {il, t2, ... ,tnT } is a finite set of transitions and
RR ~ (pR X TR) U (TR X pR) is a flow relation.

(iii) Minit : pR ~ Cl> initially assigns resource tokens Pi E Cl> to 'home'
places hi E pR.

PETRI NET BASED MODELING 207

(iv) T = {Tl' T2, ... ,Tn~} is a set of functions, each Ti : IIpi ~ Z assigning
deterministic timing information to primitive processes executa.ble by

Pi·
Every resource in the system is modeled by a token in the R-net hav­

ing its proper home place. Presence of the (resource-) token in that place
indicates the availability of the resource (idle to serve). Arcs in RR describe
the direction of resource flows and help, together with transitions in T R , to
model interactions and interdependencies between resources. With every
resource P is associated a set of primitive processes IIp along with timing in­
formation TCrr) for each 1r E IIp. T(1r) is the time it would take P to serve 1r.

The assignment of parallel (software) processes to resources is ex­
pressed by a set of arcs combining P-nets and R-nets to a single Petri net
which we call PRM-net (program-resource-mapping-net).

Definition 2.9 A mapping is a set of arcs M ~ (pR X T P) U (TP
X pR)

where
(i) pR X T P is the set of arcs leading from home places to processes such

that if (hi, tj) E pR X T P and the type of Pi is w, then 1r E II p, rh E er
for all tuples (er,w) E (lj.

(ii) T P X pR is the set of arcs leading from processes to home places with
(tj, hd E T P

X pR =?- 3(hi' tj) E pR X T P as in (i).
Assigning home places to process transitions is allowed only if all the

primitive processes required by the transition are offered as services by the
resource (the resource also has to have the desired type). We finally call
the triple P RM = {P, R, M}, the combination of a P-net and a R-net by
a mapping to a single, integrated net model, the PRM-net model.

See Fig. 6 for sample mappings of the P-net in Fig. lea) to a set of
resources. Assume that the compound processes 01.1, 01.2, 02.1 and 02.2
all require resources of type p (processor) for being served, and Proces­
sor 1 and Processor 2 being resources of that type, then the process transi­
tions are allowed to get mapped to them if they can be served completely.
Fig. lea) shows the assignment of the parallel program to two processors
connected to each other by a communication link, fully exploiting the in­
herent parallelism. During one iteration step 01.1 and 02.1 can be executed
concurrently by Processor 1 and Processor 2. The communication process
SR12 synchronizes the two processes when being executed by a link type
resource. (The link resource is made available only if both processes are
ready for communication, i.e. there is a flow token both in B SRI as well as
in BSR2. This is expressed by bidirectional arcs between BSRl (BSR2)
and the transition preceding place Link, enabling this transition only if
BSRl and BSR2 are marked. Both are not drawn in Fig. lea) for sake of
readability.) Finally 01.2 and 02.2 are executed concurrently. In the sec-

208 A. FERSCHA and G. HA RING

Process 1 Process 2
~- , ,

\
\
\
\

I ,

i I ~ \
I \ I
, I \ I
, I \ I
, I \ I

" I'

" " " " :' ':
" : I " , ,
'I "
II " 11 , ,

'I : (, , "
\\ , 1\ , , "
\ , , I I \ I I,

',"1 / _ 'ill ~ .J~I4 ___ -'" I'~ - - __ ...,.,' t;,(

\ r , " I ~.,.,.- -" ... _ ... ' ;; ,.-
Processor 1 ""........ ..J.... ,/./ Processor 2

, 4T ". '_I _
a)

Process 1 Process 2

Processor 1

b)

Fig. 6. PRM-nets for two processor (a), and one processor (b) mapping

ond case (Fig. l(b» the program is mapped (without change in the software
structure) to a single processor capable of serving a communication process.
All the processes C1.l, C1.2, C2.1 and C2.2, as well as SR12 are executed
sequentially. Processes are scheduled according to their flow precedence
in the P-net: When starting a new loop iteration only CLl and C1.2 are
ready to get active. This is due to CLl and Cl.2 being enabled because of
mLoop1 = 1, mLoop2 = 1 and the residence of the resource token of Proces­
sor 1 in its home-place (mprocessorl = 1). The conflict among CLl and C1.2

is resolved as in ordinary Petri nets by nondeterministic selection of one
transition (process) to fire (execute). Assume C1.1 being chosen to execute
first, then, after replacing the resource used in its home-place, only C1.2 is
enabled and gets fired. After that control flow in the P-net forces the com­
munication SR12 to happen (mBsR1 = 1, mBSR2 = 1 and mprocessorl = 1),
etc. (We neglect the overhead of scheduling for simplicity.)

PETRI NET BASED MODELING 209

To conclude, a transition (process) assigned to some resource is en­
abled (ready to get active) if both, all its inputplaces in'the P-net bear a
(flow-) token, and the required resource token is in its home place. The
transition (process) fires (executes) by removing all the flow tokens from
the inputplaces in the P-net and the resource token from the R-net, making
the resource unavailable for other processes. After a certain firing period
flow tokens are placed to outputplaces in the P-net, while the resource to­
ken is placed back in its home place (R-net), making the resource available
again.

2.2.1 Timing in PRM-nets

To support independent modeling of programs and resources we introduce
the notion of interactive timing in the evaluation of PRM-nets. At the
time a parallel program is being developed the configuration of the target
hardware is generally not known. The number, type and arrangement of
processing elements for example is often determined on the basis of the par­
allel program so as to achieve optimum performance. To this end a model
of the program has to reveal the amount and services of resources required,
independently of an actual resource constellation. The P-net provides all
these informations: the amount of resources required is implicitely speci­
fied by the number of processes and the resource types required by them.
The services and amount of resource usage are explicitly in the model by
the resource requirements associated to process transitions. The resource
requirements are expressed in terms of multisets of primitive processes dur­
ing the parametrization of the P-net, and aggregated in the case of process
compostions according to the rules given above.

The actual execution time of some process can only be determined in
terms of performance characteristics of an assigned resource; these char­
acteristics are explicitly in the R-net model in the shape of timing func­
tions for primitive processes, the assignment information is explicitly in the
PRM-net model. Given now a process transition ti with resource require­
ments ei = «(j, w), where (j = I::kl1l"/: Ell; nk . 1fk is a multiset of primitive
processes out of ITi ~ IT (nk denotes the multiplicity of 1fk in ITj), assigned
to a resource Pj with services ITj ~ IT and service times Tj (1f), 1f E ITj

(ITi ~ IT j), The (deterministic) firing time for that transition is interac­
tively (at the firing instant) calculated as

L nk' Tj(1fk).
klrrk Ell;

210 A. FERSCHA and G. HA RING

The compound process C1.1 in Fig. 6(b) with resource requirements as in
Fig. 1 (b), assigned to resource Processor 1 with execution times Tl(1l'1),
Tl (1l'2) and Tl (1l'3) for the primitive processes 1l'1, 1l'2 and 1l'3 would take
2 . Tl (1l'1) + 2 . Tl (1l'2) + 4 . Tl (1l'3) time steps to execute.

2.2.2 Evaluation of PRM-nets

Overall execution time of the parallel program is evaluated by means of
deterministic simulation of the PRM-net model. Existing tools (CHIOLA,

1987) have proven useful for this task, although preprocessing is necessary
to simulate interactive timing (a coloured timed Petri net simulator will
help for evaluating PRM-nets in the future). With the simulation of the
PRM-net one simultaneously observes token distributions of home-places
in the R-net, representing the basis for the derivation of figures describing
resource usage.

3 Example: Systolic Matrix Multiplication

The common principle to pipelined parallel algorithms is that data is flow­
ing through a cascade of processing cells (pipeline stages) being modified by
process activities. The major characteristic of systolic computation in con­
trast to pipelining in general is the homogeneity of processing cells (L1 and
JAYAKUMAR, 1986), (NELSON, 1987) i.e. the set of operations applied to
the incoming data stream(s) is the same in each cell. All cells operate syn­
chronously in parallel (in that every cell causes (approximately) the same
processing time) in compute-communicate cycles. In the compute phase all
the cells are busy operating, while in the communicate phase cells propa­
gate and receive data to and from direct neighbouring cells (GANNoN, et
al 1985.) ('locality of communication'). In the following section a PRM­
net for a skeleton of a systolic computation is developed and illustrated in
terms of a very simple example: matrix multiplication.

3.1 PRM-net Module for Systolic Computations

A simple matrix multiplication algorithm can be expressed in asystolic
fashion, as is illustrated in Fig. 7 for the problem instance C = B . A.,
A. and B being 2 x 2 matrices: columns of A. and rows of B are flowing
through a grid of inner product cells in a west-to-east and north-to-south
lock-step manner.

PETRI NET BASED MODELING 211

b1.2

b2.1~~~~~~
b

2
.
2 T I Tb2,2j

V, V,

Fig. 7. Systolic matrix multiplication

The building block of a systolic computation is (as already mentioned)
a cell, represented by a process with input ports for accepting data from
previous cells, a process body comprising a set of operations to be applied
to the input stream and output ports to pass (possibly modified) data on to
succeeding cells. Fig. 8 (a) shows a cell (concurrently) accepting two input
streams a and b, applying the functionality c := c + a . band outputting
the streams a and b. The corresponding P-net representation for a cell
performing the receive-compute-send cycle N times is given in Fig. 8(b).
The process first performs two parallel receive (?) operations from north
and west, then executes a multiset of primitive processes and finally sends
(!) data to the east and south concurrently.

In Fig. 9a PRM-net model for an N x N systolic grid of processes of
the kind of Fig. 8 (b) is given. (For brevity we do not draw the 'boarder
processes' at the top and the left hand side of the grid acting as data stream
sources. Also not drawn are the data stream sink processes to the left and
at the bottom of the grid.)

The process grid is assigned to a grid of PE's on the R-net level, while
synchronisation transitions between cells are mapped to hardware links.

212

a

I

b-1~'rbl ·b

,
a

c)

A, FERSCHA and G, HA RING

, North? c
~(1=1",n) I

~¥
West ?b'q?),I}t\:J,IJ It.,

~"
c:=c+(d'b)h f u{«+> + <"> + <:=»,p}

6

b)

{<!),I} }--Ecst!b

{<!):i Yt, "u-;(JOin

I Op
South I a A

Pig, 8. Systolic cell (a), P -net representation (b)

The home place for the PE's is modeled by the dynamic relation Ppq and
initially marked with all PE's (i, j), the home place for the link elements is
modeled by the dynamic relation Labcd (drawn twice in the figure, on the
left for west-east links, on the right for north-south links). PE's (i,j) are
used to execute cells (x, y) in iteration z. (compute is concurrently enabled
in several modes of z, as the transition selector (x = i) 1\ (y = j) binds PE's
to cells independently of z. The concurrent enabling in compute expresses
the (temporal) degree of parallelism in the systolic array!) A link is made
available for west-east communication if neighbouring processes (r, s, t) and
(u, v, w) are ready for communication at the same time (P-net) and the
assigned PE's (a,b) (a = r,b = s) and (c,d) (c = u,d = v) are in (removable
from) their home places (R-net), etc.

PETRI NET BASED MODELING 213

3.2 Performance Considerations and Optimal Placement

The systolic algorithm shown with the simple example in Fig . . 7 can gener­
ally be considered for the problem C = A· B, given that A has dimension
n1 X n2, B has dimension n2 X n3, and processing elements are arranged
in a N x M grid, if:

(i) 3lA I n1divN = lA, i.e. A can be partitioned into N equal sized row
blocks.

(ii) 3lB I n3divM = IB, i.e. B can be partitioned into M equal sized
column blocks.

(iii) 3s I n2divs = 1, with 1 $. I $. n2 and 1 E IN is a partition of columns
of A (rows of B) into s iterations such that

(iv)

[

a1,1

a2I
A= '

a n'
l
,l

a2,n2 A2'1 al,n2] [All

an;,n, ~ A~'l
A1,2

A2,2

where Ai,j is a lA x I submatrix of A with elements

AI,S] A2,s
. ,

AN,s

[

aIA(i-1)+1,1(j-1)+1

aIA(i-1)+2,1(j -1)+1
A-. -

t,) - :

aIAi,I(j-1)+1

aIA (i-1)+I,I(j-I)+2
alA (i-1)+2,1(j-1)+2

aIA(i-I)+l,lj]
aIA(i-I)+2,lj

. ,

alAi,lj

and B is analogously partitioned into sM submatrices of dimension
I X lB.
Every systolic cell performs multiplication of lA X 1 submatrices of A

and 1 X IB submatrices of B locally according to

1

Ci,j = Ci,j + L ai,h . bh,j Vi,j I (1 $. i $. lA), (1 $. j $. IB),
h=l

thus yielding 1.4. x lB submatrices Ci,j of the solution C in every cell after
s iterations.

To evaluate the minimum execution time (and possible speedup) for
matrix multiplication applying this algorithm we have to consider two data
streams (pipelines). Let the firing time of a north-south synchronisation

214 A. FERSCHA and G. HA RING

PETRI NET BASED MODELING 215

transition be (n_s and (,Le for a west-east transition, respectively. The
firing time of a process cell transition performing multiplication of subma­
trices is denoted by e3

• Then under the assumption of concurrent send
and receive operations the execution time in a cell is e + 2 . max((n...s , ('Le)
because of inhomogeneous submatrix transfer times. The fill-time of the
first (leftmost) n_s pipeline (i.e. the time the first submatrix of A uses to
reach the last cell in the array) with N stages (cells) is

tjiiTN(l) = max((n_s, (w_e) + N. (8 + (n_s),

as computation in the first cell can start at time max((n_s, (w_e) at the
earliest. The second north-to-south pipeline can start computation at
max((n_s, (w_e) + (e + (w_e), and the fill-time of pipeline i is hence

Analogously the fill-time for the i-th M-stage w-e pipeline is

After filling both groups of pipelines, submatrices are released in time in­
tervals of

As s submatrices have to be propagated through every pipeline, the exe­
cution time is

3 Given n 1, n2, n3 and a partition 1.4, I Band s. Let c be the computation time for
one inner product then

and

nl n3 n2 ~ ~
B = - . - . - . c = 14 ·IB . I . c.

N Ms' .

.w-e ~ nl n2 ~ ~ I I ~
~ = (J + - . - . T = (J + A' . T, N s
.n-s ~ n2 n3 ~ ~ I ~
~ = (J + -;- . M . T = (J + . IB . T,

respectively (0: denotes the data transfer setup time and T is the propagation time for a
single number).

216 A. FERSCHA and G. HARING

and

respectively. The execution time TNxM of a systolic computation on a
N x M grid with a data stream length of s is therefore

Example To compare analytical performance prediciton with PRM-net
simulations we define a small example resulting from an experiment inves­
tigated on multitransputer hardware (T414, 17MHz) with c = 3.001 JLsec,
0' = 2.903 J.Lsec and T = 3.999 JLsec for transmitting a single integer.

Assume A to be 6 x 8, B be 8 X 12 and the availability of 2 x 3
(N 2, M = 3) PE's to calculate C = A· B. Choosing s = 4 impiies A to
be partitioned into 2·4 = 8 submatrices with dimension! x ~, whereas B
is partitioned into 4 . 3 = 12 submatrices with dimension ~ x 1]. In every
cell submatrices of A and B are multiplied to ~ x I] submatrices of C,
which are cumulated in s = 4 iterations.

The resource requirements for the synchronisation transitions SyLe are
(! = {(![6)) + (?[6)),1)}, as in one single communication step a submatrix
of A (~ . i = 6 integers) has to be transmitted, taking 6·3.999 + 2.903 =
26.897 J.Lsec if assigned to a resource of type 1. Transition Sn_s requires
(! = {(![8]) + (?[8]),1)} (i x 13

2 = 8 integers) and takes 8·3.999 + 2.903
34.895 J.Lsec to fire. The computation transition requires (! = {(24((*) +
(+) + (:=)),p)} for ~. 13

2 ·2= 24 inner products yielding in a firing delay
of 24 . 3.001 = 72.024 J.Lsec if assigned to a resource of type p. The overall
execution time T2x3{ 4) is because of e = 72.024 J.Lsec and max((n_s, (ILe) =
max{34.895 J.Lsec, 26.897 J.Lsec):

T2x3 (4) = max{34.895 + (3 - 1)·98.921 + 2·106.919 + (4 - 1)·141.814,

34.895 + (2 - 1) . 106.919 + 3·98.921 + (4 - 1) . 141.814) =

max(872.017, 864.019) = 872.017 JLsec.

PETRI NET BASED MODELING 217

A B Topology Size Subm. IP Exec. Time Proc. Speedup

nl n2 nz n3 NxM s n--s iLe i TPRM(s) NxM P Sp

6 8 8 12 2 X 3 1 32 24 96 1742.755 6 1.436
6 8 8 12 2x3 2 16 12 48 1156.457 6 2.164
6 8 8 12 2x3 4 8 6 24 872.017 6 2.869
6 8 8 12 2 x 3 8 4 3 12 747.215 6 3.349

6 8 8 12 3 X 2 1 48 16 96 1998.691 6 1.252
6 8 8 12 3x2 2 24 8 48 1348.409 6 1.856
6 8 8 12 3 X 2 4 12 4 24 1031.977 6 2.425
6 8 8 12 3x2 8 6 2 12 891.179 6 2.808
6 8 8 12 6 X 1 1 96 8 96 4436.225 6 0.564
6 8 8 12 6 X 1 2 48 4 48 2762.031 6 0.906
6 8 8 12 6 xl 4 24 2 24 1933.643 6 1.294
6 8 8 12 6 X 1 8 12 1 12 1536.867 6 1.628
6 8 8 12 1 X 6 1 16 48 96 3092.561 6 0.809
6 8 8 12 1 X 6 2 8 24 48 1898.247 6 1.318
6 8 8 12 1 X 6 4 4 12 24 1309.799 6 1.910
6 8 8 12 1 X 6 8 2 6 12 1032.993 6 2.422

Fig. 10: Speedup for Matrix Multiplication using 6 PE's

Simulating the PRM-net in Fig. 9 revealed the following execution
times:
Tl.AM (4) = 872.017029 JLsec, T!x1M (3) = 730.203003 JLsec, Tl.AM (2)
588.389038 JLsec, T!x~ (1) = 446.575012 JLsec, which are identical to ana­
lytical results. Moreover PRM-net simulations (see Fig. 10) showed that
there is an even better partitioning into submatrices for 2 X 3 PE's (i.e.
s = 8), and discovered that one cannot gain higher speedup when rearrang­
ing the systolic array. In fact an inappropriate arrangement (e.g. 6 xl)
of PE's can make parallel matrix multiplication even slower than in the
sequential case using a single PE.

4 Conclusion and Perspectives

A Petri net based model for multiprocessor hardware executing a parallel
program has been developed, integrating all the performance influencing
factors (performance characteristics of hardware resources, structure and
resource requirements of parallel programs and the process-to-processor
mapping). The model allows investigations into structural properties of
the parallel program by applying methods known from the Petri net theory
(e.g. the invariant method). Performance is evaluated by deterministic
or stochastic simulation of the derived timed Petri net model as well as

218 A. FERSCHA and G. HARING

analytically. In any case existing computerized tools are used (CHIOLA,

1987) for automated analysis.
Synthesis and decomposition rules for hierarchical (parallel) program

net models along with the specification power of Coloured Petri nets (JEN­
SEN, 1987), will be used further for the performance oriented, graphical
development of parallel programs. The clear Petri net formalism as well as
the general methods developed so far in theory give rise for an integration
into a set of tools assisting the development process of parallel software in
all phases of the software life cycle. The architecture of the toolset will
comprise graphical editing facilities using a Petri net metaphor, tools for
automatic generation of the performance model from high level program
specifications along with its evaluation and result interpretation for per­
formance prediction, tools for automated mapping support, program code
generation, measurement and monitoring facilities and a set of tools for vi­
sualising multiprocessor performance and runtime behaviour of algorithms.

References

CHIMENTO, P. F. - TRIVEDI, K. S. (1988): The Performance of Block Structured Pro­
grams on Processors Subject to Failure and Repair. In: E. Gelenbe, Ed., High
Peljormance Computer Systems, pp. 269-280, North-Holland, Amsterdam.

CHIOLA, G. (1987): GreatSPN Users Manual. Version 1.3, September 1987. Tech. Rep.,
Dipartimento di Informatica, corso Svizzera 185, 10149 Torino, Italy.

DUGAN, J. B. - TRIVEDI, K. S. - GEIST, R. M. - NICOLA, V. F. (1984): Ex­
tended Stochastic Petri Nets: Applications and Analysis. In: Proc. of the 10th Int.
Symp. on Computer Performance (Performance 84), Paris, France, Dec 19-21,
1984, pp. 507-519.

FERSCHA, A. (1990): Modellierung und Leistungsanalyse Paralleler Systeme mit dem
PRM-Netz Modell. PhD Thesis, University of Vienna, Institute of Statistics and
Computer Science, May.

GANNON, D. - BECHTOLSHEIM, S. et al. (1985 Apr): The Systolic BLAS: An Experiment
in Parallel Algorithm Design. In: Proc. of the 30th IEEE COMPCON'85 Int. Spring
Conf., pp. 66-70, Apr.

GELENBE, E. - MONTAGNE, E. - SUROS, R. (1988): A Performance Model of Block
Structured Parallel Programs. In: M. Cosnard, P. Quinton, Y. Robert, and
M. Tchuente, Eds., Parallel Algorithms and Architectures, pp. 127-138, North­
Holland, Amsterdam.

GENRICH, H. J. (1987): Predicate/Transition Nets. In: W. Brauer, W. Reisig, and
G. Rozenberg, Eds., Petri Nets: Central Models and Their Properties. Advances in
Petri Nets 1986. LNCS Vol. 254, pp. 207-247, Springer Verlag.

GENRICH, H. (1988 a): Equivalence Transformations of PrT nets. In: Proc. of the 9th
European Workshop on Applications and Theory of Petri Nets, June 22 - 24, 1988,
Venice, Italy. (to appear), pp. 229-248.

HOARE, C. A. R. (1978 Aug): Communicating Sequential Processes. Communications
A CM, Vol. 21, No. 8, Aug.

PETRI NET BASED MODELING 219

Jensen, . (1987 a): Coloured Petri Nets. In: W. Brauer, W. Reisig, and G. Rozenberg,
Eus., Petri Nets: Central Models and Their Properties. Advances in Petri Nets
1986. LNCS Vo!. 254, pp. 248-299, Springer Verlag.

Lazowska, E. D. - ahoran, J. - Graham, S. G. - Sevcik, . (1984): Quantitative
System Performance. Computer System Analysis using Queueing Network lIIodels.
Prentice-Hall, Englewood Cliffs, New Jersey.

Li, H.. Jayakumar, R.) (1986 Sep): Systolic Structures: A Notion and Characteri-
zation. Journal of Parallel and Distributed Computing, Vo!. 3, No. 3, pp. 373-387,
1986.

Murata, T. (1989 Apr): Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, Vo!. 77, No. 4, pp. 541-580, Apr.

Nelson, P. A. - Snyder, P. (1987): Programming Paradigms for Nonshared Memory
Parallel Computers. In: L. H. Jamieson, D. B. Gannon, and R. J. Douglass, Eds.,
The Characteristics of Parallel Algorithms, pp. 3-20, MIT Press, 1987.

Reisig, W. (1985 a): Petrinetze. Eine EinfUhrung. Studienreihe Informatik, Springer­
Verlag, Berlin, 2nd Ed.

Reisig, W. (1987 a): Place/Transition Systems. In: W. Brauer, W. Reisig, and G. Rozen­
berg, Eds., Petri Nets: Central Models and Their Properties. Advances in Petri Nets
1986. LNCS Vo!. 254, pp. 117-141, Springer Verlag.

Trivedi, . S. (1984): Probability and Statistics with Reliability, Queueing and Com­
puter Science Applications. Prentice-Hall, Englewood Cliffs, New Jersey.

Vemon, M .. - Holliday, M. A. (1985 Jul): A Generalized Timed Petri Net Model
for Performance Analysis. In: Proc. Int. Workshop on Timed Petri Nets, pp. 181-
190, IEEE Comp. Soc. Press, July. 1985.

Vemon, M.. - Holliday, M. A. (1987 Jan): Exact Performance Estimates for
Multiprocessor Memory and Bus Interference. IEEE Transactions on Computers,
Vo!. C-36, No. 1, pp. 76-85, Jan. 1987.

Address:

A. FERSCHA, - G. RARING

Institut fur Statistik und Informatik, Universitat Wien
Lenaugasse 2/8, A-I080 Wien
Austria

